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ANALYTIC SOLUTIONS OF A SECOND-ORDER

FUNCTIONAL DIFFERENTIAL EQUATION WITH

A STATE DERIVATIVE DEPENDENT DELAY

BY

JIAN-GUO S I AND XIN-PING WANG (BINZHOU)

Abstract. This paper is concerned with a second-order functional differential equa-
tion of the form x′′(z)=x(az + bx′(z)) with the distinctive feature that the argument of
the unknown function depends on the state derivative. An existence theorem is established
for analytic solutions and systematic methods for deriving explicit solutions are also given.

1. Introduction. Functional differential equations of the form

x′(t) = f(x(σ(t)))

have been studied by many authors. However, when the delay function σ(t)
is state dependent, σ(t) = x(t), relatively little is known. In [1], [3], [4],
analytic solutions of the state dependent functional differential equations

x′(z) = x[m](z)

and

x′(z) = x(az + bx(z))

are found. In this paper, we will be concerned with analytic solutions of the
second-order functional differential equation

(1) x′′(z) = x(az + bx′(z)),

where a and b 6= 0 are complex numbers. A distinctive feature of (1) is that
the argument of the unknown function depends on the state derivative. In
order to construct analytic solutions of (1) in a systematic manner, we first
let

(2) y(z) = az + bx′(z).

Then for any number z0, we have

(3) x(z) = x(z0) +
1

b

z\
z0

(y(s)− as)ds
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and so

x(y(z)) = x(z0) +
1

b

y(z)\
z0

(y(s)− as)ds.

Therefore, in view of (1) and x′′(z) = 1
b
(y′(z)− a), we have

(4)
1

b
(y′(z) − a) = x(z0) +

1

b

y(z)\
z0

(y(s)− as)ds.

If z0 is a fixed point of y(z), i.e., y(z0) = z0, we see that

1

b
(y′(z0)− a) = x(z0) +

1

b

y(z0)\
z0

(y(s)− as)ds,

or

(5) x(z0) =
1

b
(y′(z0)− a).

Furthermore, differentiating both sides of (4) with respect to z, we obtain

(6) y′′(z) = [y(y(z)) − ay(z)]y′(z).

2.Analytic solutions of (6). To find analytic solutions of (6), we first
seek an analytic solution g(z) of the auxiliary equation

(7) αg′′(αz)g′(z) = g′(αz)g′′(z) + (g′(z))2g′(αz)[g(α2z)− ag(αz)]

satisfying the initial value conditions

(8) g(0) = µ, g′(0) = η 6= 0,

where µ, η are complex numbers, and α satisfies either

(H1) 0 < |α| < 1; or

(H2) |α| = 1, α is not a root of unity, and

log
1

|αn − 1|
≤ T log n, n = 2, 3, . . . ,

for some positive constant T. Then we show that (6) has an analytic solution
of the form

(9) y(z) = g(αg−1(z))

in a neighborhood of µ. We begin with the following preparatory lemma the
proof of which can be found in [2, Chapter 6].

Lemma 1. Assume that (H2) holds. Then there is a positive number δ

such that |αn − 1|
−1

< (2n)δ for n = 1, 2, . . . Furthermore, the sequence
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{dn}
∞

n=1 defined by d1 = 1 and

dn =
1

|αn−1 − 1|
max

n=n1+...+nt

0<n1≤...≤nt, t≥2

{dn1
. . . dnt

}, n = 2, 3, . . . ,

satisfies

dn ≤ (25δ+1)
n−1

n−2δ, n = 1, 2, . . .

Lemma 2. Suppose (H1) holds. Then for the initial value conditions (8),
equation (7) has an analytic solution of the form

(10) g(z) = µ+ ηz +

∞
∑

n=2

bnz
n

in a neighborhood of the origin.

P r o o f. Rewrite (7) in the form

αg′′(αz)g′(z)− g′(αz)g′′(z)

(g′(z))2
= g′(αz)[g(α2z)− ag(αz)],

or
(

g′(αz)

g′(z)

)′

= g′(αz)[g(α2z)− ag(αz)].

Therefore, in view of g′(0) = η 6= 0, we have

(11) g′(αz) = g′(z)
[

1 +

z\
0

g′(αs)(g(α2s)− ag(αs)) ds
]

.

We now seek a solution of (7) in the form of a power series (10). By
defining b0 = µ and b1 = η and then substituting (10) into (11), we see that
the sequence {bn}

∞
n=2 is successively determined by the condition

(12) (αn+1 − 1)(n + 2)bn+2

=

n
∑

k=0

n−k
∑

j=0

(k + 1)(j + 1)(α2(n−k)−j − aαn−k)

n− k + 1
bk+1bj+1bn−k−j, n = 0, 1, . . . ,

in a unique manner. We need to show that the resulting power series (10)
converges in a neighborhood of the origin. First of all, note that

∣

∣

∣

∣

(k + 1)(j + 1)(α2(n−k)−j − aαn−k)

(n+ 2)(n − k + 1)(αn+1 − 1)

∣

∣

∣

∣

≤
1 + |a|

|αn+1 − 1|
≤ M

for some positive number M, thus if we define a sequence {Bn}
∞
n=0 by B0 =

|µ|, B1 = |η| and

Bn+2 = M
n
∑

k=0

n−k
∑

j=0

Bk+1Bj+1Bn−k−j, n = 0, 1, . . . ,
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then in view of (12),

|bn| ≤ Bn, n = 0, 1, . . .

Now if we define

(13) G(z) =

∞
∑

n=0

Bnz
n,

then

G2(z) =
(

|µ|+

∞
∑

n=0

Bn+1z
n+1

)(

∞
∑

n=0

Bnz
n
)

= |µ|
∞
∑

n=0

Bnz
n +

∞
∑

n=0

(

n
∑

k=0

Bk+1Bn−k

)

zn+1,

and

G3(z) =
(

|µ|+

∞
∑

n=0

Bn+1z
n+1

)(

|µ|

∞
∑

n=0

Bnz
n +

∞
∑

n=0

(

n
∑

k=0

Bk+1Bn−k

)

zn+1
)

= |µ|
2

∞
∑

n=0

Bnz
n + 2|µ|

∞
∑

n=0

(

n
∑

k=0

Bk+1Bn−k

)

zn+1

+

∞
∑

n=0

(

n
∑

k=0

n−k
∑

j=0

Bk+1Bj+1Bn−k−j

)

zn+2

= |µ|
2
G(z) + 2|µ|(G2(z)− |µ|G(z)) +

1

M

∞
∑

n=0

Bn+2z
n+2

= |µ|2G(z) + 2|µ|(G2(z)− |µ|G(z)) +
1

M
(G(z) − |µ| − |η|z)

= 2|µ|G2(z) +

(

1

M
− |µ|2

)

G(z)−
1

M
(|η|z + |µ|),

that is,

(14) G3(z) − 2|µ|G2(z)−

(

1

M
− |µ|2

)

G(z) +
1

M
(|η|z + |µ|) = 0.

Let

R(z, ω) = ω3 − 2|µ|ω2 −

(

1

M
− |µ|2

)

ω +
1

M
(|η|z + |µ|)

for (z, ω) from a neighborhood of (0, |µ|). Since R(0, |µ|) = 0 and R′
ω(0, |µ|)

=−1/M 6=0, there exists a unique function ω(z), analytic in a neighborhood
of zero, such that ω(0) = |µ|, ω′(0) = |η| and R(z, ω(z)) = 0. By (13) and
(14), we have G(z) = ω(z). It follows that the power series (13), and hence
also (10), converges in a neighborhood of the origin. The proof is complete.
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Lemma 3. Suppose (H2) holds. Then if 0 < |η| ≤ 1, equation (7) has an
analytic solution of the form (10) in a neighborhood of the origin.

P r o o f. As in the proof of Lemma 2, we seek a power series solution of
the form (10). Set b0 = µ and b1 = η. Then (12) again holds so that

(15) |bn+2| ≤
1 + |a|

|αn+1 − 1|

n
∑

k=0

n−k
∑

j=0

|bk+1| · |bj+1| · |bn−k−j |, n = 0, 1, . . .

Let us now consider the equation

(16) Q(z, ω) = ω3 − 2|µ|ω2 −

(

1

1 + |a|
− |µ|2

)

ω +
1

1 + |a|
(z + |µ|) = 0

for (z, ω) from a neighborhood of (0, |µ|). Since Q(0, |µ|) = 0 and Q′
ω(0, |µ|)

= −1/(1 + |a|) 6= 0, there is a unique function ω(z), analytic in a neighbor-
hood of zero, such that ω(0) = |µ|, ω′(0) = 1 and Q(z, ω(z)) = 0. Now if

(17) ω(z) = |µ|+ z +

∞
∑

n=2

Cnz
n,

where the coefficient sequence {Cn}
∞
n=0 satisfies C0 = |µ|, C1 = 1 and

(18) Cn+2 = (1 + |a|)

n
∑

k=0

n−k
∑

j=0

Ck+1Cj+1Cn−k−j, n = 0, 1, . . . ,

then

ω2(z) =
(

|µ|+
∞
∑

n=0

Cn+1z
n+1

)(

∞
∑

n=0

Cnz
n
)

= |µ|

∞
∑

n=0

Cnz
n +

∞
∑

n=0

(

n
∑

k=0

Ck+1Cn−k

)

zn+1,

and

ω3(z) =
(

|µ|+

∞
∑

n=0

Cn+1z
n+1

)(

|µ|

∞
∑

n=0

Cnz
n +

∞
∑

n=0

(

n
∑

k=0

Ck+1Cn−k

)

zn+1
)

= |µ|2
∞
∑

n=0

Cnz
n + 2|µ|

∞
∑

n=0

(

n
∑

k=0

Ck+1Cn−k

)

zn+1

+
∞
∑

n=0

(

n
∑

k=0

n−k
∑

j=0

Ck+1Cj+1Cn−k−j

)

zn+2

= |µ|2ω(z) + 2|µ|(ω2(z)− |µ|ω(z)) +
1

1 + |a|

∞
∑

n=0

Cn+2z
n+2

= |µ|
2
ω(z) + 2|µ|(ω2(z)− |µ|ω(z)) +

1

1 + |a|
(ω(z) − |µ| − z)
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= 2|µ|ω2(z) +

(

1

1 + |a|
− |µ|2

)

ω(z)−
1

1 + |a|
(z + |µ|),

that is, ω(z) satisfies the equation (16). It follows that the power series (17)
converges in a neighborhood of zero, and there is a positive constant T such
that

(19) Cn < Tn, n = 1, 2, . . .

Now by induction, we prove that

|bn| ≤ Cndn, n = 1, 2, . . . ,

where the sequence {dn}
∞
n=1 is defined in Lemma 1. In fact,

|b1| = |η| ≤ 1 = C1d1,

|b2| = (1 + |a|)|α − 1|−1|b1| · |b1| · |b0|

≤ (1 + |a|)|α − 1|−1C1d1 · C1d1 · C0

= C2|α− 1|−1 max
n1+n2=2
0<n1≤n2

{dn1
dn2

}

= C2d2.

Assume that the above inequality holds for n = 1, . . . ,m. Then

|bm+1| ≤ (1 + |a|)|αm − 1|−1
m−1
∑

k=0

m−1−k
∑

j=0

|bk+1| · |bj+1| · |bm−1−k−j|

= (1 + |a|)|αm − 1|−1
(

m−1
∑

k=0

|bk+1| · |bm−k| · |b0|

+

m−2
∑

k=0

m−2−k
∑

j=0

|bk+1| · |bj+1| · |bm−1−k−j|
)

≤ (1 + |a|)|αm − 1|−1
(

m−1
∑

k=0

Ck+1dk+1Cm−kdm−kC0

+
m−2
∑

k=0

m−2−k
∑

j=0

Ck+1dk+1Cj+1dj+1Cm−1−k−jdm−1−k−j

)

≤ (1 + |a|)|αm − 1|−1 max
n1+...+nt=m+1
0<n1≤...≤nt, t≥2

{dn1
. . . dnt

}

×
(

m−1
∑

k=0

Ck+1Cm−kC0 +

m−2
∑

k=0

m−2−k
∑

j=0

Ck+1Cj+1Cm−1−k−j

)

= Cm+1dm+1.
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as desired. In view of (19) and Lemma 1, we finally see that

|bn| ≤ Tn(25δ+1)n−1n−2δ, n = 1, 2, . . . ,

which shows that the power series (10) converges for

|z| <
1

T25δ+1
.

The proof is complete.

Theorem. Suppose the conditions of Lemma 2 or Lemma 3 are satis-

fied. Then equation (6) has an analytic solution g(z) of the form (9) in a

neighborhood of the number µ, where g(z) is an analytic solution of (7).

P r o o f. In view of Lemmas 2 and 3, we may find a sequence {bn}
∞
n=2

such that the function g(z) of the form (10) is an analytic solution of (7) in
a neighborhood of the origin. Since g′(0) = η 6= 0, the function g−1(z) is
analytic in a neighborhood of g(0) = µ. If we now define y(z) by means of
(9), then

y′(z) = αg′(αg−1(z))(g−1(z))′ =
αg′(αg−1(z))

g′(g−1(z))
,

y′′(z) =
α2g′′(αg−1(z)) − αg′(αg−1(z))g′′(g−1(z)) · 1

g′(g−1(z))

(g′(g−1(z)))2

=
α[αg′′(αg−1(z))g′(g−1(z)) − g′(αg−1(z))g′′(g−1(z))]

[g′(g−1(z))]3

=
α{(g′(g−1(z)))2g′(αg−1(z))[g(α2g−1(z)) − ag(αg−1(z))]}

[g′(g−1(z))]3

=
αg′(αg−1(z))[g(α2g−1(z)) − ag(αg−1(z))]

g′(g−1(z))
,

and

[y(y(z)) − ay(z)]y′(z) = [g(α2g−1(z)) − ag(αg−1(z))]
αg′(αg−1(z))

g′(g−1(z))

=
αg′(αg−1(z))[g(α2g−1(z)) − ag(αg−1(z))]

g′(g−1(z))

as required. The proof is complete.

3. Analytic solutions of (1) via (6). In the last section, we have
shown that under the conditions of Lemma 2 or Lemma 3, equation (6) has
an analytic solution y(z) = g(αg−1(z)) in a neighborhood of the number
µ, where g is an analytic solution of (7). Since the function g(z) in (10)
can be determined by (12), it is possible to calculate, at least in theory, the
explicit form of y(z), an analytic solution of (1), in a neighborhood of the
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fixed point µ of y(z) by means of (3) and (5). However, knowing that an
analytic solution of (1) exists, we can take an alternative route as follows.
Assume that x(z) is of the form

x(z) = x(µ) + x′(µ)(z − µ) +
x′′(µ)

2!
(z − µ) + . . . ;

we need to determine the derivatives x(n)(µ), n = 0, 1, . . . First of all, in
view of (5) and (2), we have

x(µ) =
1

b
(y′(µ)− a) =

1

b

(

αg′(αg−1(µ))

g′(g−1(µ))
− a

)

=
α− a

b

and

x′(µ) =
1

b
(y(µ)− aµ) =

(1− a)µ

b
,

respectively. Furthermore,

x′′(µ) = x(aµ + bx′(µ)) = x

(

aµ+ b
(1− a)µ

b

)

= x(µ) =
α− a

b
.

Next by calculating the derivatives of both sides of (1), we obtain succes-
sively

x′′′(z) = x′(az + bx′(z))(a + bx′′(z)),

x(4)(z) = x′′(az + bx′(z))(a + bx′′(z))2 + x′(az + bx′(z))(bx′′(z)),

so that

x′′′(µ) = x′(aµ+ bx′(µ))(a+ bx′′(µ)) = αx′(µ) =
αµ(1− a)

b
,

x(4)(µ) = x′′(µ)α2 + x′(µ)[αµ(1 − a)]

=
α− a

b
· α2 +

(1− a)µ

b
(αµ(1− a))

=
α

b
[(α− a)α+ ((1− a)µ)2].

In general, we can show by induction that

(x(az + bx′(z)))(m)

=

m
∑

i=1

Pim(a+ bx′′(z), bx′′′(z), . . . , bx(m+1)(z))x(i)(az + bx′(z)),

where m = 1, 2, . . . and Pim is a polynomial with nonnegative coefficients.
Hence

x(m+2)(µ) =

m
∑

i=1

Pim(a+ bx′′(µ), bx′′′(µ), . . . , bx(m+1)(µ))x(i)(µ) =: Γm
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for m = 1, 2, . . . It is then easy to write out the explicit form of our solution
x(z):

x(z) =
α− a

b
+

(1− a)µ

b
(z − µ) +

α− a

2!b
(z − µ)2

+
αµ(1− a)

3!b
(z − µ)3 +

α

4!b
[(α− a)α+ ((1− a)µ)2](z − µ)4

+

∞
∑

m=3

Γm

(m+ 2)!
(z − µ)m+2.
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