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ON THE EQUIVALENCE
OF THE RICCI-PSEUDOSYMMETRY AND PSEUDOSYMMETRY

BY

RYSZARD D E S Z C Z (WROC LAW), MARIAN H O T L O Ś (WROC LAW)
AND ZERRIN S. E N T Ü R K (ISTANBUL)

1. Introduction. Let (M, g) be a connected n-dimensional, n ≥ 3,
semi-Riemannian manifold of class C∞. We denote by ∇, R, C, S and κ
the Levi-Civita connection, the Riemann–Christoffel curvature tensor, the
Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature
of (M, g), respectively.

A semi-Riemannian manifold (M, g) is said to be semisymmetric [18] if

R ·R = 0(1)

on M . Further, a semi-Riemannian manifold (M, g) is said to be pseudo-
symmetric [6] if

(∗)1 the tensors R ·R and Q(g,R) are linearly dependent

at every point of M . This condition is equivalent to the equality

R ·R = LRQ(g,R)(2)

holding on UR =
{
x ∈ M | R − κ

n(n−1)G 6= 0 at x
}

, where LR is a cer-

tain function on UR. The definitions of the tensors used here will be given
in Section 2. There exist various examples of pseudosymmetric manifolds
which are non-semisymmetric and a review of results on pseudosymmetric
manifolds is given in [5] (see also [19]).

It is easy to see that if (∗)1 is satisfied on a semi-Riemannian manifold
(M, g) then

(∗)2 the tensors R · S and Q(g, S) are linearly dependent

at every point of M . The converse statement is not true ([5]). A semi-
Riemannian manifold (M, g) is called Ricci-pseudosymmetric if at every
point of M the condition (∗)2 is satisfied. If a manifold (M, g) is Ricci–
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pseudosymmetric then
R · S = LS Q(g, S)(3)

on US =
{
x ∈M | S 6= κ

ng at x
}

, where LS is a certain function on US . We
note that US ⊂ UR. It is easy to see that

(∗) the tensors R ·R−Q(S,R) and Q(g, C) are linearly dependent

at every point of a pseudosymmetric Einstein manifold. It is known that
every hypersurface M , dimM ≥ 4, of a semi-Riemannian space of constant
curvature satisfies (∗) (cf. [12]). Recently, pseudosymmetric manifolds satis-
fying (∗) were investigated in [8]. The condition (∗) is equivalent to

R ·R−Q(S,R) = L1Q(g, C)(4)

on UC = {x ∈ M | C 6= 0 at x}, where L1 is a certain function on UC .
Warped products satisfying (∗) were considered in [3]. For instance, in [3] it
was shown that any warped product M1 ×F M2, dimM1 = 1, dimM2 = 3,
satisfies (∗). In particular, every generalized Robertson–Walker spacetime
satisfies (∗).

Evidently, any semi-Riemannian semisymmetric manifold satisfies tri-
vially at every point the following condition ([9]):

(∗∗) the tensors R · C and Q(S,C) are linearly dependent.

This condition is equivalent to

R · C = L2Q(S,C)(5)

on U2 = {x ∈ M | Q(S,C) 6= 0 at x}, where L2 is a certain function
on U2. There exist non-pseudosymmetric manifolds satisfying (∗∗) (cf. [9]).
Recently 4-dimensional manifolds satisfying (∗∗) have been investigated in
[10] and [11].

Semi-Riemannian manifolds satisfying (∗)1, (∗)2, (∗) and (∗∗) or other
conditions of this kind, described in [5], are called manifolds of pseudosym-
metry type.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ricci-semisym-
metric if

R · S = 0(6)

on M . Evidently, every semisymmetric manifold is Ricci-semisymmetric.
The converse is not true. However, if a Ricci-semisymmetric manifold satis-
fies certain additional assumptions then it is semisymmetric. For instance,
every conformally flat Ricci-semisymmetric semi-Riemannian manifold is
semisymmetric. This is an obvious consequence of the fact that every confor-
mally flat Ricci-pseudosymmetric semi-Riemannian manifold is pseudosym-
metric ([7], Lemma 2). It is a long-standing question whether (1) and (6)
are equivalent for hypersurfaces of spaces of constant curvature; cf. Problem
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P 808 of [17] by P. J. Ryan, and the references therein. The problem of the
equivalence of Ricci-semisymmetry and semisymmetry was also studied in
[1]. There one can find a review of partial solutions of this problem. The
main result of [1] is the following:

Theorem 1.1 ([1], Theorem 5.2). Let (M, g), n ≥ 4, be a Riemannian
Ricci-semisymmetric manifold satisfying

R ·R = Q(S,R).(7)

If (M, g) has pseudosymmetric Weyl tensor then R ·R = 0 on US ⊂M .

We recall that every hypersurface M of En+1
s , n ≥ 3, satisfies (7) ([12],

Corollary 3.1).

Extending the above problem we consider the problem of the equivalence
of Ricci-pseudosymmetry and pseudosymmetry on semi-Riemannian mani-
folds. It is clear that if at a point x of a manifold (M, g) condition (∗)1 is
satisfied then also (∗)2 holds at x. The converse is not true. For instance,
every warped product M1 ×F M2, dimM1 = 1, dimM2 = n − 1 ≥ 3, of
a manifold (M1, g) and a non-pseudosymmetric Einstein manifold (M2, g̃)
is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [5]). Fur-
ther, in [4] (Theorem 4) it was shown that (∗)1 and (∗)2 are equivalent on
the subset US of a 4-dimensional warped product M1 ×F M2. In particu-
lar, (1) and (6) are equivalent on the subset US of a 4-dimensional warped
product M1 ×F M2. We also note that there exist non-semisymmetric Ein-
steinian 4-dimensional warped products M1 ×F M2, e.g. the Schwarzschild
spacetimes. Moreover, the Schwarzschild spacetimes are pseudosymmetric
manifolds.

It was proved in [16] that (1) and (6) coincide for hypersurfaces of Rie-
mannian space forms with non-zero constant sectional curvature. This result
cannot be extended to the level of pseudosymmetry. Namely, the main re-
sult of [13] (Theorem 1) shows that the Cartan hypersurface in the sphere
Sn+1(c), n = 6, 12 or 24, is a non-pseudosymmetric Ricci-pseudosymmetric
manifold with non-pseudosymmetric Weyl tensor.

The paper is organized as follows. In Section 2 we fix the notations and
present auxiliary lemmas. Moreover, we describe some curvature properties
of Ricci-pseudosymmetric manifolds satisfying (∗∗). In Section 3 we con-
tinue investigations of such manifolds assuming additionally condition (∗).
Finally, in Section 4 we restrict our considerations to the special case when
LS = κ

nL2. We prove that every Ricci-pseudosymmetric manifold satisfying
(∗) and (∗∗), with LS = κ

nL2, must be pseudosymmetric (Theorem 4.1).
We mention that a family of manifolds realizing the above conditions is de-
scribed in [2]. Furthermore, we also show that the manifolds considered
have additional, very interesting in our opinion, curvature properties. Some
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of them appeared in the earlier papers devoted to manifolds of pseudosym-
metry type. Moreover, we note that a certain converse statement (Theorem
4.2) is also true.

Throughout this paper all manifolds are assumed to be connected para-
compact manifolds of class C∞.

2. Preliminaries. Let (M, g) be an n-dimensional, n≥ 3, semi-Rieman-
nian manifold. The Ricci operator S is defined by g(SX,Y ) = S(X,Y ),
where X,Y ∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields on M .
Next, we define the endomorphisms R(X,Y ), C(X,Y ) and X ∧ Y of Ξ(M)
by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z − 1

n− 2

(
X ∧ SY + SX ∧ Y − κ

n− 1
X ∧ Y

)
Z,

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y,

where X,Y, Z ∈ Ξ(M). Now the Riemann–Christoffel curvature tensor R,
the Weyl conformal curvature tensor C and the (0,4)-tensor G of (M, g) are
defined by

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4).

A tensor B of type (1, 3) on M is a generalized curvature tensor if

S
X1,X2,X3

B(X1, X2)X3 = 0,

B(X1, X2) + B(X2, X1) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2),

where B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4). For a (0, 2)-tensor field A
on (M, g) we define the endomorphism X ∧A Y of Ξ(M) by (X ∧A Y )Z =
A(Y,Z)X − A(X,Z)Y , where X,Y, Z ∈ Ξ(M). In particular, X ∧g Y =
X ∧ Y . For a (0, k)-tensor field T , k ≥ 1, a (0, 2)-tensor field A and a
generalized curvature tensor B on (M, g) we define the tensors B · T and
Q(A, T ) by

(B · T )(X1, . . . , Xk;X,Y ) = −T (B(X,Y )X1, X2, . . . , Xk)− . . .
−T (X1, . . . , Xk−1,B(X,Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y ) = −T ((X ∧A Y )X1, X2, . . . , Xk)− . . .
−T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X,Y, Z,X1, X2, . . . ∈ Ξ(M). Putting in the above formulas B = R or
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B = C, T = R or T = C or T = S, A = g or A = S, we obtain the tensors
R ·R, R ·C, R ·S, C ·S, Q(g,R), Q(S,R), Q(g, C), Q(g, S) and Q(S,C),
respectively. We note that the Weyl conformal curvature tensor C can also
be presented in the following form:

C = R− 1

n− 2
U +

κ

(n− 1)(n− 2)
G,(8)

where

U(X1, X2, X3, X4) = g(X1, X4)S(X2, X3)− g(X1, X3)S(X2, X4)

+ g(X2, X3)S(X1, X4)− g(X2, X4)S(X1, X3).

Let (M, g) be a semi-Riemannian manifold covered by a system of charts
{W ;xk}. We denote by gij , Rhijk, Sij , Ghijk = ghkgij − ghjgik and

Chijk = Rhijk −
1

n− 2
(ghkSij − ghjSik + gijShk − gikShj)(9)

+
κ

(n− 1)(n− 2)
Ghijk

the local components of the metric tensor g, the Riemann–Christoffel cur-
vature tensor R, the Ricci tensor S, the tensor G and the Weyl tensor C,
respectively. Further, we denote by S2

ij = SirS
r
j and S j

i = gjrSir the local

components of the tensor S2 defined by S2(X,Y ) = S(SX,Y ), and of the
Ricci operator S, respectively.

At the end of this section we present some results which will be used in
the next sections.

Lemma 2.1 ([8], Lemma 3.6). If B is a generalized curvature tensor at
a point x of a semi-Riemannian manifold (M, g), dimM ≥ 3, such that

S
X,Y,Z

a(X)B(Y,Z) = 0, X, Y, Z ∈ Tx(M),(10)

for a covector a at x, then Q(a⊗ a,B) = 0 at x.

Now we present the converse statement.

Lemma 2.2. Let (M, g), dimM ≥ 3, be a semi-Riemannian manifold.
Let a be a non-zero covector and B a generalized curvature tensor at a point
x of M satisfying Q(a⊗ a,B) = 0. Then (10) holds at x.

P r o o f. In local coordinates the equality Q(a⊗a,B) = 0 takes the form

ahalBmijk − ahamBlijk + aialBhmjk − aiamBhljk
+ ajalBhimk − ajamBhilk + akalBhijm − akamBhijl = 0.

Alternating this identity in h, l,m, and making use of properties of B, we
obtain
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2ai(alBhmjk + amBlhjk + ahBmljk) + aj(alBhmik + amBlhikahBmlik)

+ ak(alBhmji + amBlhji + ahBmlji) = 0.

Putting Plhmjk = alBhmjk + amBlhjk + ahBmljk and applying Lemma 2 of
[14], we easily obtain (10).

From Theorem 4.1, Proposition 4.2 and Corollary 4.1 of [8] we get

Lemma 2.3. Let x be a point of a semi-Riemannian manifold (M, g),
dimM ≥ 4, such that

S = µg + %a⊗ a, S
X,Y,Z

a(X)B(Y,Z) = 0

for some non-zero covector a, where B = R − γG, µ, %, γ ∈ R. Then at x
we have

R ·R =
κ

n(n− 1)
Q(g,R), R ·R = Q(S,R)− (n− 2)κ

n(n− 1)
Q(g, C).

First we consider Ricci-pseudosymmetric manifolds satisfying (∗∗).
Lemma 2.4. Let (M, g), dimM≥4, be a semi-Riemannian Ricci-pseudo-

symmetric manifold satisfying condition (5). If L2 6= 0 at x ∈ US ∩U2 ⊂M
then

S r
h Rrijk + S r

j Rrikh + S r
k Rrihj = 0,(11)

S r
h Crijk + S r

j Crikh + S r
k Crihj = 0,(12)

C · S = 0,(13)

S2 = αS + βg(14)

at x, where

α = (n− 2)LS +
κ

n− 1
, β =

tr(S2)

n
− κ

n

(
(n− 2)LS +

κ

n− 1

)
.

P r o o f. In local coordinates, (3) takes the form

S r
h Rrijk + S r

i Rrhjk = LS(ghjSik − ghkSij + gijShk − gikShj).(15)

Summing cyclically this equation in h, j, k we obtain (11). Using (9) and (11)
we easily obtain (12). On the other hand, the relation (5) in local coordinates
takes the form

(16) CrijkR
r
hlm + ChrjkR

r
ilm + ChirkR

r
jlm + ChijrR

r
klm

= L2(ShlCmijk − ShmClijk + SilChmjk − SimChljk
+ SjlChimk − SjmChilk + SklChijm − SkmChijl).

Contracting this equality with ghk we get

L2(S r
l (Crijm + Crjim)− S r

m (Crijl + Crjil)) = 0,
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whence, by the assumption that L2 6= 0, we obtain

S r
l Crijm + S r

mCrilj + S r
l Crjim + S r

mCrjli = 0.

Applying now (12) we have

(C · S)ijlm = S r
i Crjlm + S r

j Crilm = 0,

i.e. the equality (13). It is easy to see, in view of (9), that

C · S = R · S − 1

n− 2
Q(g, S2) +

κ

(n− 1)(n− 2)
Q(g, S).

Applying now (5) and (13) we get

Q

(
g, S2 −

(
(n− 2)LS +

κ

n− 1

)
S

)
= 0,

which, by Lemma 2.4(i) of [12], leads to

S2 =

(
(n− 2)LS +

κ

n− 1

)
S + λg, λ ∈ R.

Hence we easily obtain (14). This completes the proof.

Proposition 2.1. Let (M, g), dimM≥4, be a semi-Riemannian Ricci-
pseudosymmetric manifold satisfying condition (5). If L2 6= 0 at x ∈ US ∩
U2 ⊂M then

(nLS − κL2)S r
l Crijk = (κLS − tr(S2)L2)Clijk(17)

at x. Moreover , if LS = κ
nL2 at x , then

tr(S2) =
κ2

n
.(18)

P r o o f. First we observe that (14) and (12) or (13) lead to

S2
hrC

r
ijk + S2

jrC
r
ikh + S2

krC
r
ihj = 0,(19)

C · S2 = 0,(20)

respectively. Transvecting (16) with S m
p we get

S s
p RslhrC

r
ijk + S s

p RslirC
r
h jk + S s

p RsljrC
r

hi k + S s
p RslkrC

r
hij

= L2(ShlS
r
p Crijk + SilS

r
p Chrjk + SjlS

r
p Chirk

+ SklS
r
p Chijr − S2

phClijk − S2
piChljk − S2

pjChilk − S2
pkChijl)

and, after symmetrization in p, l, by (3),

LS(gphS
r
l Crijk + glhS

r
p Crijk − gpiS r

l Crhjk − gliS r
p Crhjk(21)

+ gpjS
r
l Crkhi + gljS

r
p Crkhi − gpkS r

l Crjhi

− glkS r
p Crjhi − SlhCpijk − SphClijk

− SliChpjk − SpiChljk − SljChipk
− SpjChilk − SlkChijp − SpkChijl)
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= L2(ShlS
r
p Crijk + ShpS

r
l Crijk + SilS

r
p Chrjk

+ SipS
r
l Chrjk + SjlS

r
p Chirk + SjpS

r
l Chirk

+ SklS
r
p Chijr + SkpS

r
l Chijr − S2

phClijk − S2
lhCpijk

− S2
piChljk − S2

liChpjk − S2
pjChilk

− S2
ljChipk − S2

pkChijl − S2
lkChijp).

Contracting (21) with ghp and using (12), (13), (19) and (20), we obtain

LS(nS r
l Crijk − κClijk) = L2(κS r

l Crijk − tr(S2)Clijk),

which immediately leads to (17). Finally, if LS = κ
nL2, then (17), in view of

C 6= 0 and L2 6= 0 at x, yields tr(S2) = κ2/n. This completes the proof.

3. Ricci-pseudosymmetric manifolds satisfying (∗) and (∗∗). In
the sequel we restrict our considerations to the set U = US ∩ U2.

Lemma 3.1. Let (M, g), dimM≥4, be a semi-Riemannian Ricci-pseudo-
symmetric manifold satisfying conditions (4) and (5). If L2 6= 0 at x ∈ U
then

(n− 1)L2
S =

2κ

n
LS +

tr(S2)

n
− κ2

n(n− 1)
(22)

at x.

P r o o f. Contracting (15) with ghk, we find

Aij = SrsRrijs = S2
ij − nLSSij + κLSgij ,(23)

where Srs = grtS s
t . Applying the operation R · to this equality we obtain

(R · S)rshkR
r s
ij + Srs(R ·R)rijshk = (R · S2)ijhk − nLS(R · S)ijhk.(24)

In view of (3), (5) and SrsCrijs = 0, which follows immediately from (13),
the left hand side of this identity is equal to

LS(S r
k Rrjih + S r

k Rrijh − S r
h Rrjik − S r

h Rrijk) + S2
hrR

r
jik + S2

hrR
r
ijk

− S2
krR

r
jih + S2

krR
r
ijh + SihAjk − SikAjh + SjhAik − SjkAih

+ L1(S r
k Crjih + S r

k Crijh − S r
h Crjik − S r

h Crijk).

Using twice (12) and next (13) we can easily see that the expression in
the last brackets vanishes. Moreover, in view of (11), we have S r

k Rrjih −
S r
h Rrjik = −S r

i Rrjhk. Analogously, using

S2
hrR

r
ijk + S2

jrR
r
ikh + S2

krR
r
ihj = 0,

which follows immediately from (14) and (11), we get

S2
hrR

r
jik − S2

krR
r
jih = −S2

irR
r
jkh = S2

irR
r
jhk.
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Taking into account all these identities one can easily see that the left hand
side of (24) can be written as follows:

−LS(R · S)ijhk + (R · S2)ijhk + SihAjk − SikAjh + SjhAik − SjkAih.

Substituting this expression into (24) we obtain

(n− 1)LS(R · S)ijhk = SikAjh − SihAjk + SjkAih − SjhAik.

Using now (23) we get

(n− 1)LS(R · S) = −Q(S, S2) + κLSQ(g, S).

But, by (14), we have

Q(S, S2) = Q(S, αS + βg) = βQ(S, g) = −βQ(g, S).

Substituting this into the previous equality and using (3), we find

(n− 1)L2
SQ(g, S) = (β + κLS)Q(g, S),

which, by the assumption that x ∈ US , implies

β = LS((n− 1)LS − κ).(25)

Using the definition of β we immediately have (22). This completes the
proof.

Now, taking into account Proposition 2.1 we have the following

Remark 3.1. Under the assumptions of Lemma 3.1, if LS = κ
nL2 at x

then
LS =

κ

n(n− 1)
.(26)

Moreover, if κ 6= 0 at x then L2 = 1/(n− 1). In fact, substituting (18) into
(22) we easily get (26). The equality L2 =1/(n− 1) now follows immediately
from our assumptions.

Proposition 3.1. Let (M, g), dimM≥4, be a semi-Riemannian Ricci-
pseudosymmetric manifold satisfying conditions (4) and (5). If L2 6= 0 at
x ∈ U then

(27) nL1

(
S r
l Crijk−

κ

n
Clijk

)
+(κ−nLS)S r

j Rrijk+nLS(SikSlj−SijSlk)

− κLS(gljSik − glkSij) + nL2
S(gijSlk − gikSlj)− κL2

SGlijk = 0

at x.

P r o o f. In local coordinates (4) takes the form

RrijkR
r
hlm +RhrjkR

r
ilm +RhirkR

r
jlm +RhijrR

r
klm

= ShlRmijk − ShmRlijk + SilRhmjk − SimRhljk + SjlRhimk − SjmRhilk
+ SklRhijm − SkmRhijl + L1(ghlCmijk − ghmClijk + gilChmjk

− gimChljk + gjlChimk − gjmChilk + gklChijm − gkmChijl).
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Transvecting this with S m
p we obtain

S s
p RslhrR

r
ijk − S s

p RslirR
r
hjk + S s

p RsljrR
r
khi − S s

p RslkrR
r
jhi

= ShlS
s
p Rsijk − SilS s

p Rshjk + SjlS
s
p Rskhi − SklS s

p Rsjhi

− S2
phRlijk − S2

piRhljk − S2
pjRhilk − S2

pkRhijl

+ L1(ghlS
s
p Csijk − gilS s

p Cshjk + gjlS
s
p Cskhi − gklS s

p Csjhi

− SphClijk − SpiChljk − SpjChilk − SpkChijl).

Symmetrizing the above equality in p, l and using (3), we have

(28) LS(gphSlrR
r
ijk + glhSprR

r
ijk − gpiSlrRrhjk − gliSprRrhjk

+ gpjSlrR
r
khi + gljSprR

r
khi − gpkSlrRrjhi − glkSprRrjhi

− SlhRpijk − SphRlijk + SliRphjk + SpiRlhjk − SljRpkhi
− SpjRlkhi + SlkRpjhi + SpkRljhi)

= ShlS
s
p Rsijk + ShpS

s
l Rsijk − SilS s

p Rshjk − SipS s
l Rshjk

+ SjlS
s
p Rskhi + SjpS

s
l Rskhi − SklS s

p Rsjhi − SkpS s
l Rsjhi

− S2
phRlijk − S2

lhRpijk − S2
piRhljk − S2

liRhpjk

−S2
pjRhilk − S2

ljRhipk − S2
pkRhijl − S2

lkRhijp

+ L1(ghlS
s
p Csijk + ghpS

s
l Csijk − gilS s

p Cshjk

− gipS s
l Cshjk + gjlS

s
p Cskhi + gjpS

s
l Cskhi

− gklS s
p Csjhi − gkpS s

l Csjhi − ShpClijk − ShlCpijk
− SipChljk − SilChpjk − SjpChilk − SjlChipk
− SkpChijl − SklChijp).

Now we observe that the tensor A with components Aij given by (23), in
view of (14) and (25), can be written in the form

A =

(
κ

n− 1
− 2LS

)
S + (n− 1)L2

Sg.(29)

Moreover, (14) and (3) imply

R · S2 = αLSQ(g, S).(30)

On the other hand, transvecting (15) with S i
l we get

S r
h S

s
l Rrsjk + S2

lrR
r
hjk = LS(SljShk − SlkShj + ghjS

2
lk − gikS2

lj).(31)

Moreover, we note that the following identity is satisfied:

−S r
i S

s
l Rsrjk + S r

j S
s
l Rskri − S r

k S
s
l Rsjri

= S s
l (S r

i Rrsjk + S r
j Rrisk + S r

k Rrijs)

= S s
l (S r

i Rrsjk + S r
s Rrijk) = S r

i S
s
l Rrsjk + S2

lrR
r
ijk.
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Contracting (28) with gph and using (11), (15), (29), (12), (25), the above
equality and (31) and (30), we obtain, after standard but somewhat lengthy
calculations, the relation (27). This completes the proof.

Lemma 3.2. If (M, g), dimM ≥ 4, is a semi-Riemannian Ricci-pseudo-
symmetric manifold satisfying conditions (∗) and (∗∗) then we have on U :

(32) (L2 − 1)Q(S,R)− L1Q(g,R)

=
1

n− 2

(
L2Q(S,U) +

(
L2κ

n− 1
− L1 − LS

)
Q(g, U)

)
,

(33) (L2 − 1)(κRmijk + S r
i Rrmjk)− L1(n− 1)Rmijk

=

(
L2

n− 2
+ 1

)
(SikSmj − SmkSij)

+
1

n− 2

(
nκL2

n− 1
− (n− 1)L1 − LS

)
(gmkSij − gmjSik)

+
n− 1

n− 2

(
L2κ

n− 1
− L1 − LS

)
(gijSmk − gikSmj)

+
L2

n− 2
(gmjS

2
ik − gmkS2

ij)

+
κ

n− 2

(
L2κ

n− 1
− L1 − LS

)
(gmjgik − gmkgij).

P r o o f. First we observe that (3) implies

R · U = −LSQ(S,G) = LSQ(g, U).

Moreover, using (8), we obtain R ·C = R ·R− 1
n−2R ·U . Substituting into

this equality the previous one and (4) and (5) we get

L2Q(S,C) = Q(S,R) + L1Q(g, C)− LS
n− 2

Q(g, U).(34)

On the other hand, we have

Q(S,C) = Q(S,R)− 1

n− 2
Q(S,U) +

κ

(n− 1)(n− 2)
Q(S,G)

= Q(S,R)− 1

n− 2
Q(S,U)− κ

(n− 1)(n− 2)
Q(g, U)

and

Q(g, C) = Q(g,R)− 1

n− 2
Q(g, U).

Combining the last three equalities we have (32). Using the definition of the
tensor Q(A, T ), by a standard calculation, we obtain

ghlQ(S,R)hijklm = κRmijk + S r
i Rrmjk + SikSmj − SijSkm,

ghlQ(g,R)hijklm = (n− 1)Rmijk + gjmSik − gkmSij ,
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ghlQ(S,U)hijklm = κ(gmkSij − gmjSik) + gmjS
2
ik − gmkS2

ij

+ (n− 1)(SikSmj − SmkSij),
ghlQ(g, U)hijklm = gmkSij − gmjSik + (n− 1)(gijSmk − gikSmj)

+κ(gjmgik − gkmgij).

Contracting (32) with ghl and using the above relations we get (33), which
completes the proof.

4. On a certain subclass of pseudosymmetric manifolds. In this
section we consider the special case of Ricci-pseudosymmetric manifolds
satisfying conditions (∗) and (∗∗):

(S) LS =
κ

n
L2 and LS 6= 0.

According to Remark 3.1 we have

LS =
κ

n(n− 1)
, L2 =

1

n− 1
.(35)

Moreover, in view of (14) and (18), we have

S2 =
2κ

n
S − κ2

n2
g.(36)

Lemma 4.1. Let (M, g), dimM≥4, be a semi-Riemannian Ricci-pseudo-
symmetric manifold satisfying (4) and (5). If at a point x ∈ U the hypothesis
(S) is satisfied then(

S r
l Crijk −

κ

n
Clijk

)(
L1 +

(n− 2)κ

n(n− 1)

)
= 0(37)

at x.

P r o o f. (27), in view of (35), takes the form

nL1(S r
l Crijk −

κ

n
Clijk) +

n− 2

n− 1
κ(S r

l Rrijk −
κ

n
Rlijk)

+
κ

n− 1
(SikSlj − SijSlk)− κ2

n(n− 1)
(gljSik − glkSij)

+
κ2

n(n− 1)2
(gijSlk − gikSlj)−

κ3

n2(n− 1)2
(glkgij − gljgik) = 0.

Now using (18) and (36) we easily obtain (37). Further, we define the tensor
T by

T = S − κ

n
g.(38)

It is easy to see that (36) is equivalent to

T 2 = 0.(39)
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According to the above lemma we consider two a priori possible cases:

(i) L1 = − (n− 2)κ

n(n− 1)
,

(ii) L1 6= −
(n− 2)κ

n(n− 1)
.

Case (i). In this case the equality (34) takes the form

(40)
1

n− 1
Q(S,C)

= Q(S,R)− (n− 2)κ

n(n− 1)
Q(g, C)− κ

n(n− 1)(n− 2)
Q(g, U).

The identity Q(S,G) = −Q(g, U) and (8) imply

Q(S,R) = Q(S,C) +
1

n− 2
Q(S,U) +

κ

(n− 1)(n− 2)
Q(g, U).

Substituting this equality into (40) we obtain

n− 2

n− 1
Q(T,C) +

1

n− 2
Q(S +

κ

n
g, U) = 0.(41)

Using the relations: TirC
r
mjk+TmrC

r
ijk=0, TmrC

r
ikj+TkrC

r
ijm+TjrC

r
imk

= 0, and T rsCrijs = 0, which are obvious consequences of (13) and (12),
by a standard calculation, we get ghlQ(T,C)hijklm = −TmrCrijk. Similarly,
using (36) we find

ghlQ

(
S +

κ

n
g, U

)
hijklm

= (n− 1)(TikTmj − TmkTij).

Thus contraction of (41) with ghl leads to

n− 2

n− 1
TmrC

r
ijk =

n− 1

n− 2
(TikTmj − TmkTij).(42)

On the other hand, transvecting the equality

n− 2

n− 1
Q(T,C)hijklm +

1

n− 2
Q

(
S +

κ

n
g, U

)
hijklm

= 0

with T l
p and using (39) and (42), in the same manner as above, we get

Tph(TmjTik − TmkTij) + Tpi(TmkThj − TmjThk)

+ Tpj(TmhTik − TmiThk) + Tpk(TmiThj − TmhTij) = 0.

Putting Thijk = ThkTij − ThjTik and using the fact that the tensor T with
components Thijk is a generalized curvature tensor, we can rewrite the above
equality in the form

TphTmijk + TpiThmjk + TpjThimk + TpkThijm = 0.(43)



224 R. DESZCZ ET AL.

Since T 6= 0 at x we can choose a vector w at x such that ai = wrTri 6= 0.
Transvecting now (43) with wp we get

ahTmijk + aiThmjk + ajThimk + akThijm = 0.

Applying now Lemma 4 of [15], in view of a 6= 0 at x, we have T = 0,
whence we immediately obtain T = %a⊗ a, % ∈ R. Thus

S =
κ

n
+ %a⊗ a.(44)

Applying (44) we have Q
(
S + κ

ng, U
)

= 2κ
n Q(g, U) + %Q(a ⊗ a, U). But

Q(g, U) = −Q(S,G) = −%Q(a ⊗ a,G). On the other hand, using (44) we
easily obtain Q(a⊗a, U)= 2κ

n Q(a⊗a,G). Combining the last three equalities
we have Q

(
S+ κ

ng, U
)

= 0 and, in virtue of (41), Q(T,C) = 0, i.e. Q(S,C) =
κ
nQ(g, C). Thus (5) implies, in view of L2 = 1

n−1 ,R·C = κ
n(n−1)Q(g, C) and,

in view of Ricci-pseudosymmetry of (M, g), R·R= κ
n(n−1)Q(g,R). Moreover,

using (44) we have Q(a⊗ a,C) = 0 whence, by Lemma 2.2, we obtain

S
X,Y,Z

a(X)C(Y,Z) = 0.

Case (ii). In this case (37) implies

TmrC
r
ijk = 0.(45)

The equality (33) leads to

λR =
n− 1

n− 2
S − 1

n− 2

(
κ

n
− (n− 1)L1

)
U +

κ

n− 2

(
κ

n2(n− 1)
− L1

)
G,

where λ = n−2
n κ + (n − 1)L1. This implies λC = n−1

n−2
(
S − κ

nU + κ2

n2G
)

and consequently n−2
n−1λC = T . Hence, in view of (39) and λ 6= 0, we have

CrijkC
r
pqt = 0, and next C · C = 0. On the other hand, we can check that

the following identity is satisfied on any semi-Riemannian manifold:

(C · C)hijklm = (R · C)hijklm +
1

n− 2
Q

(
κ

n− 1
g − S,C

)
hijklm

− 1

n− 2
(ghlS

r
mCrijk − ghmS r

l Crijk

− gilS r
mCrhjk + gimS

r
l Crhjk + gjlS

r
mCrkhi

− gjmS r
l Crkhi − gklS r

mCrjhi + gkmS
r
l Crjhi).

Using now (5) and (45) we get C ·C = − 1
(n−1)(n−2)Q(T,C). Thus Q(T,C)

= 0, which, as we saw in the previous case, leads to (2).

Thus we have proved the following
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Theorem 4.1. Let (M, g), dimM ≥ 4, be a semi-Riemannian Ricci-
pseudosymmetric manifold satisfying (∗) and (∗∗) and let x ∈ U . Assume
that LS = κ

nL2 at x, LS 6= 0, and let λ = n−2
n κ+ (n− 1)L1. Then (2) holds

at x and

(i) if λ 6= 0, then n−2
n−1λC = T at x;

(ii) if λ = 0, then the following identities hold at x:

S =
κ

n
g + %a⊗ a, S

X,Y,Z
a(X)C(Y, Z) = 0

for some non-zero covector a at x and % ∈ R.

We now present the converse statement to (ii).

Theorem 4.2. Let x be a point of a semi-Riemannian manifold (M, g),
dimM ≥ 4, such that x ∈ U and the following conditions are satisfied at x:

S = µg + %a⊗ a,(46)

S
X,Y,Z

a(X)C(Y, Z) = 0(47)

for some non-zero covector a and µ, % ∈ R. Then (2), (4) and (5) hold at
x. Moreover ,

LR =
κ

n(n− 1)
, L1 = − (n− 2)κ

n(n− 1)
, L2 =

1

n− 1
, µ =

κ

n
, κ 6= 0.

(48)

P r o o f. First we observe that the identity (47), which in local coordi-
nates takes the form alChijk + ahCiljk + aiClhjk = 0, implies arC

r
ijk = 0

and next ara
r = 0. Thus the relation (46) leads to µ = κ/n. We assert that

κ 6= 0 at x. Suppose that κ = 0. Then S = %a⊗a and applying Lemma 2.1,
in view of % 6= 0, we get Q(S,C) = 0, a contradiction, because x ∈ U . Using
(8), (46) and µ = κ/n we have

C = R− κ

n(n− 1)
G+ P,(49)

where the (0, 4)-tensor P is defined by Phijk = ghkaiaj+gijahak−ghjaiak−
gikahaj . It is easy to see that SX,Y,Z a(X)P(Y,Z) = 0. Taking into ac-
count this equality, (49) and (47) we obtain SX,Y,Z a(X)B(Y,Z) = 0, where
B = R − κ

n(n−1)G. Applying now Lemma 2.3 we see that (M, g) is pseu-

dosymmetric and satisfies (4) with LR and L1 given by (48). We can check
that on any semi-Riemannian manifold the equality R ·R = κ

n(n−1)Q(g,R)

implies

R · C =
κ

n(n− 1)
Q(g, C).(50)

The relation (47), in view of Lemma 2.1, implies Q(a ⊗ a,C) = 0. On the
other hand, using (46) we have Q(S,C) = µQ(g, C) + %Q(a ⊗ a,C). Thus



226 R. DESZCZ ET AL.

Q(g, C) = 1
µQ(S,C)= n

κQ(S,C). Substituting this equality into (50) we get

R · C = 1
n−1Q(S,C). This completes the proof.

It is worth noticing that manifolds satisfying simultaneously conditions
(5) and (47) have been considered in [9]. The main result of that paper
says that the function L2 of every such manifold must be equal to 1/(n− 1)
or 1/(n− 2). Moreover, if L2 = 1/(n− 1) then such a manifold is pseudo-
symmetric. On the other hand, as shown in Example 5.1 of [9], there exist
manifolds with L2 = 1/(n− 2) which are not pseudosymmetric.

REFERENCES

[1] K. Ars lan, Y. C. e l ik, R. Deszcz and R. Ezentas., On the equivalence of
Ricci-semisymmetry and semisymmetry , Colloq. Math. 76 (1998), 279–294.

[2] F. Defever, R. Deszcz, M. Hotlo ś, M. Kucharski and Z. S. ent ürk, On
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[8] R. Deszcz and M. Hotlo ś, On a certain subclass of pseudosymmetric man-
ifolds, Publ. Math. Debrecen 53 (1998), 29–48.

[9] —, —, On a certain extension of the class of semisymmetric manifolds,
Publ. Inst. Math. (Beograd) (N.S.) 63 (77) (1998), 115–130.
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