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ON SUBRINGS OF AMALGAMATED FREE PRODUCTS OF RINGS

BY

JAMES RENSHAW (SOUTHAMPTON)

Abstract. The aim of this paper is to develop the homological machinery needed
to study amalgams of subrings. We follow Cohn [1] and describe an amalgam of sub-
rings in terms of reduced iterated tensor products of the rings forming the amalgam and
prove a result on embeddability of amalgamated free products. Finally we characterise
the commutative perfect amalgamation bases.

1. Introduction. An amalgam of rings [R;Si] consists of a family of
rings Si together with a common subring R, called the core of the amalgam.
The amalgam is said to be (weakly) embeddable in a ring W if there are
monomorphisms θi : Si → W such that θi|R = θj |R for all i 6= j. If in
addition im θi ∩ im θj ∼= R, then we say that the embedding is strong. It is
easy to establish that an amalgam of rings [R;Si] is embeddable if and only
if it is embeddable in its amalgamated free product

∏∗
R Si.

It is well known that not every amalgam of rings is embeddable and P. M.
Cohn [1] gave some conditions under which an amalgam is embeddable.
About the same time, Howie [2] studied the case for semigroup amalgams.
The author extended this work in both the semigroup and ring cases [4], [5].

In [3], Howie studied the idea of subsemigroups of amalgamated free-
products and again this work was extended by the author [6], [7]. We wish
now to study the case for rings. In more detail, suppose that [R;Ti] and
[R;Si] are amalgams with R ⊆ Ti ⊆ Si. We shall call the amalgam [R;Ti] an
amalgam of subrings of the amalgam [R;Si]. We wish to ask the question:
is it true that

∏∗
R Ti is embeddable in

∏∗
R Si? In fact we need only consider

amalgams with a finite index set, because of the following easily proved
result (see [6] for the semigroup case):

Theorem 1.1. Let [R;Ti : i ∈ I] be an amalgam of subrings of the
amalgam [R;Si : i ∈ I]. Then

∏∗
R Ti is embeddable in

∏∗
R Si if and only if

Π∗R{Ti : i ∈ F} is embeddable in Π∗R{Si : i ∈ F} for all finite subsets F of I.

We shall have occasion to use the following theorem.
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Theorem 1.2 (cf. [8, Theorem 2.18]. Let I be a directed quasi-ordered
set. Suppose that (Ai, φ

i
j) and (Bi, θ

i
j) are direct systems in the category

of R-modules (sharing the same index set) with direct limits (A,αi) and
(B, βi) respectively. Suppose also there exist maps fi : Ai → Bi such that
fjθ

i
j = φijfi for all i ≥ j. Then there exists a unique map f : A → B such

that βifi = fαi for all i and if each fi is one-to-one then f is one-to-one
also.

Conversely , if f and each φij are one-to-one then each fi is also one-to-
one.

We begin in Section 2 by recalling some definitions from [4] and proving
a technical result on free extensions of R-modules. Given an amalgam of
subrings [R;T1, T2] of an amalgam [R;S1, S2], we describe, in Section 3, the
canonical map T1 ∗R T2 → S1 ∗R S2, in terms of maps between two directed
systems of R-modules. This construction is then used to prove the main
results. All rings are assumed to be unitary rings and all tensor products,
unless otherwise stated, are assumed to be over R.

2. Purity and free extensions. Let R be a subring of a ring S. Let
A ∈ MOD-S, B ∈ MOD-R and suppose that f : A→ B is an R-map. The
free S-extension of A and B is a right S-module F (S;A,B) together with
an S-map h : A → F (S;A,B) and a right R-map g : B → F (S;A,B) such
that

1. g ◦ f = h, and
2. whenever there is an S-module C, an S-map β : A → C and an

R-map α : B → C with α ◦ f = β, then there exists a unique S-map
ψ : F (S;A,B)→ C such that ψ ◦ g = α and ψ ◦ h = β.

Recall that a right R-monomorphism f : X → Y is called (right) pure if
for all A ∈ R-MOD, the induced map f ⊗ 1 : X ⊗A→ Y ⊗A is one-to-one.
If X,Y ∈ R-MOD-R and if f : X → Y is an (R,R)-monomorphism then
f is called pure if for all A ∈ MOD-R and B ∈ R-MOD the induced map
1⊗ f ⊗ 1 : A⊗X ⊗B → A⊗ Y ⊗B is one-to-one.

Let f : X → Y be a right R-map and λ : A → B a left R-map and
consider the commutative diagram

(1)

X ⊗A X ⊗B

Y ⊗A Y ⊗B

1X⊗λ //

f⊗1A
��

f⊗1B
��

1Y ⊗λ
//

We say that the pair (f, λ) is stable if

im(f ⊗ 1B) ∩ im(1Y ⊗ λ) = im(f ⊗ λ).
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In other words, (f, λ) is stable if whenever
∑
y⊗λ(a) =

∑
f(x)⊗b in Y ⊗B,

then there exists
∑
x′⊗a′ in X⊗A such that

∑
y⊗λ(a) =

∑
f(x′)⊗λ(a′).

It follows that if all the maps in the diagram (1) are one-to-one then (f, λ)
is stable if and only if (1) is a pullback.

We say that a right R-monomorphism f : X → Y is (right) stable if for
all A,B ∈ MOD-R and all left R-monomorphisms λ : A→ B, the pair (f, λ)
is stable. The following is an easy consequence of [4, Theorem 3.11].

Lemma 2.1. If f : X → Y is right pure and λ : A→ B is left pure then
the diagram (1) is a pullback.

Suppose now that R ⊆ T ⊆ S are rings. We show that under certain
conditions, if we have a commutative diagram of the form

A B F (T ;A,B)

C D F (S;C,D)

//

��

//

�� ��
// //

and if the first square satisfies a suitable property P , say, then so does the
second square. This will form the basis for an inductive process in the next
section.

Theorem 2.2. Let R ⊆ T ⊆ S be rings, with R → S and T → S both
pure as R-monomorphisms. Whenever A ∈ R-MOD-T , B,D ∈ R-MOD-R,
C ∈ R-MOD-S and α1 : A → B, α2 : C → D are pure R-monomorphisms
and whenever there exist “connecting” pure R-monomorphisms δ : A → C
and ε : B → D such that for all X ∈ MOD-R and all Y ∈ R-MOD the
diagram

X ⊗A⊗ Y X ⊗B ⊗ Y

X ⊗ C ⊗ Y X ⊗D ⊗ Y

1⊗α1⊗1 //

1⊗δ⊗1
��

1⊗ε⊗1
��

1⊗α2⊗1
//

is a pullback , then there exists a unique pure R-monomorphism ψ :
F (T ;A,B) → F (S;C,D) such that ψ ◦ β1 = β2 ◦ ε (where the maps βi
are the canonical maps). Moreover , when these conditions hold , then for all
X ∈ MOD-R, Y ∈ R-MOD the diagram

X ⊗B ⊗ Y X ⊗ F (T ;A,B)⊗ Y

X ⊗D ⊗ Y X ⊗ F (S;C,D)⊗ Y

1⊗β1⊗1 //

1⊗ε⊗1
��

1⊗ψ⊗1
��

1⊗β2⊗1
//

is also a pullback.
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P r o o f. For the sake of brevity, let us denote F (T ;A,B) by P and
F (S;C,D) by Q. We see from [4, Theorem 3.15] that the maps B → P
and D → Q are pure monomorphisms. Consider the following commutative
diagram:

X ⊗A⊗ T ⊗ Y X ⊗B ⊗ T ⊗ Y

X ⊗ C ⊗ S ⊗ Y X ⊗D ⊗ S ⊗ Y

X ⊗A⊗ Y X ⊗ P ⊗ Y

X ⊗ C ⊗ Y X ⊗Q⊗ Y

//

��

NNNNNNNNN&&

��

NNNNNNNNN &&

��

//

��

//
MMMMMMMMM&&

NNNNNNNNN &&
//

If we can show that the top square

X ⊗A⊗ T ⊗ Y X ⊗B ⊗ T ⊗ Y

X ⊗ C ⊗ S ⊗ Y X ⊗D ⊗ S ⊗ Y

//

�� ��
//

is a pullback then it will follow from [4, Theorem 2.9] that the map X ⊗
P ⊗ Y → X ⊗Q⊗ Y is one-to-one and so P → Q will be pure as required.

Consider then the commutative diagram

X ⊗A⊗ T ⊗ Y X ⊗B ⊗ T ⊗ Y

X ⊗ C ⊗ T ⊗ Y X ⊗D ⊗ T ⊗ Y

X ⊗ C ⊗ S ⊗ Y X ⊗D ⊗ S ⊗ Y

//

�� ��
//

�� ��
//

The top square is a pullback, by assumption, and the bottom is a pullback
by Lemma 2.1. Hence the “outer” rectangle is also a pullback.

3. Free products of rings. Recall the following construction from
Cohn [1] (see also [4]). Let [R;S1, S2] be an amalgam of rings. Let W1 =
S1, W2 = S1 ⊗ S2 and define f1 : W1 → W2 by f1(s1) = s1 ⊗ 1. Now
define, inductively, a sequence of (S1, Si)-bimodules Wn and (S1, R)-maps
fn : Wn →Wn+1 (i ≡ n (mod 2)) by Wn+1 = F (Si,Wn−1,Wn) and fn the
canonical map.

It was proved in Cohn [1] that S1∗RS2, the free product of the amalgam,
is the direct limit in the category of R-modules of the direct system (Wn, fn).
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The direct system comes equipped with maps φn : Wn → S1 ∗RS2 such that

φn+1 ◦ fn = φn, n = 1, 2, . . .

It is clear that if [R;T1, T2] is an amalgam of subrings of the amalgam
[R;S1, S2] then a similar construction, say (Zn, gn), can be made. Hence we
can construct a commutative diagram

(2)

T1 ∗R T2

Z1 Z2 Z3

U

W1 W2 W3

S1 ∗R S2

g1
//

ε1

��

θ1

iiii
iiii

iiii
iiii

iii 44

g2
//

θ2||
||
||

==

ε2

��

g3
//

θ3

aaBBBBBB

ε3

��

ss
ss

ss
ss

s 99

KKKKKKKKK %% f1 //

φ1

UUUUUUUUUUUUUUUUUUU**

f2 //

φ2

BBBBBB !!

f3 //

φ3}}||
||
||

where ε1 : Z1 →W1 is the inclusion, ε2 : Z2 →W2 is given by ε2(t1 ⊗ t2) =
t1 ⊗ t2, and in general, εn : Zn →Wn is the unique Ti-map (i ≡ n (mod 2))
which makes the diagram

Zn−2 Zn−1

Zn

Wn

gn−2 //
FFFFFFF ""

fn−1fn−2εn−2

3333333333333��

gn−1

||xx
xx
xx
x

fn−1εn−1

���������������

εn

��

commute. We see from Theorem 1.2 that if each εi is one-to-one, then so is
the canonical map ψ : T1 ∗R T2 → S1 ∗R S2. In fact, since “tensor products
preserve direct limits” [8, Corollary 2.20], if X ∈ MOD-R and Y ∈ R-MOD
then we can apply the functors X ⊗ − and − ⊗ Y to the diagram (2) and
deduce that if each εi is pure then so is ψ. Our aim therefore is to consider
when each εi is a pure R-monomorphism.

Theorem 3.1 ([4, Theorem 5.3]). Let [R;S1, S2] be an amalgam of rings
such that R → Si is pure. Then the amalgam is strongly embeddable and
R → S1 ∗R S2 is pure. Moreover , the maps φn : Wn → S1 ∗R S2 in (2) are
all pure monomorphisms.
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We extend this result to amalgams of subrings as follows. The idea is to
apply Theorem 2.2 to the first square in (2) and then use induction to prove
that each εi is pure.

Theorem 3.2. Let [R;T1, T2] be an amalgam of subrings of the amalgam
[R;S1, S2] and suppose that the maps R → Ti and Ti → Si are pure R-
monomorphisms (i = 1, 2). Then the canonical map ψ : T1 ∗R T2 → S1 ∗RS2

is a pure R-monomorphism.

P r o o f. It is easy to establish that f1, g1, ε1 and ε2 in (2) are all pure
R-monomorphisms. Let X ∈ MOD-R and Y ∈ R-MOD and consider the
commutative diagram

(3)

X ⊗ T1 ⊗ Y X ⊗ T1 ⊗ T2 ⊗ Y

X ⊗ S1 ⊗ Y X ⊗ S1 ⊗ S2 ⊗ Y

1⊗g1⊗1 //

ε1

��
ε2

��
1⊗f1⊗1

//

Now since the map X ⊗ T1 → X ⊗ S1 is right pure and Y → T2 ⊗ Y is left
pure, it follows from Lemma 2.1 that the diagram

X ⊗ T1 ⊗ Y X ⊗ T1 ⊗ T2 ⊗ Y

X ⊗ S1 ⊗ Y X ⊗ S1 ⊗ T2 ⊗ Y

1⊗g1⊗1 //

ε1

��
ε2

��
1⊗f1⊗1

//

is a pullback. But the map X⊗S1⊗T2⊗Y → X⊗S1⊗S2⊗Y is one-to-one
since T2 → S2 is pure and so (3) is also a pullback as required. Hence, by
induction and by Theorem 2.2, we can deduce that each εi in (2) is pure
and so ψ : T1 ∗R T2 → S1 ∗R S2 is pure.

Using the fact that amalgamated free products are associative, it is easy
to extend the above theorem to amalgams with finite index sets. The general
case then follows from Theorem 1.1.

Theorem 3.3. If [R;Ti] is an amalgam of subrings of the amalgam [R;Si]
and if the maps R→ Ti and Ti → Si are all pure R-monomorphisms, then
the canonical map

∏∗
R Ti →

∏∗
R Si is also a pure R-monomorphism.

Using techniques of the same kind, it is also possible to prove a similar
result for flatness in place of purity.

Theorem 3.4. If [R;Ti] is an amalgam of subrings of the amalgam
[R;Si] and if Si/Ti and Ti/R are all right flat R-modules, then the canonical
map

∏∗
R Ti →

∏∗
R Si is one-to-one and

∏∗
R Si/

∏∗
R Ti and

∏∗
R Ti/R are

again right flat.
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We say that a ring R is a (weak, strong) amalgamation base if every amal-
gam with R as core can be (weakly, strongly) embedded. It was shown in [4,
Theorem 5.9] that R is an amalgamation base if and only if for every ring S
containing R as a subring, the inclusion R→ S is a pure R-monomorphism.
We call such rings R absolutely extendable. In particular (von Neumann)
regular rings are amalgamation bases ([1, Theorem 4.7], [4, Theorem 3.4]).

Let us now define a ring R to be a perfect amalgamation base if

1. R is an amalgamation base, and
2. whenever [R;Ti] is an amalgam of subrings of the amalgam [R;Si]

then
∏∗
R Ti →

∏∗
R Si is one-to-one.

It is clear from the above remarks and from the above theorem that if R
is a regular ring then R is a perfect amalgamation base. We aim to prove
that when R is commutative the converse is also true. First, if R is a subring
of a ring S, we say that (R,S) is a perfect amalgamation pair if

1. every amalgam of the form [R;S;S′] is embeddable (i.e. (R,S) is an
amalgamation pair), and

2. whenever [R;T, T ′] is an amalgam of subrings of the amalgam [R;S, S′]
then the map T ∗R T ′ → S ∗R S′ is one-to-one.

It was proved in [1, Theorem 5.1] that if condition 1 holds, then R must
be absolutely extendable.

Theorem 3.5. If R is commutative and (R,S) is a perfect amalgamation
pair , then S is flat.

P r o o f. Let f : X → Y be a left R-monomorphism and let T ′ and S′ be
the tensor algebras over X and Y respectively. We can clearly consider T ′

as a subring of S′ and so we have an amalgam [R;S′, S] with an amalgam
of subrings [R;T ′, S]. By assumption then, T ′ ∗R S → S′ ∗R S is one-to-one.
Now R → S and R → T ′ are both pure, by the above remarks, and so by
Theorems 1.2 and 3.1, it follows that T ′ ⊗ S → S′ ⊗ S is one-to-one. Since
X ⊗ S is a direct summand of T ′ ⊗ S and Y ⊗ S is a direct summand of
S′⊗S, it is then straightforward to deduce that X⊗S → Y ⊗S is one-to-one
as required.

We can now deduce, from [4, Lemma 3.3],

Theorem 3.6. A commutative ring is a perfect amalgamation base if and
only if it is regular.
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