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APPLICATION OF COVERING SETS

BY

KANDASAMY M U T H U V E L (OSHKOSH, WISCONSIN)

This paper contains results concerning covering sets which generalize and
unify some known results about the additive subgroups of the reals and the
algebraic difference of sets.

Throughout the paper, the set of all real numbers is denoted by R. The
algebraic difference of a subset A of R is defined to be A − A = {x − y :
x, y ∈ A}. Any basis for the vector space of the reals over the rationals is
called a Hamel basis.

Sierpiński proved that the complement of a Hamel basis is everywhere of
the second category. This was generalized in [5]: if H is a Hamel basis and
X is a subset of R of cardinality less than the cardinality of the continuum,
then the complement of the algebraic sum H+X is everywhere of the second
category.

The above result was improved in [6] by showing that (1) the complement
of the algebraic sum Z(H) +X is everywhere of the second category, where
|X| < |R|, and the Erdős set , Z(H), is the set of all finite linear combinations
of elements from a Hamel basis H with integer coefficients, and (2) the
complement of a finite union of Hamel bases is everywhere of the second
category. Z(H) +X is contained in a proper subgroup of the additive group
of the reals because the cardinality of the group generated by X is less than
the cardinality of the continuum and the index of the additive subgroup
Z(H) of R is the cardinality of the continuum.

In this paper, we generalize and unify the above results by showing that
the complement of a finite union of proper subgroups of R is everywhere of
the second category (i.e., it is large in the sense of category). We prove a
theorem about covering sets which directly implies that the cardinality of
the complement of a finite union of proper subgroups of R is the cardinality
of the continuum. We also prove a theorem which generalizes and unifies
Theorems 5, 6, and 8 of [3].

Notation. We use the standard set theory notation. The set of all real
numbers and the set of all natural numbers are denoted by R and N re-
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spectively. If A and B are subsets of an abelian group (G,+), then A + B
and A − B stand for {x + y : x ∈ A and y ∈ B} and {x − y : x ∈ A and
y ∈ B} respectively. The set A−A is denoted by D(A). The notation A\B
stands for the set-theoretic difference of A and B. The set R \A is denoted
by Ac. For any set A, |A| denotes the cardinality of A, and for any cardinal
number κ, we denote the sets {X ⊆ A : |X| < κ} and {X ⊆ A : |X| = κ} by
[A]<κ and [A]κ respectively. If κ is a cardinal number, then κ+ stands for
the cardinal successor of κ. The cardinal numbers are to be identified with
initial ordinal numbers. ω is the first infinite ordinal number. We define
Z(H) to be the set of all finite linear combinations of elements from H with
integer coefficients.

Definition 1. Let (G,+) be an arbitrary abelian group. For any two
subsets A,X ⊆ G, we define Tr(X,A) = {t ∈ G : X + t ⊆ A}. A subset A
of G is called <κ-covering for G if Tr(X,A) 6= ∅ for each X ∈ [G]<κ. A set
A is called κ-covering for G if it is <κ+-covering for G.

Lemma 1. Suppose that A is a subset of an abelian group (G,+). Then
A is 2-covering for G if and only if A−A = G.

P r o o f. Suppose that A is 2-covering for G. Let g ∈ G. Then {0, g}+ t
⊆ A for some t ∈ G and hence g = (g + t) − t ∈ A − A. Consequently,
A − A = G. To prove the converse, suppose that A − A = G. If x, y ∈ G,
then x− y = a1 − a2 for some a1, a2 ∈ A. Hence {x, y}+ a2 − y ⊆ A. Thus
A is 2-covering for G.

Lemma 2. (a) Suppose that A is <κ-covering for an abelian group
(G,+), κ is an infinite cardinal number , and X ∈ [G]<κ. Then Tr(X,A)−
Tr(X,A) = G.

(b) Suppose that A is 2κ-covering for an abelian group (G,+), κ is a
finite cardinal number , and X ∈ [G]κ. Then Tr(X,A)− Tr(X,A) = G.

P r o o f. (a) Let g ∈ G. Since A is<κ-covering forG, (X∪(X+g))+t ⊆ A
for some t ∈ G. Consequently, t ∈ Tr(X,A) and g + t ∈ Tr(X,A). Hence
g = (g + t)− t ∈ Tr(X,A)− Tr(X,A). Thus Tr(X,A)− Tr(X,A) = G.

The proof of (b) is similar.

Theorem 1. Suppose that (G,+) is an abelian group, κ is an infinite
cardinal number , A is <κ-covering for G, H is a subgroup of G such that
|G/H| ≥ κ, and X ∈ [G]<κ. Then A \ (H +X) is <κ-covering for G.

P r o o f. Let Y ∈ [G]<κ. By Lemma 2(a), Tr(Y,A) − Tr(Y,A) = G.
To show that Y + t ⊆ A \ (H + X) for some t ∈ Tr(Y,A), suppose that
(Y + t) ∩ (H +X) 6= ∅ for every t ∈ Tr(Y,A). Then Tr(Y,A) ⊆ H +X − Y
and hence G = Tr(Y,A) − Tr(Y,A) ⊆ (H + X − Y ) − (H + X − Y ) =
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H +X −X + Y − Y . Consequently, |G/H| ≤ |X −X + Y − Y | < κ. This
contradicts the hypothesis that |G/H| ≥ κ and thus the proof is complete.

Any uncountable abelian group, in particular R, can be written as a
countable union of its proper subgroups [7]. However, it follows from the
following corollary that R is not a finite union of proper subgroups of R.

Corollary 1. The complement of a finite union of proper subgroups of
the reals is <ω-covering for R and hence the cardinality of such a comple-
ment is the cardinality of the continuum.

The above corollary follows from the previous theorem together with the
fact that |R/H| ≥ ω for any proper subgroup H of R, and the cardinality of
any κ-covering subset of R, where κ ≥ 2, is the cardinality of the continuum.

Remark 1. Corollary 1 is true if R is replaced by any abelian group G
with the property that every proper subgroup of G is of infinite index, and
the cardinality of the continuum is replaced by the cardinality of G. For
example, since the set of all nonzero complex numbers, C∗, is an abelian
group under the ordinary multiplication and C∗ contains no proper subgroup
of finite index, the cardinality of the complement of a finite union of proper
subgroups of C∗ is the cardinality of the continuum.

If H is a Hamel basis, then |R/Z(H)| = |R|. Hence we have the following.

Corollary 2. The complement of a finite union of Hamel bases is
<|R|-covering for R and the cardinality of such a complement is the cardi-
nality of the continuum.

Corollary 2 is “best possible” because under the assumption of the
continuum hypothesis, the set of all nonzero real numbers can be writ-
ten as a countable union of linearly independent sets (in particular Hamel
bases) [4].

There exist disjoint subsets A and B of R such that R = A ∪ B and
D(A) and D(B) contain no nonempty open interval. However, the following
corollary implies that if R = A ∪ B, then either the group generated by A
or the one generated by B is R.

Corollary 3. If a set A is <ω-covering for R and A is a finite union
of subsets Ai of the reals then, for some i, the group generated by Ai,Z(Ai),
is R.

P r o o f. Suppose that A =
⋃n
i=1Ai for some n ∈ N. If Z(Ai) 6= R for

every i, then by applying Theorem 1 a finite number of times, we find that
A\

⋃n
i=1Ai = ∅ is <ω-covering for R, which is impossible. Hence the result.
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The following theorem implies that the complement of a union of fewer
than continuum many translates of the Erdős set Z(H), where H is a Hamel
basis, is everywhere of the second category [6].

Theorem 2. The complement of a finite union of proper subgroups of
the reals is everywhere of the second category.

Lemma 3. Suppose that F is a first category subset of the real line R
and I is a nonempty open interval. Then the set N · (I \ F ) = {nx : n ∈ N
and x ∈ I \ F} is <ω-covering for R.

P r o o f. Let X ∈ [R]<ω. Since nI is an interval whose length tends to
infinity as n→∞, there exists a nonempty open interval J such that J+X ⊆
mI for some m ∈ N. The set X being finite and F of the first category
implies that (N ·F )−X is of the first category. Since J is a nonempty open
interval, J is of the second category and J 6⊆ (N · F ) − X. This implies
that (j + X) ∩ (N · F ) = ∅ for some j ∈ J . Consequently, for some j ∈ J ,
j+X ⊆ (N·I)\(N·F ) ⊆ N·(I \F ). This shows that N·(I \F ) is <ω-covering
for R.

Proof of Theorem 2. Suppose that the conclusion of the theorem is false.
Then there exists a nonempty open interval I such that (

⋃n
i=1Gi)

c ∩ I is of
the first category, where Gi’s are proper subgroups of R and n ∈ N. Denote
(
⋃n
i=1Gi)

c∩I by F . Then I \F ⊆
⋃n
i=1Gi. Since Gi’s are subgroups of R,

N·(I\F ) ⊆
⋃n
i=1Gi. Denote N·(I\F ) by A. By Lemma 3, A is <ω-covering

for R. Now by Theorem 1, A\G1 is <ω-covering for R and again by Theorem
1, (A \ G1) \ G2 = A \ (G1 ∪ G2) is <ω-covering for R. Continuing in this
way, we conclude that A \

⋃n
i=1Gi is <ω-covering for R. This is impossible

because A \
⋃n
i=1Gi = ∅. Thus the proof is complete.

It is interesting to compare the following corollary with Theorem 1.

Corollary 4. If H is a proper subgroup of R and X is an infinite
subset of R with |X| < |R/H|, then R\ (H+X) is everywhere of the second
category.

P r o o f. Since the group generated by X and the set X itself have the
same cardinality, |Z(X)| < |R/H|. Consequently, H + Z(X) is a proper
subgroup of R and hence the result.

Remark 2. Corollary 4 generalizes Theorem 3 of [6]: “The complement
of a union of fewer than continuum many translates of the Erdős set Z(H),
where H is a Hamel basis, is everywhere of the second category.” Theorem 2
generalizes Theorem 5 of [6]: “The complement of a finite union of Hamel
bases is everywhere of the second category.”

The following theorem shows that if an abelian group (G,+) is the set-
theoretic union of finitely many cosets, G =

⋃n
i=1(gi + Si), where gi ∈ G
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and Si’s are proper subgroups of G, then the index of Si is finite for at least
two values of i. This is more general than a result of [2] (or see Lemma 1
of [7]). It is obvious that if G is a union of two cosets, G = g1 +S1∪g2 +S2,
then the index of Si in G is 2 for i = 1, 2.

Theorem 3. Let A be a subset of an abelian group (G,+). If A is
2κ-covering for G, where 1 ≤ κ < ω, and H is a subgroup of G with
|G/H| > 22κ−2−2κ−1+1, then for every g ∈ G,A\(H+g) is 2κ−1-covering
for G.

P r o o f. Let X be a subset of G and |X|=2κ−1. For g ∈ G, |X∪(X+g)|
≤ 2(2κ−1) = 2κ. If X + t 6⊆ A \ (H + g) for every t ∈ Tr(X,A), then
Tr(X,A) ⊆ H + g − X and, by Lemma 2(b), G = Tr(X,A) − Tr(X,A) ⊆
H − X + X. This implies that |G/H| ≤ |−X + X| ≤ |X|2 − |X| + 1 =
22k−2 − 2k−1 + 1. Thus the proof is complete.

Corollary 5. Suppose S1, . . . , Sn are proper subgroups of an abelian
group (G,+) and G is the set-theoretic union of finitely many cosets,
G =

⋃n
i=1(gi + Si), where gi ∈ G. Then the index of Si in G is at most

22n−2 − 2n−1 + 1 for at least two values of i.

P r o o f. If the index of Si in G is greater than 22n−2 − 2n−1 + 1 for
each i, then by the previous theorem, G \ (S1 + g1) is 2n−1-covering for G
and continuing we conclude that ∅ = G \

⋃n
i=1(gi +Si) is 2n−n = 1-covering

for G, a contradiction. Hence the index of Si is at most 22n−2−2n−1+1 for at
least one i. If it is the case for exactly one i, say i=1, then G\

⋃n
i=2(gi+Si)

⊆ g1 + S1 is 2n−(n−1) = 2-covering for G. Consequently, by Lemma 1,
G = (g1 +S1)− (g1 +S1) = S1. This contradicts the fact that S1 is a proper
subgroup of G.

If P is a nonempty perfect subset of R, then there is a subset M of R
with Lebesgue measure 0 such that P + M = R (see [1]). It is not known
whether for any measure zero set A, there exists an ℵ0-covering set Y for R
such that A+ Y is of measure zero. However, we prove the following.

Theorem 4. If H is a Hamel basis, then there is a <|R|-covering set A
for R such that H +A = R and H ∩A = ∅. On the other hand , under the
assumption of the continuum hypothesis, if A is κ-covering for R, where
ω ≤ κ, then there exists a Hamel basis H such that H +A = R.

P r o o f. Let H be a Hamel basis. Then it follows from Corollary 2 that Hc

is <|R|-covering for R. To prove that H +Hc = R, let r ∈ R. If r 6∈ H +H,
then r − h 6∈ H for every h ∈ H and hence r = (r − h) + h ∈ Hc + H.
If r ∈ H + H, then r = hi + hj for some hi, hj ∈ H and hence r =
(hi + hj − hk) + hk ∈ Hc + H, where hk ∈ H and hi 6= hk 6= hj . This
completes the proof of the first part of the theorem.
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To prove the second part, we need the following lemma.

Lemma 4. If A is κ-covering for R, ω ≤ κ, and X ∈ [R]≤κ, then⋂
x∈X(A− x) is κ-covering for R.

For, if Y ∈ [R]κ then, since |Y + X| = κ, there exists t ∈ R such that
Y + X + t ⊆ A and hence Y + t ⊆

⋂
x∈X(A − x). Thus

⋂
x∈X(A − x) is

κ-covering for R.

Under the assumption of the continuum hypothesis, by a theorem of
Erdős–Kakutani [4], the set of all nonzero real numbers is the union of
countably many linearly independent sets. So let {0}c =

⋃
1≤i<ωHi, where

Hi’s are Hamel bases. Note that if H is a Hamel basis then so is −H. The
proof is complete if −Hi + A = R or Hi + A = R for some i. Suppose
Hi + A 6= R and −Hi + A 6= R for every i. Let ri ∈ (Hi + A)c. Then
−Hi ∩ (A− ri) = ∅ for every i and hence⋃

1≤i<ω

(−Hi) ∩
⋂

1≤i<ω

(A− ri) = ∅.

But
⋃

1≤i<ω(−Hi)={0}c and, by Lemma 4, the cardinality of
⋂

1≤i<ω(A−ri)
is the cardinality of the continuum. This implies that⋃

1≤i<ω

(−Hi) ∩
⋂

1≤i<ω

(A− ri) 6= ∅,

a contradiction. Thus the proof is complete.

It follows from Theorem 4 of [3] that there exists a set C, in fact a Bern-
stein set, such that (D(C) ∪D(Cc))c is everywhere of the second category.
Theorems 5, 6 and 8 of [3] were proved to answer some questions relating
to Bernstein sets.

The following theorem generalizes and unifies Theorems 5, 6 and 8 of [3].

Theorem 5. If A, B, and C are subsets of the reals such that A ⊆
C ∪D(C), B ⊆ Cc ∪D(Cc), A∩D(Cc) = ∅ and B ∩D(C) = ∅, then A = ∅
or B = ∅.

Lemma 5. If A is not 2-covering for R, then D(A) ⊆ D(Ac).

P r o o f. By assumption, there exist a, b in R such that {a, b} + r 6⊆ A
for every r ∈ R. Hence a + r ∈ Ac or b + r ∈ Ac. This implies that
R ⊆ (Ac−a)∪ (Ac− b) ⊆ R and hence R = R+a = Ac ∪ (Ac− b+a). Thus
A ⊆ Ac − b+ a and D(A) ⊆ D(Ac − b+ a) = D(Ac).

Proof of Theorem 5 . If D(C) = R or D(Cc) = R, then the result is
trivial. Suppose that D(C) 6= R 6= D(Cc). By Lemma 1, C and Cc are
not 2-covering for R and, by Lemma 5, D(C) ⊆ D(Cc) and D(Cc) ⊆ D(C).
Hence D(C) = D(Cc). Now it follows from the hypotheses that A ⊆ C and
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B ⊆ Cc. If 0 ∈ C, then C ⊆ D(C) and, since A ⊆ C and D(C) = D(Cc),
we have A = A ∩D(C) = A ∩D(Cc) = ∅. Similarly if 0 ∈ Cc, then B = ∅.
Thus the proof is complete.

Remark 3. Theorem 5 of [3]: “If A ⊆ C,B ⊆ Cc and A ∩ D(Cc) =
∅ = B ∩ D(C), then either A or B are empty” and Theorem 6 of [3]: “If
A ⊆ D(C), B ⊆ D(Cc) and A∩D(Cc) = ∅ = B ∩D(C), then either A or B
are empty” follow directly from the previous theorem.

Theorem 8 of [3]: “If D(Cc) ⊆ D(C) ⊆ R, then at least one of ⊆ is
an equality” can be verified as follows: if D(C) 6= R, then, by Lemma 1,
C is not 2-covering for R and, by Lemma 5, D(C) ⊆ D(Cc) and hence
D(C) = D(Cc).

Corollary 9 of [3]: “If C and Cc form any decomposition of R, where
|C| < |R|, then D(Cc) = R” follows directly from the fact that Cc is
2-covering for R, in fact Cc is <|R|-covering for R [see Theorem 1] and
hence D(Cc) = R [see Lemma 1].

Corollary 10 of [3]: “If B is any rationally independent set, then D(Bc)
= R” follows again from the fact that (Z(B))c is 2-covering for R [see The-
orem 1] (Z(B) is the set of all finite linear combinations of elements of B
with integer coefficients) and, by Lemma 1, D((Z(B))c) = R. Note that
(Z(B))c ⊆ Bc. Consequently, D((Z(B))c) ⊆ D(Bc) = R.

There exists no analytic Hamel basis (see [8]).

Problem. Does there exist a Hamel basis whose complement is ana-
lytic?

Acknowledgments. The author is grateful to Professor Jacek Cichoń
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