VECTOR-VALUED ERGODIC THEOREMS FOR MULTIPARAMETER ADDITIVE PROCESSES

BY
RYOTARO SATO (OKAYAMA)

Abstract

Let X be a reflexive Banach space and (Ω, Σ, μ) be a σ-finite measure space. Let $d \geq 1$ be an integer and $T=\left\{T(u): u=\left(u_{1}, \ldots, u_{d}\right), u_{i} \geq 0\right.$, $1 \leq i \leq d\}$ be a strongly measurable d-parameter semigroup of linear contractions on $L_{1}((\Omega, \Sigma, \mu) ; X)$. We assume that to each $T(u)$ there corresponds a positive linear contraction $P(u)$ defined on $L_{1}((\Omega, \Sigma, \mu) ; \mathbb{R})$ with the property that $\|T(u) f(\omega)\| \leq P(u)\|f(\cdot)\|(\omega)$ almost everywhere on Ω for all $f \in L_{1}((\Omega, \Sigma, \mu) ; X)$. We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in $L_{1}((\Omega, \Sigma, \mu) ; X)$ with respect to the semigroup T.

1. Introduction and the theorems. Let X be a reflexive Banach space and (Ω, Σ, μ) be a σ-finite measure space. For $1 \leq p \leq \infty$, let $L_{p}(\Omega ; X)=$ $L_{p}((\Omega, \Sigma, \mu) ; X)$ denote the usual Banach space of all X-valued strongly measurable functions f on Ω with the norm

$$
\begin{aligned}
\|f\|_{p} & :=\left(\int\|f(\omega)\|^{p} d \mu\right)^{1 / p}<\infty \quad \text { if } 1 \leq p<\infty \\
\|f\|_{\infty} & :=\operatorname{ess} \sup \{\|f(\omega)\|: \omega \in \Omega\}<\infty
\end{aligned}
$$

If $d \geq 1$ is an integer, we let $\mathbb{R}_{d}^{+}=\left\{u=\left(u_{1}, \ldots, u_{d}\right): u_{i} \geq 0,1 \leq i \leq d\right\}$ and $\mathbb{P}_{d}=\left\{u=\left(u_{1}, \ldots, u_{d}\right): u_{i}>0,1 \leq i \leq d\right\}$. Further \mathcal{I}_{d} is the class of all bounded intervals in \mathbb{R}_{d}^{+}and λ_{d} denotes the d-dimensional Lebesgue measure. In this paper we consider a strongly measurable d-parameter semigroup $T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$of linear contractions on $L_{1}(\Omega ; X)$. Thus T is strongly continuous on \mathbb{P}_{d} (cf. Lemma VIII.7.9 in [1]). A linear operator U defined on $L_{1}(\Omega ; X)$ is said to have a majorant P defined on $L_{1}(\Omega ; \mathbb{R})$ if P is a positive linear operator on $L_{1}(\Omega ; \mathbb{R})$ with the property that $\|U f(\omega)\| \leq P\|f(\cdot)\|(\omega)$ a.e. on Ω for all $f \in L_{1}(\Omega ; X)$. We assume in the theorems below that each $T(u), u \in \mathbb{R}_{d}^{+}$, has a contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$. As is known (cf. Theorem 4.1.1 in [7]), this holds automatically when $X=\mathbb{R}$ or $\mathbb{C}(=$ the complex numbers $)$. But in general this is not the case, which can be seen by a simple counter-example (see [8]).

1991 Mathematics Subject Classification: Primary 47A35.

By a (d-dimensional) process F in $L_{1}(\Omega ; X)$ we mean a set function $F: \mathcal{I}_{d} \rightarrow L_{1}(\Omega ; X)$. It is called bounded if

$$
K(F):=\sup \left\{\|F(I)\|_{1} / \lambda_{d}(I): I \in \mathcal{I}_{d}, \quad \lambda_{d}(I)>0\right\}<\infty
$$

and additive (with respect to T) if it satisfies the following conditions:
(i) $T(u) F(I)=F(u+I)$ for all $u \in \mathbb{R}_{d}^{+}$and $I \in \mathcal{I}_{d}$,
(ii) if $I_{1}, \ldots, I_{k} \in \mathcal{I}_{d}$ are pairwise disjoint and $I=\bigcup_{i=1}^{k} I_{i} \in \mathcal{I}_{d}$ then $F(I)=\sum_{i=1}^{k} F\left(I_{i}\right)$.

In particular, if $F(I)=\int_{I} T(u) f d u$ for all $I \in \mathcal{I}_{d}$, where f is a fixed function in $L_{1}(\Omega ; X)$, then $F(I)$ defines a bounded additive process in $L_{1}(\Omega ; X)$ with respect to T.

In the following, q - $\lim _{\alpha \rightarrow \infty}$ and q-lim $\sup _{\alpha \rightarrow \infty}$ will mean that these limits are taken as α tends to infinity along a countable dense subset Q of the positive real numbers. Here we may assume that Q contains the positive rational numbers. A net $\left(f_{\alpha}\right)$ of strongly measurable X-valued functions on Ω is said to converge stochastically to a strongly measurable X-valued function f_{∞} on Ω if for any $\varepsilon>0$ and $A \in \Sigma$ with $\mu(A)<\infty$ we have

$$
\lim _{\alpha} \mu\left(A \cap\left\{\omega:\left\|f_{\alpha}(\omega)-f_{\infty}(\omega)\right\|>\varepsilon\right\}\right)=0
$$

It is now time to state the theorems.
Theorem 1. Let X be a reflexive Banach space and $T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$ a semigroup of linear contractions on $L_{1}(\Omega ; X)$, strongly continuous on \mathbb{P}_{d}, such that each $T(u)$ with $u \in \mathbb{R}_{d}^{+}$has a contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$. Then for any d-dimensional bounded additive process F in $L_{1}(\Omega ; X)$ with respect to T, the averages $\alpha^{-d} F\left([0, \alpha]^{d}\right)$ converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$ invariant under T as α tends to infinity.

In particular, if the operators $P_{i}=P\left(e^{i}\right), e^{i}$ being the ith unit vector in \mathbb{R}_{d}^{+}, satisfy the additional hypothesis

$$
\begin{equation*}
\left\|P_{i}\right\|_{\infty} \leq 1 \quad(1 \leq i \leq d) \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
q-\lim _{\alpha \rightarrow \infty} \alpha^{-d} F\left([0, \alpha]^{d}\right)(\omega)=F_{\infty}(\omega) \quad \text { a.e. on } \Omega . \tag{2}
\end{equation*}
$$

Theorem 2. Let $X, T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$, and F be the same as in Theorem 1. If the positive operators $P_{i}=P\left(e^{i}\right), 1 \leq i \leq d$, commute then the averages

$$
\begin{equation*}
\left(\prod_{i=1}^{d} \alpha_{i}\right)^{-1} F\left(\left[0, \alpha_{1}\right] \times \ldots \times\left[0, \alpha_{d}\right]\right) \tag{3}
\end{equation*}
$$

converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$ invariant under T as α_{i} tends to infinity independently for each $1 \leq i \leq d$. If in addition the averages

$$
\begin{equation*}
A_{n}\left(P_{1}, \ldots, P_{d}\right) f:=A_{n}\left(P_{1}\right) \ldots A_{n}\left(P_{d}\right) f \quad(n \geq 1) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}\left(P_{i}\right):=n^{-1} \sum_{k=0}^{n-1} P_{i}^{k} \quad(1 \leq i \leq d) \tag{5}
\end{equation*}
$$

converge a.e. for all $f \in L_{1}(\Omega ; \mathbb{R})$, then (2) holds.
Theorems 1 and 2 may be considered to be vector-valued continuous refinements of Krengel's stochastic ergodic theorem (cf. Theorems 3.4.9 and 6.3 .10 in [7]) and Dunford and Schwartz's pointwise ergodic theorem (cf. Theorem 6.3.7 in [7]). See also [5]. Concerning Theorem 2, some sufficient conditions for the a.e. convergence of $A_{n}\left(P_{1}, \ldots, P_{d}\right) f$ for all $f \in L_{1}(\Omega ; \mathbb{R})$, where P_{1}, \ldots, P_{d} are commuting positive linear contractions on $L_{1}(\Omega ; \mathbb{R})$, have been examined in [4]. For example, one of such conditions is that the Brunel operator U corresponding to P_{1}, \ldots, P_{d} satisfies the pointwise ergodic theorem.

Here it may be appropriate to explain the role of the extra assumptions made about T in Theorems 1 and 2 (existence of a contraction majorant $P(u)$ and commutativity of operators $\left.P_{i}, 1 \leq i \leq d\right)$. When $X=\mathbb{R}$ or \mathbb{C}, the existence of such a $P(u)$ is known; and it seems to the author that almost all known proofs of scalar-valued (stochastic and pointwise) ergodic theorems depend upon this fact. But, when $X \neq \mathbb{R}$ and \mathbb{C}, the existence of such a $P(u)$ does not follow, as remarked above. On the other hand, the continuous one-parameter version of Chacon's vector-valued ergodic theorem (see e.g. $\S 4.2$ of [7]) has been proved by Hasegawa, Sato and Tsurumi [6]; the key to the proof was Chacon's maximal ergodic lemma. Thus, in this case, such a $P(u)$ was not used at all. Incidentally, the reflexivity of X was only used there to deduce that the mean ergodic theorem holds for T, when T was considered to be a contraction semigroup on $L_{p}(\Omega ; X)$ with $1<p<\infty$. In this paper we also assume the reflexivity of X for this purpose.

Now, let $d \geq 2$. It is natural to ask if the continuous d-parameter version of Chacon's vector-valued ergodic theorem holds. This is an open problem. And, if we assume the existence of such a $P(u)$ which satisfies in addition $\|P(u)\|_{\infty} \leq 1$ for each $u \in \mathbb{R}_{d}^{+}$, then an affirmative answer follows. In this connection we refer the reader to [5] and [8]. These are the reasons to assume the existence of such a $P(u)$ in Theorem 1 . In Theorem 2 the commutativity of P_{i} is assumed. It is an open question whether Theorem 2 holds without the commutativity assumption.
2. Preliminaries. The next two theorems are slight modifications of Theorem 4 and Theorem 1(a) of [4]. Since these can be proved as in [4], we omit the details. The theorems will be used in order to prove those mentioned in the preceding section.

Theorem A. Let X be a reflexive Banach space. Let T_{1}, \ldots, T_{d} be linear contractions on $L_{1}(\Omega ; X)$, and P_{1}, \ldots, P_{d} be positive linear contractions on $L_{1}(\Omega ; \mathbb{R})$ such that $\left\|T_{i} f(\omega)\right\| \leq P_{i}\|f(\cdot)\|(\omega)$ a.e. on Ω for all $f \in L_{1}(\Omega ; X)$ and $1 \leq i \leq d$ and also such that $\left\|P_{i}\right\|_{\infty} \leq 1$ for all $1 \leq i \leq d$. If either the operators T_{1}, \ldots, T_{d} or the operators P_{1}, \ldots, P_{d} commute, then for every $f \in L_{1}(\Omega ; X)$ the averages $A_{n}\left(T_{1}, \ldots, T_{d}\right) f$ converge a.e. on Ω as n tends to infinity.

Theorem B. Let X be a reflexive Banach space. Let T_{1}, \ldots, T_{d} be commuting linear contractions on $L_{1}(\Omega ; X)$, and P_{1}, \ldots, P_{d} be commuting positive linear contractions on $L_{1}(\Omega ; \mathbb{R})$ such that $\left\|T_{i} f(\omega)\right\| \leq P_{i}\|f(\cdot)\|(\omega)$ a.e. on Ω for all $f \in L_{1}(\Omega ; X)$ and $1 \leq i \leq d$. If the limit

$$
\lim _{n} A_{n}\left(P_{1}, \ldots, P_{d}\right) f(\omega)
$$

exists a.e. on Ω for all $f \in L_{1}(\Omega ; \mathbb{R})$, then the limit

$$
\lim _{n} A_{n}\left(T_{1}, \ldots, T_{d}\right) f(\omega)
$$

exists a.e. on Ω for all $f \in L_{1}(\Omega ; X)$.
The next lemma is also a slight modification of Lemma 1 in [8]; we omit the details here.

Lemma. Let $T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$be a semigroup of linear contractions on $L_{1}(\Omega ; X)$, strongly continuous on \mathbb{P}_{d}, such that each $T(u)$ with $u \in \mathbb{R}_{d}^{+}$ has contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$. Then there exists a positive linear contraction $\tau(u)$ on $L_{1}(\Omega ; \mathbb{R})$ for each $u \in \mathbb{R}_{d}^{+}$, called the linear modulus of $T(u)$, such that
(i) $\|T(u) f(\omega)\| \leq \tau(u)\|f(\cdot)\|(\omega) \leq P(u)\|f(\cdot)\|(\omega)$ a.e. on Ω for all $f \in L_{1}(\Omega ; X)$,
(ii) $\tau(u) g=\operatorname{ess} \sup \left\{\sum_{i=1}^{k}\left\|T(u) f_{i}(\cdot)\right\|: f_{i} \in L_{1}(\Omega ; X), \sum_{i=1}^{k}\left\|f_{i}(\omega)\right\|\right.$ $\leq g(\omega)$ a.e. on $\Omega\}$ for all $g \in L_{1}^{+}(\Omega ; \mathbb{R})$,
(iii) $\tau(s+t) \leq \tau(s) \tau(t)$ for all $s, t \in \mathbb{R}_{d}^{+}$,
(iv) if $u \in \mathbb{P}_{d}$ then

$$
\begin{equation*}
\tau(u)=\text { strong- } \lim _{\substack{t \rightarrow u \\ t \geq u}} \tau(t) \tag{6}
\end{equation*}
$$

In particular, if the semigroup T is strongly continuous on \mathbb{R}_{d}^{+}then we have (6) for all $u \in \mathbb{R}_{d}^{+}$.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. By an easy argument we may assume that $d \geq 2$ (see e.g. [8]). Putting $T_{i}=T\left(e^{i}\right), 1 \leq i \leq d$, we then apply Theorem 6.3.4 of [7] to infer that there exists a constant $C_{d}>0$ and a positive linear contraction U in $L_{1}(\Omega ; \mathbb{R})$ of the form

$$
U=\sum_{n_{1}, \ldots, n_{d} \geq 0} a\left(n_{1}, \ldots, n_{d}\right) P_{1}^{n_{1}} \ldots P_{d}^{n_{d}}
$$

where

$$
a\left(n_{1}, \ldots, n_{d}\right)>0 \text { and } \sum_{n_{1}, \ldots, n_{d} \geq 0} a\left(n_{1}, \ldots, n_{d}\right)=1
$$

so that for all $f \in L_{1}(\Omega ; X)$,

$$
\begin{equation*}
\left\|A_{n}\left(T_{1}, \ldots, T_{d}\right) f(\omega)\right\| \leq C_{d} \cdot A_{d(n)}(U)\|f(\cdot)\|(\omega) \quad \text { a.e. on } \Omega \tag{7}
\end{equation*}
$$

Here $d(n)$ is a non-decreasing function, depending only on $d \geq 2$, from the positive integers to themselves. U will be called below the Brunel operator corresponding to the (not necessarily commuting) operators P_{1}, \ldots, P_{d}. We next use Krengel's stochastic ergodic theorem (cf. Theorem 3.4.9 in [7]) for U and see that $A_{n}(U)\left\|F\left([0,1]^{d}\right)(\cdot)\right\|(\omega)$ converges stochastically to a function $g \in L_{1}(\Omega ; \mathbb{R})$ with $U g=g \geq 0$.

Write

$$
\Omega(g)=\{\omega: g(\omega)>0\}
$$

By (7) we find that

$$
\begin{equation*}
A_{n}\left(T_{1}, \ldots, T_{d}\right) F\left([0,1]^{d}\right) \rightarrow 0 \quad \text { stochastically on } \Omega \backslash \Omega(g) \tag{8}
\end{equation*}
$$

Since $U g=g \geq 0$ and X is a reflexive Banach space, it follows from Eberlein's mean ergodic theorem (cf. Theorem 2.1.5 in [7]) that for any $f \in L_{1}(\Omega(g) ; X)$ the averages

$$
A_{n}\left(T_{1}, \ldots, T_{d}\right) f \quad(n \geq 1)
$$

converge in the L_{1}-norm to a function in $L_{1}(\Omega(g) ; X)$ invariant under T_{1}, \ldots \ldots, T_{d} as n tends to infinity. Since $\Omega(g)$ is an absorbing set for the commuting operators T_{1}, \ldots, T_{d}, it is now routine (cf. the proof of Theorem 6.3.10 in [7]) to check that the functions

$$
1_{\Omega(g)} \cdot A_{n}\left(T_{1}, \ldots, T_{d}\right) f, \quad \text { where } f \in L_{1}(\Omega ; X)
$$

converge in the L_{1}-norm to a function invariant under the operators T_{1}, \ldots \ldots, T_{d}. Combining these results, we conclude that the averages

$$
n^{-d} F\left([0, n]^{d}\right)=A_{n}\left(T_{1}, \ldots, T_{d}\right) F\left([0,1]^{d}\right)
$$

converge stochastically to a function F_{∞} in $L_{1}(\Omega ; X)$ invariant under the operators T_{1}, \ldots, T_{d} as n tends to infinity. Since F is a bounded process,
it follows that $\alpha^{-d} F\left([0, \alpha]^{d}\right)$ converges stochastically to F_{∞} as α tends to infinity.

Now putting $S_{i}=T\left(r \cdot e^{i}\right), 1 \leq i \leq d$, for an $r>0$, we have

$$
(n r)^{-d} F\left([0, n r]^{d}\right)=A_{n}\left(S_{1}, \ldots, S_{d}\right)\left[r^{-d} F\left([0, r]^{d}\right)\right]
$$

and thus the averages

$$
A_{n}\left(S_{1}, \ldots, S_{d}\right)\left[r^{-d} F\left([0, r]^{d}\right)\right]
$$

converge stochastically to F_{∞}. Hence F_{∞} is invariant under the operators S_{1}, \ldots, S_{d}. This shows the invariance of F_{∞} under the semigroup $T=$ $\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$, and the first half of Theorem 1 has been proved.

To prove the second half, let $\mathcal{P}(I)$, where $I \in \mathcal{I}_{d}$, denote the class of all finite partitions of I into pairwise disjoint intervals in \mathbb{R}_{d}^{+}, and let

$$
F^{0}(I)=\operatorname{ess} \sup \left\{\sum_{i=1}^{k}\left\|F\left(I_{i}\right)(\cdot)\right\|:\left\{I_{1}, \ldots, I_{k}\right\} \in \mathcal{P}(I)\right\}
$$

Then
(i) $F^{0}(I) \in L_{1}^{+}(\Omega ; \mathbb{R})$.
(ii) $\tau(u) F^{0}(I)(\omega) \geq F^{0}(u+I)(\omega)$ a.e. on Ω for all $u \in \mathbb{R}_{d}^{+}$.
(iii) If $\left\{I_{1}, \ldots, I_{k}\right\} \in \mathcal{P}(I)$ then $F^{0}(I)=\sum_{i=1}^{k} F^{0}\left(I_{i}\right)$.

Since the operators T_{1}, \ldots, T_{d} commute and $\left\|P_{i}\right\|_{\infty} \leq 1$ for all $1 \leq i \leq d$ by hypothesis, Theorem A can be applied to show that
$\lim _{n} n^{-d} F\left([0, n]^{d}\right)(\omega)=\lim _{n} A_{n}\left(T_{1}, \ldots, T_{d}\right) F\left([0,1]^{d}\right)(\omega)=F_{\infty}(\omega) \quad$ a.e. on Ω.
On the other hand, for $n \leq \alpha<n+1$ we have
$\left\|\alpha^{-d} F\left([0, \alpha]^{d}\right)(\omega)-n^{-d} F\left([0, n]^{d}\right)(\omega)\right\|$

$$
\leq\left|1-(\alpha / n)^{d}\right| \cdot\left\|\alpha^{-d} F\left([0, \alpha]^{d}\right)(\omega)\right\|+n^{-d}\left\|F\left([0, \alpha]^{d}\right)(\omega)-F\left([0, n]^{d}\right)(\omega)\right\|
$$

and
$n^{-d}\left\|F\left([0, \alpha]^{d}\right)(\omega)-F\left([0, n]^{d}\right)(\omega)\right\| \leq n^{-d}\left(F^{0}\left([0, n+1]^{d}\right)(\omega)-F^{0}\left([0, n]^{d}\right)(\omega)\right)$,
so that in order to prove the second half it suffices to show that

$$
\begin{equation*}
\lim _{n} n^{-d}\left(F^{0}\left([0, n+1]^{d}\right)(\omega)-F^{0}\left([0, n]^{d}\right)(\omega)\right)=0 \quad \text { a.e. on } \Omega . \tag{9}
\end{equation*}
$$

To do this, given an $\varepsilon>0$, choose $g \in L_{1}(\Omega ; \mathbb{R}) \cap L_{\infty}(\Omega ; \mathbb{R})$ so that

$$
0 \leq g \leq F^{0}\left([0,1]^{d}\right) \quad \text { and } \quad\left\|F^{0}\left([0,1]^{d}\right)-g\right\|_{1}<\varepsilon .
$$

We then put $G(0)=g, H(0)=F^{0}\left([0,1]^{d}\right)-g$ and for $0 \neq \widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right) \in$ $\{0,1,2, \ldots\}^{d}$,

$$
\begin{equation*}
G(\widetilde{u})=\max \left\{P_{i(1)} \ldots P_{i(k)} g:(i(1), \ldots, i(k)) \in \mathcal{S}(\widetilde{u})\right\} \tag{10}
\end{equation*}
$$

(where $\mathcal{S}(\widetilde{u}):=\left\{(i(1), \ldots, i(k)): k=\sum_{m=1}^{d} \widetilde{u}_{m}, \widetilde{u}_{m}=|\{j: i(j)=m\}|\right.$, $1 \leq m \leq d\}$ and $|A|$ is the cardinal number of a finite set A), and

$$
\begin{equation*}
H(\widetilde{u})=\left[F^{0}\left(\widetilde{u}+[0,1]^{d}\right)-G(\widetilde{u})\right]^{+} . \tag{11}
\end{equation*}
$$

From (1) we see that $\|G(\widetilde{u})\|_{\infty} \leq\|g\|_{\infty}<\infty$ for all \widetilde{u}, and hence

$$
\begin{aligned}
& n^{-d}\left(F^{0}\left([0, n+1]^{d}\right)-F^{0}\left([0, n]^{d}\right)\right) \\
& \quad \leq n^{-d} \sum\{G(\widetilde{u})+H(\widetilde{u}): \\
& \left.\quad \widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right) \in\{0,1, \ldots, n\}^{d} \backslash\{0,1, \ldots, n-1\}^{d}\right\} \\
& \leq \\
& \quad n^{-d}\left[(n+1)^{d}-n^{d}\right] \cdot\|g\|_{\infty} \\
& \quad+n^{-d} \sum\left\{H(\widetilde{u}): \widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right) \in\{0,1, \ldots, n\}^{d}\right\} \\
& \quad=\mathrm{I}(n)+\mathrm{II}(n) .
\end{aligned}
$$

Since $\lim _{n} \mathrm{I}(n)=0$, it is enough to show that

$$
\begin{equation*}
\lim _{n} \operatorname{II}(n)=0 \quad \text { a.e. on } \Omega \tag{12}
\end{equation*}
$$

Let $0 \neq \widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right) \in\{0,1, \ldots\}^{d}$ and $k=\sum_{i=1}^{d} \widetilde{u}_{i}$. For any sequence $(i(1), \ldots, i(k))$ in $\mathcal{S}(\widetilde{u})$, we have

$$
\begin{aligned}
P_{i(1)} \ldots P_{i(k)}(H(0)+G(0)) & =P_{i(1)} \ldots P_{i(k)} F^{0}\left([0,1]^{d}\right) \\
& \geq \tau(\widetilde{u}) F^{0}\left([0,1]^{d}\right) \geq F^{0}\left(\widetilde{u}+[0,1]^{d}\right)
\end{aligned}
$$

whence

$$
\begin{aligned}
P_{i(1)} \ldots P_{i(k)} H(0) & \geq F^{0}\left(\widetilde{u}+[0,1]^{d}\right)-P_{i(1)} \ldots P_{i(k)} G(0) \\
& =F^{0}\left(\widetilde{u}+[0,1]^{d}\right)-P_{i(1)} \ldots P_{i(k)} g \\
& \geq F^{0}\left(\widetilde{u}+[0,1]^{d}\right)-G(\widetilde{u}) \quad(\text { by }(10)) .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
P_{i(1)} \ldots P_{i(k)} H(0) \geq\left[F^{0}\left(\widetilde{u}+[0,1]^{d}\right)-G(\widetilde{u})\right]^{+}=H(\widetilde{u}) \tag{13}
\end{equation*}
$$

Hence, if U denotes the Brunel operator corresponding to the operators P_{1}, \ldots, P_{d}, then (cf. the proof of Theorem 6.3.4 in [7])

$$
\begin{aligned}
n^{-d} \sum\left\{H(\widetilde{u}): \widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right)\right. & \left., 0 \leq \widetilde{u}_{i}<n, 1 \leq i \leq d\right\} \\
& \leq C_{d} \cdot \sup _{m \geq 1} A_{m}(U) H(0) \quad \text { a.e. on } \Omega .
\end{aligned}
$$

Since U satisfies $\|U\|_{1} \leq 1$ and $\|U\|_{\infty} \leq 1$, we now apply Theorem 2.2.2 of [3] to infer that the function

$$
H^{*}(0)(\omega)=\sup _{m \geq 1} A_{m}(U) H(0)(\omega)
$$

satisfies

$$
\mu\left(\left\{\omega: H^{*}(0)(\omega)>\delta\right\}\right) \leq \delta^{-1}\|H(0)\|_{1} \quad(\delta>0)
$$

Therefore

$$
\begin{aligned}
\limsup _{n} \mathrm{II}(n) & =\underset{n}{\limsup } n^{-d} \sum\left\{H\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{d}\right): 0 \leq \widetilde{u}_{i}<n, 1 \leq i \leq d\right\} \\
& \leq C_{d} \cdot H^{*}(0) \quad \text { a.e. on } \Omega,
\end{aligned}
$$

and

$$
\begin{aligned}
\mu\left(\left\{\omega: \limsup _{n} \operatorname{II}(n)(\omega)>\delta\right\}\right) & \leq \mu\left(\left\{\omega: C_{d} \cdot H^{*}(0)(\omega)>\delta\right\}\right) \\
& \leq \delta^{-1} C_{d}\|H(0)\|_{1}<\delta^{-1} C_{d} \cdot \varepsilon \downarrow 0
\end{aligned}
$$

as $\varepsilon \downarrow 0$. This establishes (12), and the second half of Theorem 1 follows.
Proof of Theorem 2. Since the commuting operators P_{i} satisfy $\left\|T\left(e^{i}\right) f(\omega)\right\| \leq P_{i}\|f(\cdot)\|(\omega)$ a.e. on Ω for all $f \in L_{1}(\Omega ; X)$, we may apply the proof of Theorem 6.3.10 in [7] to infer that the averages

$$
\begin{aligned}
&\left(\prod_{i=1}^{d} n_{i}\right)^{-1} \sum_{i_{1}=0}^{n_{1}-1} \ldots \sum_{i_{d}=0}^{n_{d}-1} T_{1}^{i_{1}} \ldots T_{d}^{i_{d}} F\left([0,1]^{d}\right) \\
&=\left(\prod_{i=1}^{d} n_{i}\right)^{-1} F\left(\left[0, n_{1}\right] \times \ldots \times\left[0, n_{d}\right]\right)
\end{aligned}
$$

converge stochastically to a function $F_{\infty} \in L_{1}(\Omega ; X)$ invariant under the operators $T_{i}=T\left(e^{i}\right), 1 \leq i \leq d$, as n_{i} tends to infinity independently for each $1 \leq i \leq d$. Since F is a bounded process, we then see that the averages

$$
\left(\prod_{i=1}^{d} \alpha_{i}\right)^{-1} F\left(\left[0, \alpha_{1}\right] \times \ldots \times\left[0, \alpha_{d}\right]\right)
$$

converge stochastically to F_{∞} as α_{i} tends to infinity independently for each $1 \leq i \leq d$. It is now immediate that F_{∞} is invariant under the semigroup $T=\left\{T(u): u \in \mathbb{R}_{d}^{+}\right\}$(cf. the proof of Theorem 1).

To prove the second half of Theorem 2 , we assume that for every $f \in$ $L_{1}(\Omega ; \mathbb{R})$,

$$
\begin{equation*}
\lim _{n} A_{n}\left(P_{1}, \ldots, P_{d}\right) f(\omega) \text { exists a.e. on } \Omega . \tag{14}
\end{equation*}
$$

Then, by Theorem B,

$$
\lim _{n} A_{n}\left(T_{1}, \ldots, T_{d}\right) F\left([0,1]^{d}\right)(\omega)=\lim _{n} n^{-d} F\left([0, n]^{d}\right)(\omega)
$$

exists a.e. on Ω. Hence, as in the proof of Theorem 1, it is enough to establish (9); and this follows from

$$
\begin{aligned}
n^{-d}\left(F^{0}\left([0, n+1]^{d}\right)(\omega)-\right. & \left.F^{0}\left([0, n]^{d}\right)(\omega)\right) \\
\leq & (1+1 / n)^{d} A_{n+1}\left(P_{1}, \ldots, P_{d}\right) F^{0}\left([0,1]^{d}\right)(\omega) \\
& -A_{n}\left(P_{1}, \ldots, P_{d}\right) F^{0}\left([0,1]^{d}\right)(\omega) \\
\rightarrow & 0 \quad \text { a.e. on } \Omega \quad(\text { by }(14)) .
\end{aligned}
$$

The proof is complete.
4. Remarks. (a) On continuity at the origin. Let $T=\left\{T(u): u \in \mathbb{P}_{d}\right\}$ be a strongly continuous semigroup of linear contractions on $L_{1}(\Omega ; X)$, where X is a reflexive Banach space. In order that $\widetilde{T}(0)=$ strong- $-\lim _{u>0, u \rightarrow 0} T(u)$ exists, it suffices that $\sup \left\{\|T(u)\|_{p}: u \in(0,1]^{d}\right\}<\infty$ for some $p>1$.

To see this, we may assume $1<p<\infty$ by the Marcinkiewicz interpolation theorem (see e.g. Theorem II.2.11 in [2], p. 148). Then, since X is a reflexive Banach space, it follows that $L_{p}(\Omega ; X)$ is a reflexive Banach space. Let f be a function in $L_{p}(\Omega ; X)$ and $\varepsilon_{n}>0$ be such that $\varepsilon_{n} \downarrow 0$ as n tends to infinity. Putting $u_{n}=\left(\varepsilon_{n}, \ldots, \varepsilon_{n}\right) \in \mathbb{P}_{d}$ for each $n \geq 1$ and, if necessary, choosing a subsequence of $\left(u_{n}\right)$, we may assume that for some $\tilde{f} \in L_{p}(\Omega ; X)$,

$$
\widetilde{f}=\text { weak- } \lim _{n} T\left(u_{n}\right) f \quad \text { in } L_{p}(\Omega ; X) .
$$

Since $T=\left\{T(u): u \in \mathbb{P}_{d}\right\}$ can be considered to be a strongly continuous semigroup of bounded linear operators in $L_{p}(\Omega ; X)$, we see that for any $u \in \mathbb{P}_{d}$,

$$
T(u) \tilde{f}=\text { weak }-\lim _{n} T\left(u+u_{n}\right) f=\text { strong }-\lim _{n} T\left(u+u_{n}\right) f=T(u) f .
$$

Further, by the Hahn-Banach theorem,

$$
\tilde{f} \in\left[L_{p} \text {-norm closure of } \bigcup_{n=1}^{\infty} T\left(u_{n}\right) L_{p}(\Omega ; X)\right] .
$$

Thus an approximation argument shows that

$$
\lim _{\substack{u \rightarrow 0 \\ u>0}}\|T(u) f-\widetilde{f}\|_{p}=\lim _{\substack{u \rightarrow 0 \\ u>0}}\|T(u) \widetilde{f}-\widetilde{f}\|_{p}=0 .
$$

In particular, if $f \in L_{p}(\Omega ; X) \cap L_{1}(\Omega ; X)$, then choosing a suitable sequence $\left(v_{n}\right)$ in \mathbb{P}_{d} with $v_{n} \rightarrow 0 \in \mathbb{R}_{d}^{+}$as n tends to infinity, and putting

$$
f_{n}=T\left(v_{n}\right) f \quad(n \geq 1),
$$

we get $\tilde{f}=\lim _{n} f_{n}$ a.e. on Ω, and hence $\|\tilde{f}\|_{1}=\lim _{n}\left\|f_{n}\right\|_{1}$ by Fatou's lemma together with the fact that $\left\|f_{n}\right\|_{1}=\left\|T\left(v_{n}\right) f\right\|_{1}=\left\|T\left(v_{n}\right) \widetilde{f}\right\|_{1} \leq\|\widetilde{f}\|_{1}$. It follows from Lebesgue's convergence theorem that

$$
\lim _{n}\left\|\tilde{f}-f_{n}\right\|_{1}=\lim _{n}\left\|\tilde{f}-T\left(v_{n}\right) f\right\|_{1}=0
$$

whence $\lim _{u>0, u \rightarrow 0}\|\tilde{f}-T(u) f\|_{1}=0$ by approximation. Since $L_{p}(\Omega ; X) \cap$ $L_{1}(\Omega ; X)$ is dense in $L_{1}(\Omega ; X)$, this completes the proof.
(b) An improvement of Theorem 1. The first part of Theorem 1 holds even if $T=\{T(u)\}$ is a strongly continuous $L_{1}(\Omega ; X)$-contraction semigroup defined only on the interior \mathbb{P}_{d} of \mathbb{R}_{d}^{+}.

In fact, if $F: \mathcal{I}_{d} \rightarrow L_{1}(\Omega ; X)$ is a bounded additive process in $L_{1}(\Omega ; X)$ with respect to the semigroup T, then by Lemma 4 in [8] we may assume without loss of generality that

$$
\widetilde{T}(0)=\text { strong- } \lim _{\substack{u \rightarrow 0 \\ u>0}} T(u)
$$

exists. Then obviously the domain of T can be continuously extended to \mathbb{R}_{d}^{+}. Denote by $\widetilde{T}=\left\{\widetilde{T}(u): u \in \mathbb{R}_{d}^{+}\right\}$its extended semigroup. Since $\widetilde{T}(u)$ has a contraction majorant $P(u)$ defined on $L_{1}(\Omega ; \mathbb{R})$ for every $u \in \mathbb{P}_{d}$ by hypothesis, modifying the proof of Lemma 1 in [8] we see that there exists a family $\left\{\tau(u): u \in \mathbb{R}_{d}^{+}\right\}$of positive linear contractions on $L_{1}(\Omega ; \mathbb{R})$ such that

$$
\|\widetilde{T}(u) f(\omega)\| \leq \tau(u)\|f(\cdot)\|(\omega) \quad \text { a.e. on } \Omega
$$

for all $f \in L_{1}(\Omega ; X)$ and $u \in \mathbb{R}_{d}^{+}$. From this, together with Theorem 1 , the desired conclusion follows.

REFERENCES

[1] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958.
[2] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[3] A. M. Garsia, Topics in Almost Everywhere Convergence, Markham, Chicago, 1970.
[4] S. Hasegaw a and R. Sato, On d-parameter pointwise ergodic theorems in L_{1}, Proc. Amer. Math. Soc. 123 (1995), 3455-3465.
[5] -, -, On a d-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions, Comment. Math. Univ. Carolin. 38 (1997), 453-462.
[6] S. Hasegawa, R. Sato and S. Tsurumi, Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106.
[7] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[8] R. Sato, Vector valued differentiation theorems for multiparameter additive processes in L_{p} spaces, Positivity 2 (1998), 1-18.

Department of Mathematics
Faculty of Science
Okayama University
Okayama, 700-8530 Japan
E-mail: satoryot@math.okayama-u.ac.jp

