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1.Preliminaries.The standard notions on quantum logics we deal with
in this paper are taken from [4] and [11]. Let us briefly recall the basic ones.
By a quantum logic we mean a triple (L,≤, ′), where L is a set partially
ordered by ≤ and ′ is an orthocomplementation relation on L, such that the
following properties are satisfied:

(i) a least and a greatest element, 0 and 1, exist in L,
(ii) if a ≤ b, then b′ ≤ a′, and a = a′′ (a, b ∈ L),

(iii) a ∨ a′ = 1, a ∧ a′ = 0 (a ∈ L),
(iv) if a ≤ b, then b = a ∨ (b ∧ a′) (the orthomodular law).

By a state on L we mean a probability measure on L. Thus, a mapping
s : L→ [0, 1] is a state on L if

(i) s(1) = 1,
(ii) s(a ∨ b) = s(a) + s(b) provided a ≤ b′ (a, b ∈ L).

Let us denote by S (L) the set of all states on L. By a standard argument,
S (L) is a convex subset of the topological linear space RL, and moreover,
S (L) is compact with respect to the topology of RL (in other words, S (L)
is compact in the pointwise topology). Notice that S (L) may be quite poor
or even empty (see [3]).

Let us now introduce the main notion of this paper. We say that L is
state-classically-determined (abbr.: L is SCD) if there is a Boolean subal-
gebra B of L such that, for any state s ∈ S (L), if a ∈ L then there is
b ∈ B with b ≤ a so that s(a) = s(b). We are interested in the ques-
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tion of when the SCD logics must be classical. Obviously, the character of
the problem changes when we pass from the finitely additive setup to the
σ-additive setup or completely additive setup of the problem. It should be
noted that the SCD logics may also be relevant to certain considerations of
noncommutative measure theory (see [5]).

Prior to presenting our results, let us recall the notion of concrete logic
(see [10]). This notion will play a prominent rôle in the sequel. A quantum
logic is called concrete (alias set-representable) if L is isomorphic (in the nat-
ural sense based on the quantum logic morphism) to a collection of subsets
of a set. Thus, equivalently, the triple L = (∆,≤, ′), where ∆ is a collection
of subsets of a set S with ≤ meaning the set inclusion and ′ meaning the set
complement, is a concrete logic if the following three conditions are satisfied:

(i) ∅ ∈ ∆,

(ii) if A ∈ ∆, then S −A ∈ ∆,

(iii) if A,B ∈ ∆ and A ∩B = ∅, then A ∪B ∈ ∆.

We sometimes write L = (S,∆) (instead of L = ∆) when we need to
refer to the underlying set S. Observe that a concrete logic is a Boolean
algebra if and only if it is closed under the formation of intersections (i.e., if
L = ∆ then L is Boolean if and only if A ∩B ∈ ∆ for any pair A,B ∈ ∆).

2.Results.Let us first consider the “finitely additive” SCD logics. Thus,
the definitions of the previous section apply without changes. Let L be a
logic. If the state space S (L) is empty (see [3]), then L is SCD by definition.
Continuing in this vein, it can be seen that there are logics with exactly one
state which are SCD. Indeed, if L is stateless, then the logic L × {0, 1} is
such an example (see [9]). Obviously, we would rather be interested in logics
which have a fairly large set of states. Let us say that L has enough states
if the following condition is satisfied: If a 6≤ b in L, then there is a state
s ∈ S (L) such that s(a) = 1 and s(b) < 1. Naturally, if L is a Boolean
algebra, then L has enough states. The result we want to prove first says
that the converse is true for the SCD logics. (Surprisingly, a one-line proof
does not seem to be available—we were expecting to use the compactness
of the state space plus fairly nontrivial intrinsic properties of logics.)

Theorem 1. Let L be a quantum logic and let L have enough states. If
L is SCD , then L is Boolean.

P r o o f. Let us first make two observations. The first relates the class of
logics we are interested in to the Jauch–Piron property for states (see [10],
[2], [11], etc., for discussions of this property relevant to the foundation of
quantum mechanics).
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Observation 1. Under the assumptions of Theorem 1, there is a Boolean
subalgebra B of L so that the following strong form of Jauch–Piron property
is satisfied : If s(a) = s(b) = 1 (a, b ∈ L, s ∈ S (L)), then there is an
element c ∈ B with c ≤ a, c ≤ b such that s(c) = 1.

Indeed, there are elements e, f ∈ B such that e ≤ a, f ≤ b and s(e) =
s(f) = 1. Since both e, f belong to B, we easily see that s(e∧f) = 1. Thus,
setting c = e ∧ f , we obtain s(c) = 1.

Observation 2. Under the assumptions of Theorem 1, L is a concrete
logic.

Indeed, all we have to show is that the following implication holds true:
If a ∧ b = 0 in L (a, b ∈ L), then a ≤ b′. It is known (see [8]) that then L
must have enough two-valued states, and this easily implies (see e.g. [14])
that L is concrete.

Suppose that a 6≤ b′. Then there is a state s ∈ S (L) such that s(a) = 1
and s(b′) < 1. Equivalently, there is a state s ∈ S (L) such that s(a) = 1
and s(b) > 0. Since L is SCD, there is a Boolean subalgebra B of L and
elements c, d ∈ B so that c ≤ a, d ≤ b and s(a) = s(c) and s(d) = s(b). If we
set e = c∧ d, then s(e) = s(b) > 0. It follows that e 6= 0. Since e ≤ a, e ≤ b,
we see that a ∧ b either does not exist or is distinct from 0. Thus, a ∧ b 6= 0
and this is what we were to show.

Let us take up the proof of Theorem 1. We may assume that L is
concrete (Observation 2). Thus, P = ∆, where ∆ ⊂ expS. Write B = ∆̃ for
the Boolean subalgebra of ∆ guaranteed by the assumptions of Theorem 1
(∆̃ ⊂ expS). Take two elements of ∆, some sets A and B, and consider
A∩B. We want to show that A∩B ∈ ∆. Put SA,B = {s ∈ S (∆) | s(A) =
s(B) = 1}. Then SA,B is a closed subset of S (∆) and therefore SA,B is

compact. Further, put C = {C ∈ ∆̃ | C ⊂ A ∩ B} and let, for any C ∈ C ,
SC = {s ∈ SA,B | s(C) > 0}. Then the set {SC | C ∈ C } forms an open
covering of SA,B (one makes use of Observation 1). Since SA,B is compact,
we see that there is a finite subcollection of C , some sets C1, . . . , Cn, such
that SA,B =

⋃
i≤n CCi . It remains to be shown that

⋃
i≤n Ci = A ∩ B.

This will suffice, for
⋃
i≤n Ci belongs to ∆̃ and therefore to ∆. Suppose on

the contrary that
⋃
i≤n Ci 6= A ∩ B. Then there is a point p ∈ S such that

p ∈ (A ∩ B) −
⋃
i≤n Ci. Consider now the (two-valued) state sp ∈ S (∆)

concentrated in p. Thus, sp(D) = 1 if and only if p ∈ D. It follows that
sp ∈ SA,B and therefore sp /∈

⋃
i≤n CCi . This is a contradiction. The proof

of Theorem 1 is complete.

Note that, in view of the above result, there are concrete Jauch–Piron
logics which are not SCD. Indeed, there exist non-Boolean concrete Jauch–
Piron logics (see [7]).
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Let us now pass to the σ-additive setup of our question. For the σ-
additive (σ-complete) setup we translate the notions we deal with into the
language of σ-complete logics. Thus,

(i) a σ-complete logic is a logic L which is closed under the formation
of suprema of countable families of mutually orthogonal elements in L,

(ii) a σ-additive state on L is defined in the standard way,

(iii) the symbol Sσ(L) denotes the set of all σ-additive states on L.

A state-classically-determined logic (an SCDσ logic) will now mean a
σ-complete logic L which has a Boolean σ-algebra B as its sublogic such
that, for any s ∈ Sσ(L) and any a ∈ L, there is b ∈ B with b≤ a so that
s(a) = s(b). Apart from the examples of SCDσ logics with extremally poor
state spaces, every Boolean σ-algebra is an SCDσ logic. We are going to show
that there are many others, in particular, that there are many non-Boolean
concrete ones.

Let us first recall a few notions and make some conventions. A mapping
f : L1 → L2 between two (σ-complete) logics is called a morphism if

(i) f(1) = 1,

(ii) f(a′) = f(a)′ (a ∈ L1), and

(iii) f(
∨
i∈N ai) =

∨
i∈N f(ai) provided ai ≤ a′j , i 6= j.

A morphism f : L1 → L2 is called an embedding if f is injective and the
inequality f(a) ≤ f(b)′ implies a ≤ b′ (a, b ∈ L). If f : L1 → L2 is an
embedding then L1 is called a sublogic of L2. (Obviously, if L1 is a sublogic
of L2 and L1 is not Boolean, then L2 is not Boolean either.)

Our main result in this section says that every concrete (σ-complete)
logic L1 which is not “very big” is a sublogic of a concrete SCD σ-complete
logic L2. In proving the result, we use some technique of [2] and [6]. We
make the following convention. Let ℵ0 be the countable cardinal and let
ℵn+1 be the successor cardinal of ℵn. Put α = sup{ℵn | n ∈ N}. Let S be a
set. We say that S is not very large if the cardinality of S, written cardS, is
less than α. (It seems plausible that the logics encountered in applications
to quantum theories are not very large. The important technical aspect of
the notion is that if S is not very large and if expS means the σ-algebra of
all subsets of S, then every σ-additive probability measure on expS must
live on a countable subset of S; see e.g. [13].)

Theorem 2. Suppose that L1 = (S,∆1) is a concrete σ-complete logic
and suppose that S is not very large. Then L1 can be embedded into a
concrete σ-complete SCDσ logic L2 = (W,∆2) so that W is not very large.
Hence, in particular , there exist concrete non-Boolean σ-complete SCDσ

logics.
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P r o o f. Since S is not very large, the set S is either finite or cardS = ℵn
for some n ∈ N. Choose a set T as follows: If cardS is finite, we take T so
that cardT = ℵ1, and if cardS = ℵn, we take T so that cardT = ℵn+1. Put
W = T × S. Then W is not very large. Define a collection ∆2 ⊂ expW by
the following requirement: A ∈ ∆2 if and only if

card(T − {t ∈ T | ({t} × S) ∩A = {t} × U for some U ∈ ∆1}) ≤ χ0.

Let us verify that ∆2 is a σ-complete logic. Obviously, ∅ ∈ ∆2. Further,
since ∆1 is closed under the formation of complements, we see that

card(T − {t ∈ T | ({t} × S) ∩A = {t} × U for some U ∈ ∆1})
= card(T − {t ∈ T | ({t} × S) ∩ (W −A) = {t} × U for some U ∈ ∆1}).

It follows that if A ∈ ∆2 then W −A ∈ ∆2. Now we assume that {An | n ∈
N} is a collection of mutually disjoint elements of ∆2. Put A =

⋃
n∈NAn.

Then

card(T − {t ∈ T | ({t} × S) ∩A = {t} × U for some U ∈ ∆1}
≤

∑
n∈N

card(T − {t ∈ T | ({t} × S) ∩An = {t} × U for some U ∈ ∆1}.

Thus, if every An belongs to ∆2, then so does
⋃
n∈NAn. We have checked

that ∆2 is a σ-complete logic.

We now assert that ∆1 is a sublogic of ∆2. Indeed, if we define the
mapping e : ∆1 → ∆2 by setting e(C) = T × C (C ∈ ∆1), we immediately
see that e is an embedding. Thus, ∆1 is a sublogic of ∆2.

Finally, we want to show that ∆2 is SCDσ. Consider first the Boolean
σ-algebra B̃ = (W, Σ̃), where Σ̃ = {V × S | V ⊂ T}. Since, for any A ∈ Σ̃,
we have

T − {t ∈ T | ({t} × S) ∩A = {t} × U for some U ∈ ∆1} = ∅,

we infer that Σ̃ is a sublogic of ∆2. Moreover, Σ̃ is isomorphic (as a Boolean
σ-algebra) to the σ-algebra expT . Further, consider the Boolean σ-algebra˜̃B = (W, ˜̃Σ), where ˜̃Σ is generated by all sets of the form {t} × X (t ∈ T,
X ⊂ S). Obviously, for any A ∈ ˜̃Σ we have

card(T − {t ∈ T | ({t} × S) ∩A = {t} × U} ≤ χ0.

Thus, ˜̃Σ is a sublogic of ∆2. Finally, let B = (W,Σ) be the Boolean σ-

algebra generated by Σ̃ ∪ ˜̃Σ. We shall show that for any state s ∈ S (∆2)
and any A ∈ ∆2 there is a set D ∈ Σ such that D ⊂ A and s(D) = s(A).

We first claim that there is a countable subset P of W so that s(P ) = 1.

Indeed, since Σ̃ is a sublogic of ∆2, we may view s as a state on Σ̃. But
Σ̃ = expT and T is not very large. By [13], s must be concentrated on
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a countable set. Thus, there is a countable set K with K ⊂ T such that
s(K × S) = 1. But Σ contains all subsets of K × S and therefore s can be
also viewed as a state on exp(K×S). It follows that s must be concentrated
on a countable set and therefore there is a countable subset P of K×S such
that s(P ) = 1.

The rest is easy. Given A ∈ ∆2, we easily see that if we put D = P ∩A,
we have D ⊂ A and s(D) = s(A). The proof is complete.

It may be worth noting that we have proved slightly more in Theorem 2:
the desired Boolean sublogic B was in fact a sublogic of the centre of the
logic constructed (i.e., B consisted of absolutely compatible elements of ∆2;
see e.g. [10]). Thus, for the σ-complete case the notion is meaningful within
“nonclassical logics” even in its stronger central form.

Let us briefly consider the stability properties of the class of σ-complete
SCDσ logics. It turns out that this class is fairly large, including both
concrete and nonconcrete logics (as is known, Boolean σ-algebras are often
nonconcrete; see e.g. [12]).

Proposition 3. (i) Suppose that L2 is an epimorphic image of L1 and
L1 is SCDσ. Then so is L2.

(ii) Let {Lα | α ∈ I} be a collection of logics. Let Lα be SCDσ for any
α ∈ I and let I be not very big. Then the direct product

∏
α∈I Lα is an

SCDσ logic. Hence, in particular , a countable product of SCDσ logics is an
SCDσ logic.

P r o o f. (i) Suppose that f : L1 → L2 is a logic epimorphism. Let
s2 be a state on L2. Then the composite mapping s1 = s2 · f is a state
on L1 and therefore there is a Boolean σ-algebra B1 of L so that, for any
a ∈ L1, s1(a) = s1(b) for some b ∈ B with b ≤ a. Since a logic morphism
maps Boolean sublogics into Boolean sublogics (see e.g. [10]), the set B2 =
f(B1) is a Boolean sublogic of L2. Suppose that c2 ∈ L2. Choose an
arbitrary c1 ∈ L such that f(c1) = c2. Then there is an element d1 ∈ L with
d1 ∈ B, d1 ≤ c1 so that s1(d1) = s1(c1). Put d2 = f(d1). Then d2 ≤ c2 and
s2(d2) = s(f(d1)) = s1(d1) = s1(c1) = s2(f(c1)) = s2(c2).

(ii) Let L =
∏
α∈I Lα and let Bα (α ∈ I) be the Boolean sublogic of Lα

which makes Lα an SCDσ logic. Let B =
∏
α∈I Bα and let s ∈ S (L). Since

I is not very large, we can show easily that there is a countable subset J
of I and states sj ∈ S (L) such that, for a partition of unity

∑
j∈J αj = 1,

we can write s =
∑
j∈J αj · s̃j , where s̃j ∈ S (L) are states defined so

that s̃j(a) = s̃j(a1, a2, . . . , aj , . . .) = sj(aj). With the help of the Boolean
σ-algebra B, it is easy to show by “coordinate-wise reasoning” that for any
a ∈ L there is b ∈ B with b ≤ a such that s(a) = s(b). This concludes the
proof.
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Let us finally consider the complete state-classically-determined logics
(abbr.: SCDcomp). A logic L is said to be complete if every collection in
L of orthogonal elements possesses a supremum in L. Upon the obvious
translation of all notions into the complete setup, we can formulate the
following result (by Scomp(L) we denote the set of all completely additive
measures on L).

Theorem 4. Let L be a complete quantum logic. Let L have enough com-
pletely additive states and let L be SCDcomp. Then L is a complete Boolean
algebra. (Hence, in particular , if a logic of projections in a von Neumann
algebra A is SCDcomp, then A is commutative.)

P r o o f. Using the reasoning employed in Observation 2, we immediately
see that L has to be concrete (with respect to finite operations!). Thus,
L = (Ω,∆), where ∆ is a concrete logic. Let A,B ∈ ∆. We have to show
that A ∩ B ∈ ∆. This is sufficient since a complete Boolean logic must
obviously be a complete Boolean algebra.

Consider the set A ∩ B. Suppose that A ∩ B 6= ∅. Thus, A 6⊂ Ω − B.
Put S = {s ∈ Scomp(∆) | s(A) = 1 and s(B) > 0}. Since L has enough
completely additive states and since L is SCDcomp, we easily see that S 6= ∅.
Write S = {sα | α < β for a cardinal number β}. Thus, S becomes well-
ordered. Consider the state s1 ∈ S . Since L is SCDcomp, there is a set
C1 ∈ ∆ such that C1 ⊂ A ∩ B and s1(C1) > 0. It follows that C1 6= ∅. If
C1 = A∩B, we are done. If C1 6= A∩B, then there is a least index α1 < β
so that sα1

∈ S and sα1
(A−C1) = 1, sα1

(B−C1) > 0. Since L is SCDcomp,
there is a set Cα1

so that sα1
(Cα1

) > 0 and Cα1
⊂ (A− C1) ∩ (B − C1). It

follows that Cα1
6= ∅. Moreover, C1∩Cα1

= ∅ and C1∪Cα1
⊂ A∩B. In the

next step we obtain Cαα1
, etc. If we continue this way, taking the unions

of the previously constructed sets Cγ for the limit cardinals, we obtain a
disjoint covering {Cδ | δ ∈ I} of A ∩ B consisting of sets belonging to ∆.
Since ∆ is complete, the supremum

∨
δ∈I Cδ exists in ∆. But

∨
δ∈I Cδ must

be a subset of both A and B. Consequently,
∨
δ∈I Cδ = A∩B and therefore

A ∩B ∈ ∆. This completes the proof.
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