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1. Introduction. In this paper we consider the global motion of a drop
of a viscous barotropic fluid in the general case, i.e. without assuming any
conditions on the form of the pressure p = p(p). Here ¢ = o(z,t) (where
x € 4, t €[0,T], 2, C R?is a bounded domain of the drop at time t) is
the density of the drop.

Next, let v = v(z,t) (v = (v;)i=1,2,3) denote the velocity of the fluid,
f = f(z,t) the external force field per unit mass, p and v the constant
viscosity coefficients, and pg the external (constant) pressure. Then the mo-

tion of the drop is described by the following system of equations (see [2,
Chs. 1, 2]):

olve + (v-V)v] =divT(v,p) = of in !NZT,

ot + div(ov) =0 in O,
(1.1) Tn = —pon on ST,
_ b T
vem=— on S*,
IVl
oli=0 = 00,  V|t=0 = Vo in (2,

where QT = UtE(O,T) Qt X {t}, ST = UtE(O,T) St X {t}, St = 60,5, ¢($, t) =0
describes S; (at least locally), 7 is the unit outward vector normal to the
boundary, i.e. m = V¢/|Ve|, and 2 = 2|;=0 = 20. In (1.1), T = T(v,p) =
{Tij}i,jzl,gg, = {—péij +/L(’Ui1j +'szi) + (l/— ,u)6ij div U}i,j:1,273 is the stress
tensor. Moreover, we assume v > %u > 0.

Let the domain 2 be given. Then by (1.1)4, 2 = {x € R3 : 2 =
x(&,t), & € 2}, where x = x(,t) is the solution of the Cauchy problem
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(12) a = ’U(SC,t), z|t:0 = 5 € ‘Qv 5 = (51552553)'
Hence, we obtain the following relation between the Eulerian x and the

Lagrangian £ coordinates of the same fluid particle:

t

(1.3) v =&+ \ule ) dt' = X, (&, 0),

0
where u(€,t) = v(X,(§,t),t). Moreover, by (1.1)4, St = {x : @ = z(&,¢), £ €
S =00}.

By the continuity equation (1.1) and the kinematic condition (1.1)4 the
total mass is conserved, i.e.

(1.4) | oz, tyde = | 0o(¢) ds = M1,
2 2

where M is a given constant.

In [15] the local existence of a unique solution is proved for a problem
analogous to (1.1), but describing the motion of a drop of a viscous heat—
conducting fluid.

Let u = u(&,t), n = n(&,t) denote v and p written in Lagrangian coor-
dinates. In the same way as in [15] (see Theorem 4.2 of [15]) one can prove
the local existence of a unique solution (v, g) of problem (1.1) such that
u € AT”Q, n e BT”Q, where .ATyg = AT”QUT, BT”Q = BT”QUT and

(1.5)  Br., = {f € CGT, (i + 1)T; H*(7))
fi € CGT, (i + V)T; H (7)) N Lo (iT, (i + 1)T; H*(£2i7)),
fie € CGT, (i + 1)T; Lo(02)) N Lo (iT, (i + V)T H (2i7))},
(1.6) At = Br.g,e N La(iT, (i + 1)T; H*(2i7)),

1 € NU{0}, T < T, where T, > 0 is a certain constant.
The aim of this paper is to prove the existence of a global-in-time solu-
tion of problem (1.1) near a constant state. Consider the equation

(1.7) p(e) = po,

where g € Ry, p € C3(R,), and p’ > 0.
We introduce the following definition of a constant state.

DEFINITION 1.1. Let f = 0. Then by a constant (equilibrium) state we
mean a solution (v, o) of problem (1.1) such that v = 0, ¢ = g, and {2y = £2.
for t > 0, where g, is a solution of (1.7) and |§2.| = M/g. (|£2.] = vol £2.).

First, in Section 2 we derive a differential inequality (2.58) which enables
extending the local solution of (1.1) step by step from the interval [0,7] to
[0,00). To prove the global existence we also use Lemma 2.1, which gives
an energy estimate (2.8), and Lemmas 3.3-3.4. The above lemmas yield in
particular global estimates for [|v]|7, o,y and [[po|7,(q,) (Where p, = p—po),
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which are used in the proofs of Lemma 3.4 and Theorem 3.9, the main result
of the paper.

The global motion of a fluid described by (1.1) has been considered
earlier in papers [7] and [17].

In [17] the global existence for problem (1.1) is proved for a special form
of p = p(0):

(1.8) p = ago”,

where ag > 0 and o > 0 are constants. The global solution obtained in [17]
is more regular than the one obtained in this paper.

A result analogous to that of [17] is proved (under assumption (1.8)) in
[18] for the fluid bounded by a free boundary the shape of which is governed
by surface tension.

Paper [7] of V. A. Solonnikov and A. Tani is concerned with problem (1.1)
with the boundary condition T — o Hm = 0 (where H is the double mean
curvature of Sy, and o > 0 is the constant coefficient of surface tension).
In [7] the existence of a solution is proved in some anisotropic Sobolev—
Slobodetskii spaces; it is a little less regular than ours. To prove the local
existence the authors of [7] apply potential techniques.

Both in [17] and in [7] the energy conservation law is used in order to
derive a global estimate for [|v]|7, g, -

Papers [8]-[10] are concerned with the free boundary problem for a vis-
cous barotropic self-gravitating fluid with p of the form (1.8).

Next, papers [11]-[14] are devoted to the free boundary problem for a vis-
cous heat-conducting fluid under the assumption that the internal energy e
has a special form:

£ = aOQa + h(Qa 9)3

where ag > 0, a > 0, h(p,0) > h. > 0; ag, @ and h, are constants.

The free boundary problem for a viscous incompressible fluid was ex-
amined by V. A. Solonnikov in [3]-[6].

Finally, we present the notation used in the paper. We denote by || - ||;.¢
(where I > 0, @ C R3) the norms in the Sobolev spaces H'(Q), and by
IHQ) (I >0, k>0, Q C R?) the space of functions u = u(z,t) (v € Q,
t€(0,7), T > 0) with the norm

lull pr @) = > 0julli-iq = lulik.g-
i<i—k

2. Differential inequality. Assume that the existence of a sufficiently
smooth local solution of problem (1.1) has been proved and let

(2.1) f=o.
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In this section we obtain a special differential inequality which enables us
to prove the global existence. To get the inequality we consider the motion
near the constant state. Let

(2.2) Po =P = Do, 0o =0~ 0Oc,
where g, is introduced in Definition 1.1. Then problem (1.1) takes the form

o[ve + (v- V)v] = divT(v,ps) =0 in £2, t e (0,7),

(2 3) Qot + le(Q’U) =0 in .Qt, t e (O,T),
' T(v,ps)n =0 on S, t€(0,7),
0o lt=0 = 060 = 00 — Qc, V|t=0 = vo, in §2.

In the sequel we use the following Taylor formula for p,:

1
(2.4) po = (0= 0) \P/(ec + 5(0 — 00)) ds = pros,
0

where the function p; is positive.
Now, let 0. and o* be positive constants such that

(2.5) 0. < o< " forxe ), tcl0,T)].

In the lemmas below we denote by ¢ small constants, by co <1 a positive
constant depending on u, v, and by ¢ a positive constants depending on T’
(the time of local existence), o, 0%, SB Hv||§7nt/ dt', ||S||5/2, on the parameters
which guarantee the existence of the inverse transformation to x = x(&,t)
and on the constants of imbedding theorems and Korn inqualities. We do
not distinguish different €’s or ¢’s.

We underline that all the estimates below are obtained under the as-
sumption that there exists a local-in-time solution of problem (1.1), so all
the quantities ., 0*, T, Sg ||v|\§,9t, dt',||S|5/2 are estimated by the data func-
tions. Moreover, the existence of the inverse transformation to z = (&, t) is
guaranteed by the estimates for the local solution (see [15]).

Now, assume the relations

(2.6) S ovdr =0,
24
(2.7) S ov-ndxr =0,
2

where 7 = a4+ b X x and a and b are arbitrary vectors.

LEMMA 2.1. Let (v, 05) be a sufficiently smooth solution of (2.3). Then
1d
289 g | (e 2] de sl < Xt X
2

where X1 = ||[v]3 o, + lles]13 0, -
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Proof. Multiplying (2.3); by v, integrating over 2; and using the con-
tinuity equation (2.3)2, boundary condition (2.3)4 and (2.4) we obtain

1d . .
29) 55V e?de+ EBo (0) + (v = wlldivel g, - | progdivede =0,
2 024

where Ep, (v) = S-Qt, Eijd(”iw;‘ + vz, )% dz.
In [13] it is proved that

! .
5B, (v) + (v = wdivellg o, > cBa, (v),

where ¢ > 0 is a constant.
Next, by the continuity equation (2.3)2 we have

. 1d ¢ pio?
(2.10) — Splggdlvvdx =59 S ’ dx + J,
2 024
where
(2.11) 1 < =(lontllZ 0 + 10112 ) + X201+ X1).

Moreover, in view of assumptions (2.6) and (2.7), Lemma 5.2 of [17]
yields

(2.12) 0130, < (B, (v) + lloall 0, I101[5,0,)
and by the continuity equation (2.3)a,

(2.13) lootlf. 0, < cllv]

Taking into account (2.9)—(2.13) we get estimate (2.8). m
LEMMA 2.2. Let (v, 05) be a sufficiently smooth solution of (2.3). Then

1o, T cllvlli g llesl3 o,

1d Poo
214) oo | (e + 222, ) dao+ co(llvell3 g, + lloot 3 0,)
2 dt b 0

< cllvllf o, + VP (1 + Xa),

where
t
(2.15) Xy = |0 0.0, +lesBB0.0, + | IVI13,0, ¢,
0
t
(2.16) Vi = Xs — {||v]3 0, dt’"
0

Proof. Differentiating (2.3); with respect to ¢, multiplying by v; and
integrating over (2 yields
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(2.17) | ov? dz+ £ Eq, (v) + (v — w)[diver]ly g,

2

N | —
SR

- S PooOot div v do < CY12(1 + XQ),
24

where we have used the boundary condition (2.3)4.
By Lemma 5.3 of [17] we have the following Korn type inequality:

(2.18) lnll? g, < e[Ee, (vr) + Y2(1 4+ V)]

Finally, using the continuity equation (2.3)s we get

. 1d ¢ po
(2.19) — S Doolot div vy do = o S 799?,,5 dz + J,
024 2
where
(2.20) 1< 2wl + lowt 2.0 + V2L +13).

In view of inequalities (2.17)—(2.20) and (2.13) we obtain (2.14). =

Lemmas 2.1 and 2.2 yield

LEMMA 2.3. Let (v, 05) be a sufficiently smooth solution of (2.3). Then
(221 14 | le@? +v}) + DLz 4 Poog? |y

2dtQ o ° o ¢
+eolllvllf o, + 0ellF o, + lootllf,,) < ¥ (1 + Xa),

where Xo and Y1 are given by (2.15) and (2.16), respectively.

Next, we obtain

LEMMA 2.4. Let v, 0, be a sufficiently smooth solution of (2.3). Then

N~

d P
V(o4 P22 ) do kol + w0
2

< c(llvlf g, + ol 0,) + eX2Ya(1 + X3),
where Xs is given by (2.15) and

(2.22) Yo = [vl3 10, + lleall3 o, + lleatll3 0, + lleat i o,

The above lemma can be proved in the same way as Lemmas 2.1 and
2.2. To estimate Eq, (vy) we use here Lemma 5.4 of [17].

In order to obtain estimates for derivatives with respect to x we rewrite
problem (2.3) in Lagrangian coordinates. We have
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nuit — V, Tuij(u,po) =0 (i =1,2,3) in QT =02 x(0,T),

o vu “u=0 i ‘QT,
(2.23) Mot TIVuH e
T.(u,ps)y =0 on St =5 x(0,T),
uli=0 = Vo,  Nolt=0 = 000, in §2,

where n(&,t) = o(Xu(&, 1), 1), u(§,t) = v(Xu(£, 1), 1) (Xu is given by (1.3)),
No =1 — Oe, 060 = 00 — Ocs Lu(U;Po) = {Tuij(u, po)}ij=1,23 = {—Podij +
/L(axlfkagku] =+ 8zj§k8£kui) =+ (I/ — ,LL)(S” leu u}iﬁjzlﬁgyg, leu u = Vu U =
02,810, iy, Vi = (§ke, Og, )i=1,2,3, Vu; = Eka,; Ok, Oz, &k are the elements of
the matrix &, which is inverse to x¢ = I + Sg ue(§, ) dt', I = {0ij}ij=123
is the unit matrix, 7, = n(Xy(£,1),t) = Vo0(2,1)/|V2d(2, )| a=x, e,t) (St
is determined at least locally by the equation ¢(x,t) = 0) and summation
over repeated indices is assumed.

By (2.4) we have p, = p17,, where p1 = p1(n).

Now, introduce a partition of unity ({§2;},{¢}), 2 = U, ;. Let 2 be
one of the £2;’s and ¢(&) = ¢(€) be the corresponding function. If {2 is an
interior subdomain then let & be a set such that & C £ and ¢(¢) = 1 for

§ € W. Otherwise, we assume that ans £0,5NS #0,m C 2. Take any
Be®mnS =S5 and introduce local coordinates {y} associated with {¢} by

(2.24) e = (& — B,  ask=ni(B), k=1,2,3,

where {ay} is a constant orthogonal matrix such that S is determined by
the equation y3 = F(y1,y2), F € H%/? and

Q={y:lyl<d i=12 Fy)<ys <F)+d, v = (y1.92)}.

Next, we introduce u’, ', . by

i (O)lezey  (=1,2,3),  0'(y) =0(E)]e=ey):
(y) — Oe,

U;(?J) = Oy
n,(y) =1’

where £ = £(y) is the inverse transformation to (2.24).
Next, we introduce new variables by

zi=y (1=1,2), z3=y3—F(y), yei,

which will be denoted by z = &(y) (where F € H3 is an extension of F).
Let

(225) Q=0(Q)={z:|z|<d i=1,2, 0<z3<d} and §=a(9).

Define

~ o~

U(z) = v W)ly=2-1(2), 02 =0 W)ly=a-1(),  To(2) =7(2) = e
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Set Vi =&z, %6, Vi le=y—1(2), where x(§) =@(¥(§)) and y =(§) is descri-
bed by (2.24). We also introduce the following notation:

u(§) = u(§)¢(€), (&) =n(€)CE), Ms(§) =ns(£)C(E)
for £ € 02, 2NS =0 and

U(z) = (2)C(2), A(z) =(2)C(2), Ta(2) = 0r(2)C(2)
for z € Q2 = @(f?), ans # (b, where Z(z) = ((E)le=x—1(2)-

Using the above notation we rewrite problem (2.23) in the following form
in an interior subdomain:

nﬂit—VUjTuij(ﬂ,ﬁg) = —Vuij-j (’U,, §)7Tuij(u,pg)vujg = kl, ’L:1, 2, 3,
Not +NMVy -t =nu-Vy( = ks,

where po =po ¢ and By, (u, Q) ={Buij (u, () }ij=1,2,3 = {(wiVu, (+1u; Ve, ) +
(v — p)diju - VyClij=123-
In boundary subdomains we have
(2:26) 7o +7V A =77V = ks,
T(aaﬁd)ﬁ = k5a

where ks; = Bij(@,O)n;, V = (V;)j=1.23 and T and B indicate that the
operator V,, is replaced by V.

In Lemmas 2.5-2.7 below we denote 21, 22, by 7, i.e. 7 = (21,22), and
z3 by n.

LEMMA 2.5. Let (v, 05) be a sufficiently smooth solution of (2.3). Then

1d Po
20 55 | (ed+ 220 ) dot collulBo, + lmslF o)
2

< c(llvlf o, + lvellf o, + lootll§ o, + IPollo.e,) + X3 (1 + Xz),

. . 3 3
where Xo is given by (2.15), v2 = Zm:l vfmj, and 0%, =37, ngi-

Proof. First, we consider the following elliptic problem:
,uViu + Vvuvu N panvun = Nut in Qa
(2.28) div, u = div, u in £,
Tw(u, po)Ty, =0 on S.

Since the complementarity condition for (2.28) is satisfied we can apply to
problem (2.28) the Agmon—Douglis—Nirenberg theory (see [1]). Thus, we get

(2:29) |lull3 o+ In0l7 o < cllnueld o + lldive ullf o)
< elluell§ o + Idivull} o +eX3(2)(1+ X2(92))),



NONSTATIONARY MOTION OF FLUID 291

where we have used the fact that |[div, u — divull} , < ellull3 , (e > 0is
sufficiently small), and

t

(2.30) Xo(2) = [ul3 0,0 + 030,00 + | [ull} o dt'.
0

In view of (2.29) we see that in order to obtain inequality (2.27) it
remains to get appropriate estimates for ||divul|? ;, and for 14 S (ov2 +
(Pop/0)0%,) dx. To do this, consider first boundary subdomains. D1fferen—
tiate (2.26); with respect to 7, multiply the result by @, J (J is the Jacobian
of the transformation z = (z)) and integrate over £2. Hence using the Korn
inequality and equation (2.26)s we obtain

(2.31) %di | 72 dz + collr |} 5
(%}
— (@ po)) it T dz = \ 50r V - 10 dz
S 2
<e(lollg 5+ -ll} 5) + el 5 + llpo Il 5)+cX3(2)(1+ Xa(92)),
where

t

3 2
209+|%|;on SHa”;ﬁdt/’ = :Zzﬂm
=1 j=1

0

(232) Xo(R2) = [a]

Using the boundary condition (2.26)5 we have

2.33) = \(T(@5,)R) i J dr = — \(Bi; (@, O)y) i J dr

S S

= [012(Byy @, On )0V 2(@ir ) dr < [T |? 5+ 17 5 + eX3(D),

5

where to use the derivative ai/ % we have to apply the Fourier transformation.
Next,

(234) - Sﬁorvu ‘U dz = — Spa;]\ﬁa'r6 “urJ dz + Ji,
9 Q

where |J1] < 5||ﬁ7||f 5t c||pg||2 5 and

- S~ 1d

(2.35) *S\pagﬁarv-uﬂ]dz: T S 7 2 Jdz+ Ja,
2 9

where

(2.36) 2] < ellitorllg 5 + cll@ll} 5+ cX5(42).

OQ
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Taking into account (2.31), (2.33)—(2.36) and assuming that ¢ is sufficiently
small we obtain

Ld (0, Pons ~ 12
(2.37) % & (nuT + 77707) Jdz+ co||uT||17§
< el I+ el 5+ ol )+ eXE(R)(1+ Xa(8)

Now, applying the operator (u+ 1)V, to (2.26)s, dividing the result by
7, adding to (2.26); and multiplying both sides of the result by Py gives

+v _ ~
(238) H 7,7\ pg’n\vzﬂ]at +p(27;7\Vz-;na

= pigﬁavzﬁ - plpgﬁﬁovzig + pgﬁk&' + Mpgﬁ(v2ai - VZV ' ﬂ)

~ ~ + v PO
+ (1t (Vi = Vo)V i+ B 25 Va (7 V0)

P~ n+v PESY .
= Py Wit — 5 pU;VZmV-u, 1=1,2,3.

Multiplying the normal component of (2.38) by 7,,J and integrating over
{2 we obtain

LdPoy s 712
(239) 55 /S\?naanZ + CO||n0n||07§
2
< (5 +Cd)HannHéﬁ+5||ﬁ0n||(2)7§

Felllirl? 5+ 2 5+ [l o+ o 2 ) + eX3(@)(1+ Xa(@),
where d is from formula (2.25).
Now, we write (2.26); in the form

~

(240) 7/7\’(7“5 - ,LLA’(’ZZ - Z/VZIV cu= Viﬁg’ + kgi - kGi;

where k¢; = (LA + vV .,V - 10) — (uV20; + vV, V - ).
Multiplying the third component of (2.40) by us,,J and integrating over
2 yields

2

(2.41) 25

N | =
SIS

{713, J dz + col[tisnl|
2

< (e einall? g+ eliir |2 5 + 12 5

F IR 5+ [Tonll? 5+ 1962 5) + XB@)(1+ Xa(D)).

For an interior subdomain the following estimate is obtained in the same
way as (2.37):
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(2.42) %% | <na§ + ’%ﬁé)Adg + colll?
< e(llfoell 5 + Neclly )
+e(lull? 5+ Ipolis 0,) + cX3(2) (1 + X2(22),
where
t
(2.43) Xo(2) = |ul? , 5+ Inol] o 5+ Vlull? 5

0

and A is the Jacobian of the transformation z = x(§).
Finally, we have

1d
(2.44) 5 ap VmuEAdE < clull? 5+ ul? ),
Q
where we have used (2.23);.

Going back to the old variables £ in estimates (2.37), (2.39), (2.41) and
summing them and (2.42) over all neighbourhoods of the partition of unity,
using (2.29) and (2.44), assuming that € and d are sufficiently small and
passing to the variables z we obtain (2.27). m

LEMMA 2.6. Let (v, 05) be a sufficiently smooth solution of (2.3). Then

1d
2 dt

b
[ (o2 22202 ) o+ collonlB o, + el )
2

< (ol 6.2,

1o, lowllf o, + lleotlld o, + lIpo]

1o, + lluel

+cXoYo(1+ X3),

where Xo is given by (2.15) and Ya is given by (2.22).

Proof. Differentiating problem (2.28) with respect to ¢ we get the fol-
lowing elliptic problem:

Hviut + ViV - Ut — PonVaullot = Mot + Ngs — V(vuvu),t U

7M(V3),tu erannnatvuna +pan(vu),t7}a =K in £2,
div, uy = divy, ug in £2,
Tu(utapat)ﬁu = _(Tu),t(uapa)ﬁu - Tu(uapa)(ﬁu),t = K2 on S

By the Agmon—Douglis—Nirenberg theory (see [1]) we have the estimate

luill3,0 + notllT,0 < c(IKLlIG o + [1K2lF ), + 1dive uellf o),
where
IK1l5,0 + 1Kz} 0.5 < cllnoclld o + luwll§ o + 1po)15.2)

+ Xa(2)Y2(02)(1 + X3(12)),
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with X5(£2) given by (2.30) and
(2.45) V2(02) = lulz 1 0 + 12

The remaining part of the proof is analogous to that in Lemma 2.5. m

LEMMA 2.7. Let (v, 05) be a sufficiently smooth solution of (2.3). Then

1d Do
210) 55 | (et To2ak ) ot collulB o, + o)

024
< cllvllz.o, + 1vll3 o, + ozl o, + Ipolld 0,)
+ 5||Ut||§,rzt + cXoYa(1 4 X3),

where Xo and Y are given by (2.15) and (2.22), respectively, and

3 3
2 E: 2 2 _ 2: 2
Vpg = ’Uizjxka Oozz = Qo’mjzk'
i,5,k=1 Jk=1

Proof. First, we consider problem (2.28). By the Agmon-Douglis—
Nirenberg theory (see [1]) we have

(2.47) [ullf,0 + 1nal13,0 < e(lluel o + 1divull3 o)
+eXa(R2)Y2(2)(1+ X3(92),

where X5 (£2) and Y>2({2) are given by (2.30) and (2 45) respectively. Thus, to

obtain (2.46) we have to estimate ||divu||3 , and 5% S . (gvfm—l—p"g 02,.)dr.

To do this, consider first boundary subdomains. Differentiate (2 26); twice

with respect to 7, multiply the result by u.,,J and integrate over 0. Using the

Korn inequality, the continuity equation (2.26)2, and the boundary condi-
tion (2.26)3 we get

1d ~~o | Py ~ 2
(2.48) 2dt S (77”7—7— + Tna'r'r Jdz + COlluTTHLﬁ
(9}

~ 2 ~ 2
< (2 g+ lnel2 ) + (12 5+ e 5
+ eXa(2)Y2(2)(1 + X3(2)),
where Xg(f}) is given by (2.32) and

Ya(2) = [l

2 S IR 5 1ol? 5+ ol 5

In the same way we obtain the following estimate in an interior subdomain:

1d DPon ~ ~
(249) 5& S <7’] 55 + "nggg)Ad«f + COHUH;_&'
2

e(lToeelly & + el )

t+elllull} 5+ Inoe? 5+ P2 5) + cXa(2)Ya(2)(1 + X3(2)),

2!2



NONSTATIONARY MOTION OF FLUID 295

where X3((2) is given by (2.43) and

Ya(@) = 02 | 5+ 12 5+ e 2 5+ ol 5
Now, differentiate the third component of (2.38) in 7, multiply the result

by 7MonrJ and integrate over §2 to get
Ld {Pop 2 ~2
(250) 5% S 7770'7’7,7'sz + S pm’{nanﬂ"]dz

~ o~

N [0}

< ellflonr 13 5 + @2 5+ 1817 5 + 170117 5 + P2 5)
+ cd|[al]} 5+ el |} 5+ cXa(QY2(Q)(1+ X3(2)),

where d is from formula (2.25).
In the same way we obtain

Ld (Poy s 2 ~2
(251) 5% /S\?nann‘]d’z + /S\pa_;]\nann‘]dz
2

2

< ellrmnll2 5+ e(ll2 5+ Nl 5+ 1712 5+ lipo

2
0,?2)

tedlfall? 5+ ellinr | 5+ cXa(2)Ya(2)(1 + X3(92)).

Next, differentiating the third component of (2.40) in 7, multiplying by
UsnnrJ and integrating over {2 we have
d ¢ -
7 S nugm«]dz + CO||u3nn‘r||(2)7§

~

9]

(2.52)

N =

< EH’ZI?)nnTHé,ﬁ + 5||ﬂt||§75 + C(WH;ﬁ + HatHiﬁ + Hazr‘rHé,ﬁ
o 12 5 75212 5+ o2 ) + el
XDV (D)(1+ X3(D).
In order to estimate ||(div m"””iﬁ rewrite equation (2.26); in the form
(2.53)  (v+p)Vy, divu = —pu(Au; — V,, diva) + quge — ks
+(pAu; + vV, divu — u@Qﬂi Y VAV )
+p1e Vil + P,V ille,  i=1,2,3,
Differentiating the third component of (2.53) with respect to n gives

(2:54) [[(div @) 12 5 < cllfinmnl2 5+ (112 5+ A2 5 + ) 5

~ ~

Hionll} 5+ 1o llg 5) + e X2(£2)Y2(82).
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To obtain an estimate for HﬂTH; & consider the following elliptic problem:

(255)  uV2u+ vV i = p il = 0+ (01— 2,5)7.VC
+ % ’ @(aa Z) + ’]/f(aa pa) ’ %Z,

.u’

<

U=

= <

(aapa')ﬁ = k5;

where 6'153(@7 §>:{§jBij(av Q) }ti=1,2,3, T(1u, pa)ﬁC: {ﬁ; (U, ps)VjCli=1,2,3-
Differentiating (2.55) with respect to 7 and next using the Agmon-—
Douglis—Nirenberg theory we get

~ 112 ~ 2
(256) (1@l 5+ -l 5

< lirr? 5+ Isnnel2 5+ 132 5 + 1l 5

1ol 5+ a2 ) + eXa(@Ya( @)1 + Xa(82).

Finally, we have

d
(257) 7 VmudeAd < cllull3 g + llu3 o

2

|~

Going back to the old variables & in estimates (2.48), (2.50)—(2.52),
(2.54), (2.56) and summing them and (2.49) over all neighbourhoods of
the partition of unity, using (2.47) and (2.57), assuming that ¢ and d are
sufficiently small and passing to the variables x we obtain (2.46). m

Lemmas 2.1-2.7 and the estimates

leotellt o, < cllvellz.q, + cllleatz o V13,0, + lool3 o, vell3 2,)

and

lootll3,c, < cllvl3 o, + cXaYa(l + X2)

(which follow from equations (2.3)2 and (2.23)q, respectively) imply the
following theorem.

THEOREM 2.8. Let v > +p > 0 and let relations (2.6) and (2.7) be
satisfied. Then for a sufficiently smooth solution (v, 0,) of problem (2.3) we
have

t

+ a0 < o1 (6 + [ ol g, dt')
0

d¢

(2.58) —

t
2
-[1+ (¢+S|\u||§79t/ dt’) }@—l—cﬂ/ fort <T,
0
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where
y i P1
o="\o > DOt | Zolde
2, 0<|a|+i<2 o ?
+ S Poe Z | D20} 0, |* de,
(2.59) 0, ¢ 1<jalri<e
o(t) = 13,0, +1013,0.0,:
B(t) = [vl3 1 0, + losl3.0, + lootll3. o, + lleoulF o,
¥(t) = lIpsll3, 0,
¢i (i =1,2) are positive constants depending on ., 0*, 1, v, SB ||1)H§’Qt/ dt’,
I1S||5/2, T and on the constants of imbedding theorems and Korn inequalities;

co < 1 is a positive constant depending on p and v; and o, and p, are given

by (2.2).

3. Global existence. Assume (2.1) and rewrite problem (1.1) in La-
grangian coordinates as follows (see problem (2.23)):

nug — uV2iu—vV,Vy - u+Vp=0 in 27,

F Ve -u=0 in QT

(3.1) e .
T.(u, p)7ty, = —poTin on S*,

uli=0 =vo,  7N|i=0 = 00, in £2.

The local existence of a solution of problem (3.1) can be proved by the
method of successive approximations (see [15]), taking as a zero step function
the solution u® € A7 o (Ar,q is given by (1.6)) of the following parabolic
problem:

u) —divD(u’) =0 in 0T,
(32) D (u)7o = (p(00) — po)ig  on ST,
u0|t:0 = Vo in .Q,

where D (u®) = {,u(u?gj + u?&) + (v —p)d;jdivul}; j=1 .23 and Ty is the unit
outward vector normal to S.
Assume that

(3.3) 1> 0is a constant such that g. —1 > 0 and 01 < g9 < 02,

where 01 = 0e — [, 02 = 0. + [, and . is given in Definition 1.1.
The function u° satisfies the estimate (see [15], estimate (4.3))

(34) Iy,
< C1(T)(II(p(e0) — po)iol3 /2,5 + lvoll3 o + [ug O)F ¢ + lluz (0)I5 )
< C1(T)(@h(0) + [[vol13 o + [uf (0)IIF o + [[uz (0)]IF, 2) = Ao,
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where C(T) is a positive constant; ¢ > 0 is a constant depending on g1, 02
and on the volume and shape of §2; ¢ is defined in (2.59); u?(0), u?,(0) are
calculated from (3.2); and to obtain Ag in (3.4) we have used (2.4).

Next, define

1
(3.5) Hy = — + || 0ol
01

5.0 1 lvoll3,o + [ue(0)IIF o + [luee (0))]

2
0,02

1 _ ~
< +29(0) + 2] 07 < Ho,
1

where u4(0), u4(0) are calculated from (3.1); ¢ > 0 is a constant depending

on 91, 02; and Hy > 0 is a constant. Then the following theorem holds.

THEOREM 3.1. (see [15, Theorem 4.2]). Assume that go,vo € H?(£2),
00 > 0, u¢(0),ul(0) € H*(£2), ust(0),u(0) € La(£2) (where ug(0), us(0) are
calculated from (3.1)), S € H%?, and p € C*(R2). Let assumption (3.3)
and the following compatibility conditions be satisfied:

(3.6) D (vo)mo = (p(00) — po)o ~ on S.

Assume that Ag < A, where A > 0 is a constant depending also on HO (i.e.
there exists a positive continuous increasing function F = F(ﬁo) satisfying
F(Hy) < A). Then there exists T, > 0 (depending on A) such that for
T < T, there exists a unique solution of (1.1) such thatu € Ar.o,n € Bro
and

(3.7) Iy, < A,

1115, , < ¥1(A),

where Y1 is a positive continuous increasing function of A (Ar o and Br,o
are given by (1.6) and (1.5), respectively).

Now, we shall derive an estimate for the local solution (u, 7, ) of problem
(2.23). Using (3.7) and (3.8) and the interpolation inequality we have

3.9)  IVpollizz.0n + IVPotls 0p + I VDottll§ 00
+sup IVDolls 0 + 1PoTull3 /209 57 + (o) il17 /229 57
+ el (poTiu) 4l 5 + sup [PoTiullf, s

< ' (A,T)(llewoll3,c + llvoll3 2 + llue(0)IF )
+ (e + T (A, T)ull%y .

where )’ and ¢ are positive continuous increasing functions of their argu-
ments, and €., ¢ € (0,1) are sufficiently small constants.
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By estimate (3.9), Lemmas 3.5 and 2.3 of [15] and by Theorem 3.1 the
local solution (u, 7, ) of problem (2.23) satisfies, for sufficiently small € and T,

(310)  ulll. o, + o3,
< (A, T)(leooll3.2 + llvoll3 o + 1 (0)IF ¢ + lluee (0)II5 1)

where 15 is a positive continuous function.
Now, let ¢(t), ¢(t) and &(t) be defined by (2.59). Introduce the spaces

N(t) ={(v, 00) : $(t) < 00},

t

M(t) = {(u, 00) - 6(t) + (') dt’ < oo}.

Notice that (v,0,) € N(t) iff ¢(t) < oo, and (v, 0,) € M(t) iff A(t) +
Sg &(t') dt’ < co. Moreover,

(3.11) do(t) < o(t) < (1),
where ¢/, ¢ > 0 are constants depending on g,, ¢* given by (2.5).

From inequality (3.10) and from the definitions of 9t(¢) and IM(t) it
follows that the local solution satisfies the estimate
t

(3.12) o(t) + | 2(t') dt’ < ¢;6(0),
0
where c3 > 0 is a constant depending on the same quantities as ¢; and ¢y
from Theorem 2.8.
Hence we obtain the following lemma.

LEMMA 3.2. Let (v,0,) € MN(0), S € H2 uf(0) € H'(2), u?,(0) €
Ly(£2) (u is the solution of problem (3.2)), and pe C*(R%). Let assumption
(3.3) and the compatibility condition (3.6) be satisfied. Moreover, assume

(3.13) 3(0) < a,

where a > 0 s sufficiently small. Then the local solution (v, ) of problem
(1.1) 4s such that (v, 05) € M(t) for t < T, where T > 0 is the time of local
existence, and the following estimate holds:

t
o(t) + o) dt’ < cza,
0
where c3 > 0 is a constant depending on the same quantities as ¢; and ca
from Theorem 2.8.

Next, we prove

LEMMA 3.3. Let the assumptions of Lemma 3.2 be satisfied. Then there
exist constants p1 > 1 and ps > 0 (depending on the same quantities as c1



300 E. ZADRZYNSKA AND W. M. ZAJACZKOWSKI

and cq from (2.58)) such that
(3.14) o(t) < 1 d(0)e H2t for t < T,
where T > 0 is the time of local existence.

Proof. Consider inequality (2.58) and assume that a from (3.13) is so
small that

(315) o (¢+§||v|§,9t, av') [1+ (¢+§||v| 2 o dt/ﬂ <2
0 0

Then inequality (2.58) implies
dé 3
(3.16) — +700? < &al|pof g,

Applying the same argument as in the proof of Lemma 6.2 of [17] yields
(317 polld.e, < elllpoelld o, + lvaalld.0,) + c€) V8.0, + vl o, )-

Since [|poxI§.0, < call 0oz 1§, o, inequalities (3.16) and (3.17) imply, for suf-
ficiently small ¢,

3
(3.18) — + 7c0® < es(||vl§ o, + lvell5.q,)-

Now, multiplying (2.21) by a constant cg so large that cocg —c5 > 0 and
¢g > 1, adding to (3.18) and using Lemma 3.2 we obtain

d - 3

+ (cocs — es) (V17 o, + llvellf o, + lleotll5 ,) < erad,

where

J=3 | {@(02+v?)+&@§+@93t da.
2 o 0 0

Since ¢/c” < ¢ < @ and ¢ > J for sufficiently small a (so small that
cra < $¢o), inequality (3.19) implies

d — _
(3.20) %(¢+CGJ)+68(¢+CGJ) <0,

where cg = ¢/ (4c"cg) (¢” > 0 is the constant from (3.11)).
Inequality (3.20) yields (3.14) with p3 =cg+ 1 and p2 = cg. =

By using Lemma 3.3 we prove

LEMMA 3.4. Let the assumptions of Lemma 3.2 be satisfied. Moreover,
assume

(3.21) Co = [lvoll§ 2 + lesolld . < 4,
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where 0,0 = 00 — 0. Then

(3:22) [0l13, 2, + oI5, < coa® +croe11d  for t < T,

X 2
where cg = Zlese(l + cza); ¢ s the constant from inequality (3.11);
and c3 are the constants from Lemma 3.2; @1, po are the constants from
Lemma 3.3; ¢ is the constant from Lemma 2.1 and c19,c11 > 0 are constants

depending on o, 0* such that

1 1 P1
ol o, +lerlo) < 5 | (o0 + a2 ) ds
11 2 Y

< cw(llvlg e, +lleslls,.e,) for t < T
and T > 0 is the time of local existence. Moreover,
(3.23) 1Po115,0, < c12(coa’ + c10¢116),
where c12 > 0 is a constant depending on p, 0+, 0.
Proof. Integrating (2.8) with respect to ¢t over (0,%) (t <T') we get

(3.24)  |lv| 0.2,

6.0, lloo]

t

< cjic sup qﬁ(t')gqﬁ(t') dt' (1+ sup é(t')) + c1pc11Co.
0<t'<t ) 0<t'<t

Using Lemmas 3.2-3.3 and assumption (3.21) we obtain

t
Cga2(1 + 0304) Sei’uﬁ, dt/ + 61001100
0

C11CU1

(325)  |[vlg o, + lleo]

2
0,02, S

< cga® + crpe11d.
Estimate (3.23) follows from (3.22) and (2.4). =

REMARK 3.5. Estimate (3.12) and assumption (3.13) yield

(3.26) ‘ Jute,tyar

T
1/2
< C13T1/2( S lull3.c dtl)
0

< e133(A, TV 20 ? = ¢, TV 2012,

where 13 is a positive continuous function; ¢;3 > 0 is a constant from the
imbedding theorem depending on (2. Hence, relation (1.3) implies that both
the shape and the volume of (2; do not change much for ¢ < T and the
constants ¢; (i = 1,...,12), p; (i = 1,2) (from Lemma 3.3) and ¢ (from
Lemma 3.4) can be chosen independent of time for ¢ < T
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REMARK 3.6. Under assumption (2.1) one can prove the following mo-
mentum conservation law (see [18]):

d
(3.27) 7 !§ ov-ndxr =0,

where n = a + b x x and a, b are arbitrary constant vectors. Moreover,
d

(3.28) 7 S oxdr = S ovdx.
2 2
Assuming
(3.29) [ oovo - mds =0, | augde =0,
2 2

in view of (3.27) and (3.28) we get (2.6) and (2.7), respectively. Condition
(2.6) guarantees that the barycentre of (2, coincides with the origin of coor-
dinates.

Now, we can prove

LEMMA 3.7. Let the assumptions of Lemma 3.2 and estimate (3.22) be
satisfied. Then

(3.30) o) <a for t<T,

where « is sufficiently small (so that (3.15) and (3.32) are satisfied), and
T > 0 is the time of local existence.

Proof. For a so small that (3.15) is satisfied, the differential inequality
(2.58) implies (3.16). Hence by estimate (3.23) of Lemma 3.4 we have
dp 3
d_(tb + ZCQ@ < 62012(69042 + 0100115).
Therefore, since ¢/c” < @ (where ¢” is the constant from inequality (3.11))
we obtain
dp 3co-
(331) d—(f + Zc_lold) < 02012(69042 + 0106115).
Now, assume that t, = inf{t € [0,7] : (t) > a} and consider (3.31) in
the interval (0,t.]. From the definition of . we have ¢(t,) = . Therefore
(3.31) yields

d_(g 300

ar (t*) < —ZEQ + 02012(09042 + 6100115).
Let a and § be so small that
3c
(3.32) 02012(09(12 + 0100115) < Zc_/o/a

Then (d¢/dt)(t.) < 0, a contradiction. Therefore, (3.30) holds. m



NONSTATIONARY MOTION OF FLUID 303

Lemma 3.7 suggests that the solution can be continued to the interval
[T, 2T]. However, to do this we also need the analogous lemma for the so-
lution of (3.2), to have the sum on the right-hand side of (3.4) with initial
condition at T estimated by A.

Set

$1(t) = [ (O0.0. Pi1(t) =" O 10 — B o

where u? is the solution of (3.2).

LEMMA 3.8. Let the assumptions of Lemma 3.7 and (3.21) be satisfied.
Moreover, assume that ¢1(0) < a1, where aq > 0 is a constant. Then if the
constants § from Lemma 3.4 and « are sufficiently small we have

(3.33) O01(t) <ar  fort<T.

Proof. First, we shall obtain a differential inequality similar to (2.58).
Multiplying (3.2); by u°, integrating over {2 and using the boundary condi-
tion (3.2)2 and (2.4) (where p; = p1(00)) we get
1d

.34 -
(3:34) 2dt

S(UO)2 df + gEQ(UO) + Splggoﬁouo d&s = 0,
2 S

where Eq(u®) = {,, ijzl(u?zj +uf,,)? dE.
In view of assumptions (3.29), Lemma 5.2 of [14] and the interpolation
inequality, equality (3.34) yields

(3.35) 5= () dg + col|[u°[3
N

‘|

< clleoollg ollu’ll5 2 +€llecollf @ + c(e)lleoolld . where & € (0,1).

Next, differentiating (3.2); with respect to ¢, multiplying by uY, integra-
ting over {2 and using the Korn inequality we get
1d 042 012 02
(3.36) 52 V(W) de+eollufl o < elluflf o
Q

and from (3.2); we obtain

(3.37) [u?llf. < ellufllf o + ellesol
By (3.36) and (3.37) we have

1d
2dt

1.0+ c@)leslld o + clu’lf o

(3.38)

V)2 dg + col| w3 2 < elloool
0N

t.0+ c©)lesolld o + clu’lF o

In the same way we obtain

1d

(3.39) 5 2 V() &+ collunllf o < clluf]lf o

2
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Now, consider the elliptic problem
—divD (u®) = —u?,
D (u°)7o = (p(0) — po)To-
By the Agmon—Douglis—Nirenberg theory (see [1])

(3.40) [[u’]|3. < clllugllg o + 11u°lI5.2) + €llesoll3.o + c(€)llesolld, -
Moreover,

3.41 1d 10v2 06 < o012 oo

(3.41) 57 V(e)” dE < c(l[u”lli o + luilli o).

2

Using the same argument we get the estimates

(342) 5o () de+ collullB o < el o + B o).
(%}

(3.43) 19§ w2 de < c(lu®l3 0 + 14213 )

. 5 dt 3 = 2.0 t12,02)

9]

Now, estimates (3.35) and (3.38)—(3.43) yield the following differential
inequality:

d
(3.44) Eﬂﬁl(t) + co®1(t) < c5ll000ll3,0P1(t) + €ll000ll3.0 + c16ll 00015 -

By using the same argument as in Lemma 3.7, inequality (3.44) and as-
sumptions (3.13) and (3.21) yield (3.33) for sufficiently small ¢, § and . =

Now, we prove the main result of the paper.

THEOREM 3.9. Let v> %,u>0, f=0, and pe C3(Ry) with p' >0. Let
(v, 00) € N(0), S € HY? u2(0) € H'(2), u%,(0) € La(£2) (u° is a solution
of (3.2)) and let the following compatibility condition be satisfied:

D (vo) — (p(00) — po)]io =0  on S.

Moreover, let the following assumptions be satisfied:

(345)  ¢(0) <oy
(3.46)  lvollg. o+ llesolld o <0, where 050 = 00 — 0c;
(3.47) 1> 0 is a constant such that g — 1 > 0 and 01 < 09 < 02,
where 01 = g — 1, 02 = 0c +;
(3.48)  {oovo-nde=0, |ootde=0,
19 0
where n = a+ b X x and a,b are arbitrary constant vectors;
(3.49)  [oode =
19
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Then for sufficiently small constants o and § there exists a global solution
of (1.1) such that (v, 0,) € M(t) fort € RL, S, € H? fort € R} and

(3.50) o(t) <a for teRL.

Proof. The theorem is proved step by step using the local existence in
a fixed interval. In order to extend the solution to the interval [T, 2T] we
first prove that

(3.51) 01 < o(w,t) < 0o Vx €y tel0,T)]
By (3.10) and assumption (3.45) we have

(3.52) [u@®)l3.q + Ins ()30 < ¥2(A, T)e
Hence

(3.53) [ul%, o7 + |2, or < ac(2)12(A,T),

where ¢(£2) > 0 is a constant from the imbedding lemma.
Assume now that « is so small that

(3.54) [ac(2)a (A, T)V? < 1,

where [ is the constant from assumption (3.47). Then by (3.53) we obtain
(3.51) and this means that g. = 01 and p* = po. Thus, the assumptions of
the theorem and Lemmas 3.4, 3.7 yield

(3.55) o) <a fort<T,

where o and ¢ are so small that (3.15) and (3.32) are satisfied (with constants
c1, €2, €8, Cy, Clo, C11, c12 and ¢ depending on (2, g1, 02). Hence, in view of
Theorem 3.1, Lemma 3.8 and estimates (3.4)—(3.5) (with initial conditions
at T') for A so large that

(3.56) C1(T)(c(0) +a) < A

and for « sufficiently small (so that (3.56) and (3.5) hold with ¢(0) replaced
by «) there exists a local solution of (1.1) in the interval [T, 27 and
(3.57) NulZay o, + 106llBy o, < 2(A T)(loa (D op + lu(D)]3 0r
Hlu( D) op + lue ()G o)
< "/)2 (Av T)Oé
(where Ar o, and Br o, are given by (1.6) and (1.5), respectively), which

yields (v, 05) € M(¢) for t < 2T.

To extend the solution to [27,3T] we have to prove
(3.58) é(t) <a fort<2T.
First, we show the estimate

(3.59) 01 < o(z,t) < 9o Va €2y, t€]0,2T).
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In view of (3.51) we prove
01 <n(§at)<92 Vé.eﬁT; te [T72T]a

where by n we denote o written in the Lagrangian coordinates & €
connected with the Eulerian coordinates x by the relation

t t
v=¢&+ ol t)dt' =&+ \u(E t)dt.
T T

In view of (3.55) and (3.57) we get

[u@®)3,0, + 110(O)1I3,0, < ¥2(A,T)a

Hence

(3.60) |“|<2>o,nTx(T,2T) + |77<T|io,.QT><(T,2T) < ac(27) (A, T),
where ¢(f2r) is a constant from the imbedding lemma and by Remark 3.5,
[ac($2r) 2 (4, V2 <1,

where [ is the constant from assumption (3.47). Therefore, (3.60) implies
(3.59).

Now, we prove that the volume and shape of {2, change in [0, 27"] no more
than they do in[0,7]. To do this we consider SB v(x, ') dt’ for 0<t<2T. We
estimate SOT v(x,t') dt’ by applying Lemma 3.3, and to estimate SZTT v(x, t') dt!
we use inequality (3.57) for the local solution in [T, 27]. Thus we have

t T 2T
(3.61) Hv(z,t’)dt’ < Vute. )t + | u(g,t)] ar
0 0 T
12 2T 1/2
< e (VlulBgat) ™+ (§ ullf g, a) ]
T

1/2 2 N2 1/2
<T c17 HU”ZQN dt + crac

St Ot

12| A7 T—/ N2 1/2

A PP
0

1/2 T , 1/2

< T1/2a1/2 |:Cl7 (M—/l) ( S e_“zt dtl) + 614:|

¢ 0
1/2 1/2 Ci7H1
<T / o / (7@/”2)1/2 +Cl4),

where ci3 and cy4 are the constants from Remark 3.5, ¢’ is the constant
from (3.11) and we have used the fact that p; > 1.
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If « is sufficiently small then estimates (3.61) and (3.59) imply that
the differential inequality (2.58) can be derived in [T, 27T] with the same
constants ¢; and ¢y as in [0,7]. Similarly, the other constants ¢; and ¢/, ¢”,
M1, po are the same in [T, 27 as in [0, T].

Next, we prove that assumption (3.21) implies (3.22) for ¢t < 2T". To do
this integrate (2.8) with respect to ¢ over (0,¢) (¢t < 27T'). Using Lemmas 3.2—
3.3 we get

(3:62)  [lvlg e, + lleslt e,
t

<ene sup o(t)|o(t)dt (1+ sup o(t')) + croe11Co

0<t/<t 0 o<t/ <t
T 2T
Cci11€C — ’ — ’
< 8 ([0 B ) e
0 T
T 2T
crice , _ ,
< TS I3M1 (1+ 0304)04(@ S e M2t dt’ g S (b(O)e_”QTe_’“(t -7 dt/)
c
0 T
+ cioc116
C11CC3 1 — -
0’7/12(1 + cza)a[l — e #2T 4 g (er2T — e722TY] 1116
2
w(l + cza)a? + cipc110,
C U2

where c¢yg, c11 are the constants from Lemma 3.4 and c3 is the constant
from Lemma 3.2. Therefore (3.22) is satisfied for ¢ < 2T, so by (3.55) and
Lemma 3.7 we obtain (3.58) and the existence of a local solution (v, ¢) such
that (v, 0) € M(¢t) for ¢ < 3T.

Finally, assume that there exists a local solution in [0, kT (where k > 3)
satisfying

lully < A fori=1,...,k—1

(3.63) :

(3.64)  nllz,.,, <vi(4) fori=1,....k—1,

(3.65) o) <a fort<(k—1)T,

(3.66)  Nul, . +0lE, ,, <2(AT)a fori=1,... k-1

Moreover, assume that the volume and shape of {2, change in [0, (k — 1)T]
no more than they do in [0, 7] and estimate (3.51) holds for ¢t < (k—1)T (so
the constants ¢;, i=1,...,17, ¢, ¢, u1, po are the same in each [(i —1)T, T,
i=1,...,k—1). Since the argument used to show estimate (3.51) for ¢t < kT
is the same as for t < T and for t < 2T, to prove the existence of a local
solution in [0, (k 4+ 1)T] it remains to show that the volume and shape of
£2; change in [0, k7] no more than they do in [0,7] and that assumption
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(3.21) implies (3.22) for t < kT. In fact, applying Lemma 3.3 and estimates
(3.63)—(3.66) we have, for t € [0, kT,

(3.67) ‘ §v(z,t’)dt'
0
k

1 (DT k—1 (+DT 12
<>V enld <ewt 3 (0§ ulBo, d)
=0 4T =0 iT
k—2 (+1)T 12
<12} § Mol ) +ewua?
=0 iT
- k2 (DT 12
< T2 4T _ ( S o(t") dt') +c14a1/2}
- =0 iT

- 1/2k=2 (+1)T ' 1/2
< T2 ¢y ('u—,l) Z (¢(ZT) S e—H2(t'=iT) dt') i 014041/2}
L i=0

T

- 1/2 k-2
< T1/2 c17( //il ) (1- e—uzT)1/2 Z(qg(iT))l/Q +c14a1/2}
- i=0

1/2
<12 e () 0 - e TGO+ e

+ppe 2T V2 4 014a1/2}

1
<TY2a1/? { o R L R S——— 4}
= (C/,u2)1/2( ) (1= emT)1/2 1
_plj2 1/2 Ci7H
=T / « / (7(C/M2)1/2 + 614),

where c¢13, c14 are the constants from Remark 3.5, ¢17 is the same constant
as in inequality (3.61), ¢’ is the constant from (3.11) and we have used the
fact that p; > 1.

Thus, the right-hand side of (3.67) is the same as the right-hand side of
(3.61). Therefore, for « sufficiently small the shape of £2; changes in [0, kT
no more than it does in [0, 7] and the constants ¢; (¢ = 1,...,17), ¢/, ¢, u1,
w2 from Theorem 2.8, Lemmas 3.2-3.4, 3.7, 3.8, Remark 3.5 and inequality
(3.11) are the same in each [iT, (i + 1)T] for i =0,...,k — 1.

In the same way we prove
(3.68) 01150, + los 150, < coo® + cr0c116

for t < kT, where ¢; (i =9,10,11) are the constants from Lemma 3.4.
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Estimates (3.67)—(3.68), (3.65) and Lemma 3.7 yield ¢(t) < a for t < kT

and hence we obtain the existence of a local solution (v, g) of (1.1) such that
(v,00) €M) for t < (k+1)T. m
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