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VECTOR-VALUED ERGODIC THEOREMS

FOR MULTIPARAMETER ADDITIVE PROCESSES

BY

RYOTARO SATO (OKAYAMA)

Abstract. Let X be a reflexive Banach space and (Ω,Σ, µ) be a σ-finite mea-
sure space. Let d ≥ 1 be an integer and T = {T (u) : u = (u1, . . . , ud), ui ≥ 0,
1 ≤ i ≤ d} be a strongly measurable d-parameter semigroup of linear contractions on
L1((Ω,Σ, µ);X). We assume that to each T (u) there corresponds a positive linear contrac-
tion P (u) defined on L1((Ω,Σ, µ);R) with the property that ‖T (u)f(ω)‖ ≤ P (u)‖f(·)‖(ω)
almost everywhere on Ω for all f ∈ L1((Ω,Σ, µ);X). We then prove stochastic and point-
wise ergodic theorems for a d-parameter bounded additive process F in L1((Ω,Σ, µ);X)
with respect to the semigroup T .

1. Introduction and the theorems. LetX be a reflexive Banach space
and (Ω,Σ, µ) be a σ-finite measure space. For 1 ≤ p ≤ ∞, let Lp(Ω;X) =
Lp((Ω,Σ, µ);X) denote the usual Banach space of all X-valued strongly
measurable functions f on Ω with the norm

‖f‖p :=
(\

‖f(ω)‖p dµ
)1/p

< ∞ if 1 ≤ p < ∞,

‖f‖∞ := ess sup{‖f(ω)‖ : ω ∈ Ω} < ∞.

If d ≥ 1 is an integer, we let R+
d = {u = (u1, . . . , ud) : ui ≥ 0, 1 ≤ i ≤ d}

and Pd= {u=(u1, . . . , ud) : ui> 0, 1≤ i≤ d}. Further Id is the class of all
bounded intervals in R

+
d and λd denotes the d-dimensional Lebesgue mea-

sure. In this paper we consider a strongly measurable d-parameter semigroup
T = {T (u) : u ∈ R

+
d } of linear contractions on L1(Ω;X). Thus T is strongly

continuous on Pd (cf. Lemma VIII.7.9 in [1]). A linear operator U defined on
L1(Ω;X) is said to have a majorant P defined on L1(Ω;R) if P is a positive
linear operator on L1(Ω;R) with the property that ‖Uf(ω)‖ ≤ P‖f(·)‖(ω)
a.e. on Ω for all f ∈ L1(Ω;X). We assume in the theorems below that each
T (u), u ∈ R

+
d , has a contraction majorant P (u) defined on L1(Ω;R). As is

known (cf. Theorem 4.1.1 in [7]), this holds automatically when X = R or
C (= the complex numbers). But in general this is not the case, which can
be seen by a simple counter-example (see [8]).
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By a (d-dimensional) process F in L1(Ω;X) we mean a set function
F : Id → L1(Ω;X). It is called bounded if

K(F ) := sup{‖F (I)‖1/λd(I) : I ∈ Id, λd(I) > 0} < ∞,

and additive (with respect to T ) if it satisfies the following conditions:

(i) T (u)F (I) = F (u+ I) for all u ∈ R
+
d and I ∈ Id,

(ii) if I1, . . . , Ik ∈ Id are pairwise disjoint and I =
⋃k

i=1 Ii ∈ Id then

F (I) =
∑k

i=1 F (Ii).

In particular, if F (I) =
T
I
T (u)f du for all I ∈ Id, where f is a fixed func-

tion in L1(Ω;X), then F (I) defines a bounded additive process in L1(Ω;X)
with respect to T .

In the following, q-limα→∞ and q-lim supα→∞ will mean that these limits
are taken as α tends to infinity along a countable dense subset Q of the
positive real numbers. Here we may assume that Q contains the positive
rational numbers. A net (fα) of strongly measurable X-valued functions
on Ω is said to converge stochastically to a strongly measurable X-valued
function f∞ on Ω if for any ε > 0 and A ∈ Σ with µ(A) < ∞ we have

lim
α

µ(A ∩ {ω : ‖fα(ω)− f∞(ω)‖ > ε}) = 0.

It is now time to state the theorems.

Theorem 1. Let X be a reflexive Banach space and T ={T (u) : u∈R
+
d }

a semigroup of linear contractions on L1(Ω;X), strongly continuous on Pd,
such that each T (u) with u ∈ R

+
d has a contraction majorant P (u) defined

on L1(Ω;R). Then for any d-dimensional bounded additive process F in

L1(Ω;X) with respect to T , the averages α−dF ([0, α]d) converge stochasti-

cally to a function F∞ in L1(Ω;X) invariant under T as α tends to infinity.

In particular , if the operators Pi = P (ei), ei being the ith unit vector

in R
+
d , satisfy the additional hypothesis

(1) ‖Pi‖∞ ≤ 1 (1 ≤ i ≤ d),

then

(2) q-lim
α→∞

α−dF ([0, α]d)(ω) = F∞(ω) a.e. on Ω.

Theorem 2. Let X, T = {T (u) : u ∈ R
+
d }, and F be the same as in

Theorem 1. If the positive operators Pi = P (ei), 1 ≤ i ≤ d, commute then

the averages

(3)
( d∏

i=1

αi

)−1

F ([0, α1]× . . . × [0, αd])
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converge stochastically to a function F∞ in L1(Ω;X) invariant under T as

αi tends to infinity independently for each 1 ≤ i ≤ d. If in addition the

averages

(4) An(P1, . . . , Pd)f := An(P1) . . . An(Pd)f (n ≥ 1),

where

(5) An(Pi) := n−1
n−1∑

k=0

P k
i (1 ≤ i ≤ d),

converge a.e. for all f ∈ L1(Ω;R), then (2) holds.

Theorems 1 and 2 may be considered to be vector-valued continuous
refinements of Krengel’s stochastic ergodic theorem (cf. Theorems 3.4.9 and
6.3.10 in [7]) and Dunford and Schwartz’s pointwise ergodic theorem (cf.
Theorem 6.3.7 in [7]). See also [5]. Concerning Theorem 2, some sufficient
conditions for the a.e. convergence of An(P1, . . . , Pd)f for all f ∈ L1(Ω;R),
where P1, . . . , Pd are commuting positive linear contractions on L1(Ω;R),
have been examined in [4]. For example, one of such conditions is that the
Brunel operator U corresponding to P1, . . . , Pd satisfies the pointwise ergodic
theorem.

Here it may be appropriate to explain the role of the extra assumptions
made about T in Theorems 1 and 2 (existence of a contraction majorant
P (u) and commutativity of operators Pi, 1 ≤ i ≤ d). When X = R or C, the
existence of such a P (u) is known; and it seems to the author that almost all
known proofs of scalar-valued (stochastic and pointwise) ergodic theorems
depend upon this fact. But, when X 6= R and C, the existence of such a
P (u) does not follow, as remarked above. On the other hand, the continuous
one-parameter version of Chacon’s vector-valued ergodic theorem (see e.g.
§4.2 of [7]) has been proved by Hasegawa, Sato and Tsurumi [6]; the key to
the proof was Chacon’s maximal ergodic lemma. Thus, in this case, such a
P (u) was not used at all. Incidentally, the reflexivity of X was only used
there to deduce that the mean ergodic theorem holds for T , when T was
considered to be a contraction semigroup on Lp(Ω;X) with 1 < p < ∞. In
this paper we also assume the reflexivity of X for this purpose.

Now, let d ≥ 2. It is natural to ask if the continuous d-parameter version
of Chacon’s vector-valued ergodic theorem holds. This is an open problem.
And, if we assume the existence of such a P (u) which satisfies in addition
‖P (u)‖∞ ≤ 1 for each u ∈ R

+
d , then an affirmative answer follows. In this

connection we refer the reader to [5] and [8]. These are the reasons to assume
the existence of such a P (u) in Theorem 1. In Theorem 2 the commutativity
of Pi is assumed. It is an open question whether Theorem 2 holds without
the commutativity assumption.
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2. Preliminaries. The next two theorems are slight modifications of
Theorem 4 and Theorem 1(a) of [4]. Since these can be proved as in [4],
we omit the details. The theorems will be used in order to prove those
mentioned in the preceding section.

Theorem A. Let X be a reflexive Banach space. Let T1, . . . , Td be linear

contractions on L1(Ω;X), and P1, . . . , Pd be positive linear contractions on

L1(Ω;R) such that ‖Tif(ω)‖ ≤ Pi‖f(·)‖(ω) a.e. on Ω for all f ∈ L1(Ω;X)
and 1 ≤ i ≤ d and also such that ‖Pi‖∞ ≤ 1 for all 1 ≤ i ≤ d. If either the

operators T1, . . . , Td or the operators P1, . . . , Pd commute, then for every

f ∈ L1(Ω;X) the averages An(T1, . . . , Td)f converge a.e. on Ω as n tends

to infinity.

Theorem B. Let X be a reflexive Banach space. Let T1, . . . , Td be com-

muting linear contractions on L1(Ω;X), and P1, . . . , Pd be commuting pos-

itive linear contractions on L1(Ω;R) such that ‖Tif(ω)‖ ≤ Pi‖f(·)‖(ω) a.e.
on Ω for all f ∈ L1(Ω;X) and 1 ≤ i ≤ d. If the limit

lim
n

An(P1, . . . , Pd)f(ω)

exists a.e. on Ω for all f ∈ L1(Ω;R), then the limit

lim
n

An(T1, . . . , Td)f(ω)

exists a.e. on Ω for all f ∈ L1(Ω;X).

The next lemma is also a slight modification of Lemma 1 in [8]; we omit
the details here.

Lemma. Let T = {T (u) : u ∈ R
+
d } be a semigroup of linear contractions

on L1(Ω;X), strongly continuous on Pd, such that each T (u) with u ∈ R
+
d

has contraction majorant P (u) defined on L1(Ω;R). Then there exists a

positive linear contraction τ(u) on L1(Ω;R) for each u ∈ R
+
d , called the

linear modulus of T (u), such that

(i) ‖T (u)f(ω)‖ ≤ τ(u)‖f(·)‖(ω) ≤ P (u)‖f(·)‖(ω) a.e. on Ω for all

f ∈ L1(Ω;X),

(ii) τ(u)g = ess sup{
∑k

i=1 ‖T (u)fi(·)‖ : fi ∈ L1(Ω;X),
∑k

i=1 ‖fi(ω)‖
≤ g(ω) a.e. on Ω} for all g ∈ L+

1 (Ω;R),

(iii) τ(s+ t) ≤ τ(s)τ(t) for all s, t ∈ R
+
d ,

(iv) if u ∈ Pd then

(6) τ(u) = strong-lim
t→u
t≥u

τ(t).

In particular , if the semigroup T is strongly continuous on R
+
d then we have

(6) for all u ∈ R
+
d .
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3. Proofs of Theorems 1 and 2

Proof of Theorem 1. By an easy argument we may assume that d ≥ 2
(see e.g. [8]). Putting Ti = T (ei), 1 ≤ i ≤ d, we then apply Theorem 6.3.4
of [7] to infer that there exists a constant Cd > 0 and a positive linear
contraction U in L1(Ω;R) of the form

U =
∑

n1,...,nd≥0

a(n1, . . . , nd)P
n1

1 . . . Pnd

d ,

where

a(n1, . . . , nd) > 0 and
∑

n1,...,nd≥0

a(n1, . . . , nd) = 1,

so that for all f ∈ L1(Ω;X),

(7) ‖An(T1, . . . , Td)f(ω)‖ ≤ Cd · Ad(n)(U)‖f(·)‖(ω) a.e. on Ω.

Here d(n) is a non-decreasing function, depending only on d ≥ 2, from the
positive integers to themselves. U will be called below the Brunel operator

corresponding to the (not necessarily commuting) operators P1, . . . , Pd. We
next use Krengel’s stochastic ergodic theorem (cf. Theorem 3.4.9 in [7]) for U
and see that An(U)‖F ([0, 1]d)(·)‖(ω) converges stochastically to a function
g ∈ L1(Ω;R) with Ug = g ≥ 0.

Write

Ω(g) = {ω : g(ω) > 0}.

By (7) we find that

(8) An(T1, . . . , Td)F ([0, 1]d) → 0 stochastically on Ω \Ω(g).

Since Ug = g ≥ 0 and X is a reflexive Banach space, it follows from
Eberlein’s mean ergodic theorem (cf. Theorem 2.1.5 in [7]) that for any
f ∈ L1(Ω(g);X) the averages

An(T1, . . . , Td)f (n ≥ 1)

converge in the L1-norm to a function in L1(Ω(g);X) invariant under T1, . . .
. . . , Td as n tends to infinity. Since Ω(g) is an absorbing set for the commut-
ing operators T1, . . . , Td, it is now routine (cf. the proof of Theorem 6.3.10
in [7]) to check that the functions

1Ω(g) ·An(T1, . . . , Td)f, where f ∈ L1(Ω;X),

converge in the L1-norm to a function invariant under the operators T1, . . .
. . . , Td. Combining these results, we conclude that the averages

n−dF ([0, n]d) = An(T1, . . . , Td)F ([0, 1]d)

converge stochastically to a function F∞ in L1(Ω;X) invariant under the
operators T1, . . . , Td as n tends to infinity. Since F is a bounded process,
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it follows that α−dF ([0, α]d) converges stochastically to F∞ as α tends to
infinity.

Now putting Si = T (r · ei), 1 ≤ i ≤ d, for an r > 0, we have

(nr)−dF ([0, nr]d) = An(S1, . . . , Sd)[r
−dF ([0, r]d)],

and thus the averages

An(S1, . . . , Sd)[r
−dF ([0, r]d)]

converge stochastically to F∞. Hence F∞ is invariant under the operators
S1, . . . , Sd. This shows the invariance of F∞ under the semigroup T =
{T (u) : u ∈ R

+
d }, and the first half of Theorem 1 has been proved.

To prove the second half, let P(I), where I ∈ Id, denote the class of all
finite partitions of I into pairwise disjoint intervals in R

+
d , and let

F 0(I) = ess sup
{ k∑

i=1

‖F (Ii)(·)‖ : {I1, . . . , Ik} ∈ P(I)
}
.

Then

(i) F 0(I) ∈ L+
1 (Ω;R).

(ii) τ(u)F 0(I)(ω) ≥ F 0(u+ I)(ω) a.e. on Ω for all u ∈ R
+
d .

(iii) If {I1, . . . , Ik} ∈ P(I) then F 0(I) =
∑k

i=1 F
0(Ii).

Since the operators T1, . . . , Td commute and ‖Pi‖∞ ≤ 1 for all 1 ≤ i ≤ d by
hypothesis, Theorem A can be applied to show that

lim
n

n−dF ([0, n]d)(ω)=lim
n

An(T1, . . . , Td)F ([0, 1]d)(ω) = F∞(ω) a.e. on Ω.

On the other hand, for n ≤ α < n+ 1 we have

‖α−dF ([0, α]d)(ω)− n−dF ([0, n]d)(ω)‖

≤ |1− (α/n)d| · ‖α−dF ([0, α]d)(ω)‖ + n−d‖F ([0, α]d)(ω)− F ([0, n]d)(ω)‖

and

n−d‖F ([0, α]d)(ω)−F ([0, n]d)(ω)‖ ≤ n−d(F 0([0, n+1]d)(ω)−F 0([0, n]d)(ω)),

so that in order to prove the second half it suffices to show that

(9) lim
n

n−d(F 0([0, n + 1]d)(ω)− F 0([0, n]d)(ω)) = 0 a.e. on Ω.

To do this, given an ε > 0, choose g ∈ L1(Ω;R) ∩ L∞(Ω;R) so that

0 ≤ g ≤ F 0([0, 1]d) and ‖F 0([0, 1]d)− g‖1 < ε.

We then put G(0) = g, H(0) = F 0([0, 1]d)−g and for 0 6= ũ = (ũ1, . . . , ũd) ∈
{0, 1, 2, . . .}d,

(10) G(ũ) = max{Pi(1) . . . Pi(k)g : (i(1), . . . , i(k)) ∈ S(ũ)}



VECTOR-VALUED ERGODIC THEOREMS 199

(where S(ũ) := {(i(1), . . . , i(k)) : k =
∑d

m=1 ũm, ũm = |{j : i(j) = m}|,
1 ≤ m ≤ d} and |A| is the cardinal number of a finite set A), and

(11) H(ũ) = [F 0(ũ+ [0, 1]d)−G(ũ)]+.

From (1) we see that ‖G(ũ)‖∞ ≤ ‖g‖∞ < ∞ for all ũ, and hence

n−d(F 0([0, n + 1]d)− F 0([0, n]d))

≤ n−d
∑

{G(ũ) +H(ũ) :

ũ = (ũ1, . . . , ũd) ∈ {0, 1, . . . , n}d \ {0, 1, . . . , n− 1}d}

≤ n−d[(n + 1)d − nd] · ‖g‖∞

+ n−d
∑

{H(ũ) : ũ = (ũ1, . . . , ũd) ∈ {0, 1, . . . , n}d}

= I(n) + II(n).

Since limn I(n) = 0, it is enough to show that

(12) lim
n

II(n) = 0 a.e. on Ω.

Let 0 6= ũ = (ũ1, . . . , ũd) ∈ {0, 1, . . .}d and k =
∑d

i=1 ũi. For any
sequence (i(1), . . . , i(k)) in S(ũ), we have

Pi(1) . . . Pi(k)(H(0) +G(0)) = Pi(1) . . . Pi(k)F
0([0, 1]d)

≥ τ(ũ)F 0([0, 1]d) ≥ F 0(ũ+ [0, 1]d),

whence

Pi(1) . . . Pi(k)H(0) ≥ F 0(ũ+ [0, 1]d)− Pi(1) . . . Pi(k)G(0)

= F 0(ũ+ [0, 1]d)− Pi(1) . . . Pi(k)g

≥ F 0(ũ+ [0, 1]d)−G(ũ) (by (10)).

Therefore we have

(13) Pi(1) . . . Pi(k)H(0) ≥ [F 0(ũ+ [0, 1]d)−G(ũ)]+ = H(ũ).

Hence, if U denotes the Brunel operator corresponding to the operators
P1, . . . , Pd, then (cf. the proof of Theorem 6.3.4 in [7])

n−d
∑

{H(ũ) : ũ = (ũ1, . . . , ũd), 0 ≤ ũi < n, 1 ≤ i ≤ d}

≤ Cd · sup
m≥1

Am(U)H(0) a.e. on Ω.

Since U satisfies ‖U‖1 ≤ 1 and ‖U‖∞ ≤ 1, we now apply Theorem 2.2.2
of [3] to infer that the function

H∗(0)(ω) = sup
m≥1

Am(U)H(0)(ω)
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satisfies

µ({ω : H∗(0)(ω) > δ}) ≤ δ−1‖H(0)‖1 (δ > 0).

Therefore

lim sup
n

II(n) = lim sup
n

n−d
∑

{H(ũ1, . . . , ũd) : 0 ≤ ũi < n, 1 ≤ i ≤ d}

≤ Cd ·H
∗(0) a.e. on Ω,

and

µ({ω : lim sup
n

II(n)(ω) > δ}) ≤ µ({ω : Cd ·H
∗(0)(ω) > δ})

≤ δ−1Cd‖H(0)‖1 < δ−1Cd · ε ↓ 0

as ε ↓ 0. This establishes (12), and the second half of Theorem 1 follows.

Proof of Theorem 2. Since the commuting operators Pi satisfy
‖T (ei)f(ω)‖ ≤ Pi‖f(·)‖(ω) a.e. on Ω for all f ∈ L1(Ω;X), we may ap-
ply the proof of Theorem 6.3.10 in [7] to infer that the averages

( d∏

i=1

ni

)−1
n1−1∑

i1=0

. . .

nd−1∑

id=0

T i1
1 . . . T id

d F ([0, 1]d)

=
( d∏

i=1

ni

)−1

F ([0, n1]× . . .× [0, nd])

converge stochastically to a function F∞ ∈ L1(Ω;X) invariant under the
operators Ti = T (ei), 1 ≤ i ≤ d, as ni tends to infinity independently for
each 1 ≤ i ≤ d. Since F is a bounded process, we then see that the averages

( d∏

i=1

αi

)−1

F ([0, α1]× . . . × [0, αd])

converge stochastically to F∞ as αi tends to infinity independently for each
1 ≤ i ≤ d. It is now immediate that F∞ is invariant under the semigroup
T = {T (u) : u ∈ R

+
d } (cf. the proof of Theorem 1).

To prove the second half of Theorem 2, we assume that for every f ∈
L1(Ω;R),

(14) lim
n

An(P1, . . . , Pd)f(ω) exists a.e. on Ω.

Then, by Theorem B,

lim
n

An(T1, . . . , Td)F ([0, 1]d)(ω) = lim
n

n−dF ([0, n]d)(ω)

exists a.e. on Ω. Hence, as in the proof of Theorem 1, it is enough to estab-
lish (9); and this follows from



VECTOR-VALUED ERGODIC THEOREMS 201

n−d(F 0([0, n + 1]d)(ω)− F 0([0, n]d)(ω))

≤ (1 + 1/n)dAn+1(P1, . . . , Pd)F
0([0, 1]d)(ω)

−An(P1, . . . , Pd)F
0([0, 1]d)(ω)

→ 0 a.e. on Ω (by (14)).

The proof is complete.

4. Remarks. (a) On continuity at the origin. Let T ={T (u) : u∈Pd} be
a strongly continuous semigroup of linear contractions on L1(Ω;X), where

X is a reflexive Banach space. In order that T̃ (0) = strong-limu>0,u→0 T (u)
exists, it suffices that sup{‖T (u)‖p : u ∈ (0, 1]d} < ∞ for some p > 1.

To see this, we may assume 1 < p < ∞ by the Marcinkiewicz interpo-
lation theorem (see e.g. Theorem II.2.11 in [2], p. 148). Then, since X is a
reflexive Banach space, it follows that Lp(Ω;X) is a reflexive Banach space.
Let f be a function in Lp(Ω;X) and εn > 0 be such that εn ↓ 0 as n tends
to infinity. Putting un = (εn, . . . , εn) ∈ Pd for each n ≥ 1 and, if necessary,

choosing a subsequence of (un), we may assume that for some f̃ ∈ Lp(Ω;X),

f̃ = weak-lim
n

T (un)f in Lp(Ω;X).

Since T = {T (u) : u ∈ Pd} can be considered to be a strongly continuous
semigroup of bounded linear operators in Lp(Ω;X), we see that for any
u ∈ Pd,

T (u)f̃ = weak-lim
n

T (u+ un)f = strong-lim
n

T (u+ un)f = T (u)f.

Further, by the Hahn–Banach theorem,

f̃ ∈
[
Lp-norm closure of

∞⋃

n=1

T (un)Lp(Ω;X)
]
.

Thus an approximation argument shows that

lim
u→0
u>0

‖T (u)f − f̃‖p = lim
u→0
u>0

‖T (u)f̃ − f̃‖p = 0.

In particular, if f ∈ Lp(Ω;X)∩L1(Ω;X), then choosing a suitable sequence
(vn) in Pd with vn → 0 ∈ R

+
d as n tends to infinity, and putting

fn = T (vn)f (n ≥ 1),

we get f̃ = limn fn a.e. on Ω, and hence ‖f̃‖1 = limn ‖fn‖1 by Fatou’s

lemma together with the fact that ‖fn‖1 = ‖T (vn)f‖1 = ‖T (vn)f̃‖1 ≤ ‖f̃‖1.
It follows from Lebesgue’s convergence theorem that

lim
n

‖f̃ − fn‖1 = lim
n

‖f̃ − T (vn)f‖1 = 0,
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whence limu>0,u→0 ‖f̃ − T (u)f‖1 = 0 by approximation. Since Lp(Ω;X) ∩
L1(Ω;X) is dense in L1(Ω;X), this completes the proof.

(b) An improvement of Theorem 1. The first part of Theorem 1 holds
even if T = {T (u)} is a strongly continuous L1(Ω;X)-contraction semigroup
defined only on the interior Pd of R+

d .
In fact, if F : Id → L1(Ω;X) is a bounded additive process in L1(Ω;X)

with respect to the semigroup T , then by Lemma 4 in [8] we may assume
without loss of generality that

T̃ (0) = strong-lim
u→0
u>0

T (u)

exists. Then obviously the domain of T can be continuously extended to R
+
d .

Denote by T̃ = {T̃ (u) : u∈R
+
d } its extended semigroup. Since T̃ (u) has a

contraction majorant P (u) defined on L1(Ω;R) for every u ∈ Pd by hypoth-
esis, modifying the proof of Lemma 1 in [8] we see that there exists a family
{τ(u) : u ∈ R

+
d } of positive linear contractions on L1(Ω;R) such that

‖T̃ (u)f(ω)‖ ≤ τ(u)‖f(·)‖(ω) a.e. on Ω

for all f ∈ L1(Ω;X) and u ∈ R
+
d . From this, together with Theorem 1, the

desired conclusion follows.
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