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OPERATORS COMMUTING WITH TRANSLATIONS,

AND SYSTEMS OF DIFFERENCE EQUATIONS
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MIKLÓS LACZKOVICH (BUDAPEST)

Abstract. Let B = {f : R→R : f is bounded}, andM = {f : R→R : f is Lebesgue
measurable}. We show that there is a linear operator Φ : B → M such that Φ(f) = f
a.e. for every f ∈ B ∩M, and Φ commutes with all translations. On the other hand, if
Φ : B →M is a linear operator such that Φ(f) = f for every f ∈ B ∩M, then the group

GΦ = {a ∈ R : Φ commutes with the translation by a}

is of measure zero and, assuming Martin’s axiom, is of cardinality less than continuum.

Let Φ be a linear operator from C
R into the space of complex-valued measurable

functions. We show that if Φ(f) is non-zero for every f(x) = ecx, then GΦ must be
discrete. If Φ(f) is non-zero for a single polynomial-exponential f , then GΦ is countable,

moreover, the elements of GΦ are commensurable. We construct a projection from C
R onto

the polynomials that commutes with rational translations. All these results are closely
connected with the solvability of certain systems of difference equations.

1. Introduction. Let B = {f : R → R : f is bounded}, and M =
{f : R → R : f is Lebesgue measurable}. Putting f ∼ g if f = g a.e. and
factorizing B ∩M with respect to the equivalence relation ∼ we obtain the
space L∞. Our starting point is the following observation.

Theorem 1.1. There is a positive linear operator Φ : B → L∞ such that

Φ(f) = f a.e. for every f ∈ B∩M and Φ commutes with every translation.

P r o o f. Let µ be a Banach measure on R, that is, a finitely additive
translation-invariant extension of the Lebesgue measure to all subsets of R.
If f ∈ B then we define Φ(f) as the class containing F ′, where F (x) =Tx
0
f(t) dµ(t) for every x ∈ R. Here we integrate a bounded function with

respect to a finitely additive measure (see [6], p. 147). If |f | ≤ K then we
have |F (y) − F (x)| ≤ K|y − x| for every x, y ∈ R and thus F is Lipschitz.
Therefore F is differentiable a.e., and F ′ is bounded. It is clear that the
operator Φ defined in this way satisfies the requirements.
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The following result is a slight improvement of 1.1.

Theorem 1.2. There is a positive linear operator Ψ : B → B ∩ M
such that Ψ(f) = f a.e. for every f ∈ B ∩M and Ψ commutes with every

translation.

P r o o f. Let L : L∞ → B ∩ M be a linear lifting, that is, a positive
linear operator satisfying L(f ) ∈ f for every f ∈ L∞. It is clear that if L
commutes with translations and Φ : B → L∞ is the operator constructed in
Theorem 1.1, then Ψ = L ◦ Φ satisfies the requirements.

A simple way of constructing a linear lifting L is the following. Let ℓ∞

be the Banach space of bounded sequences, and let Λ be a norm one linear
functional on ℓ∞ such that Λ(ck) = limk→∞ ck for every convergent sequence
(ck). If f ∈ L∞, then for every x ∈ Rn we define

L(f)(x) = Λ(ck), where ck = k

x+1/k\
x

f(t) dt (k = 1, 2, . . .).

If x is a Lebesgue point of f then limk→∞ ck = f(x). Therefore L(f)(x) =
f(x) at every Lebesgue point of f ; that is, L(f) = f a.e. This implies that
L is a linear lifting; moreover, it is easy to check that L commutes with all
translations.

Theorem 1.1 is, in fact, a special case of [3, Theorem 2], where a positive
linear operator Φ is defined with the following properties: Φ maps the space
of bounded functions defined on Rn into L∞(Rn), Φ(f) = f a.e. for every
bounded measurable f , and Φ commutes with the elements of a prescribed
amenable subgroup G of the isometry group of Rn. It is easy to see that
Theorem 1.2 has a similar generalization. Moreover, as Prof. Z. Lipecki
pointed out, Theorem 1.1 can be further generalized to linear lattices, using
Kantorovich’ extension theorem. However, we restrict our attention to the
case when n = 1 and G is the group of translations. As we shall see, already
this special case leaves several interesting problems open.

In this note we consider the following questions.

(i) Does Theorem 1.2 remain true if we replace “almost everywhere” by
“everywhere”?

(ii) Does Theorem 1.1 remain true if B is replaced by the class F of all
functions defined on R and, accordingly, L∞ is replaced by L0, the set of
equivalence classes of measurable functions? If not, what can we say about
the size of the set

GΦ = {a ∈ R : Φ commutes with the translation by a},

in the cases when
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(i) Φ : B → M is a linear operator such that Φ(f) = f for every
f ∈ B ∩M, or

(ii) Φ : F → L0 is a linear operator such that Φ(f) = f a.e. for “many” f?

We prove that, in case (i), GΦ is always of measure zero (Theorem 3.2).
We also show that, supposing Martin’s axiom, card(GΦ) < 2ω is also true;
moreover, if G is any subgroup of R with card(G) < 2ω, then there is a
linear operator Φ : B → M such that Φ(f) = f for every f ∈ B ∩M, and
G ⊂ GΦ (Theorem 3.5).

In the results concerning question (ii), the trigonometric polynomials
will play a special role. Therefore, in order to simplify notation, it will be
more convenient to work with complex-valued functions. Let CR denote the
set of complex-valued functions defined on R, and let L0 denote the set of
equivalence classes of complex-valued measurable functions with respect to
the relation ∼. We prove that if Φ : CR → L0 is a linear operator such
that Φ(ecx) 6= 0 for every c ∈ C, then GΦ is discrete (Theorem 5.1). Even
if Φ(f) 6= 0 holds for a single function f of the form

∑n
i=1 pi(x)e

cix, where
each pi is a polynomial, then GΦ must be countable; moreover, the elements
of GΦ must be pairwise commensurable (Theorem 5.2). In the other direc-
tion we show that if G ⊂ R is a group such that the elements of G are
pairwise commensurable, then there is a projection Φ from CR onto the set
of polynomials such that G ⊂ GΦ (Theorem 5.3). (By a projection we mean
an idempotent linear map onto a subspace.)

The methods applied in the cases (i) and (ii) are different, but they both
depend on the solvability of some systems of difference equations. Let K=R

or C. We say that

ni
∑

k=1

aikf(x+ bik) = hi(x) (x ∈ R, i ∈ I)

is a system of difference equations if aik ∈ K, bik ∈ R (i ∈ I, k = 1, . . . , ni),
hi : R → K is a given function for every i ∈ I, and f is the unknown function.
(For a formal definition we refer to the next section.) Theorem 2.2 says
that a system S of difference equations is solvable if and only if every finite
subsystem of S is solvable. It is possible that each hi is Lebesgue measurable,
the system S is solvable, but S does not have measurable solutions. For
example, f(x+ a) − f(x) = 0, f(x+ b) − f(x) = 1 is such a system if a/b
is irrational (see Lemma 4.3).

It can also happen that every finite subsystem of S has a measurable
solution, but S itself does not have measurable solutions (Theorem 4.4). In
this example, all finite subsystems of S have solutions which are trigono-
metric polynomials. On the other hand, if every finite subsystem of S has a
polynomial solution, then S itself has a polynomial solution (Theorem 4.5).
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We also show that if hi is a polynomial for every i and the numbers bik are
rational, then S has a polynomial solution if and only if S is solvable (Theo-
rem 4.7). We conclude this section by formulating some problems concerning
our topic.

Problem 1. What can we say about GΦ if Φ is a projection from B
onto B ∩M?

We remark that, by a theorem of S. A. Argyros [1], a projection from B
onto B ∩M cannot be bounded.

Problem 2. Is it possible to characterize in ZFC the groups GΦ where

Φ : B → M are linear operators fixing the elements of B∩M? In particular ,
is it true that these are exactly the groups of cardinality less than non(N ),
the smallest cardinal of a set of positive Lebesgue outer measure?

Problem 3. Let S be a system of difference equations, and suppose that

every countable subsystem of S has a measurable solution. Does this imply

that S itself has a measurable solution? (1)

2. General systems of difference equations. Let G be a commu-
tative group written additively, and let K be a field. The set of functions
from G to K is denoted by KG. We say that an operator D : KG → KG is
a difference operator if there are elements ai ∈ K and gi ∈ G (i = 1, . . . , n)
such that

(Df)(x) =
n
∑

i=1

aif(x+ gi)

for every f ∈ KG and x ∈ G. The set of all difference operators is denoted
by D. If A ∈ D and a ∈ K then we define aA ∈ D by (aA)f = a(Af). If
A,B ∈ D then the sum and product of A,B are defined by (A + B)f =
Af + Bf and (AB)f = A(Bf). It is easy to check that under these opera-
tions D becomes a commutative algebra. (Clearly, D is the same as the group
ringK[G]; see [4].) Let Tg denote the translation operator Tgf(x) = f(x+g).
Clearly, every difference operator is a linear combination of translation oper-
ators. Moreover, every D ∈ D has a unique representation D =

∑n
i=1 aiTgi

in which g1, . . . , gn are different and a1, . . . , an are non-zero. To see this, it
is enough to show that if

∑n
i=1 aiTgi = 0 where g1, . . . , gn are different, then

a1 = . . . = an = 0. Let f denote the characteristic function of {0}. Then

(

n
∑

i=1

aiTgi

)

f = 0.

(1) Added in proof: recently I gave a negative answer.



OPERATORS COMMUTING WITH TRANSLATIONS 5

Since the value of the left hand side at the point −gi equals ai, this proves
a1 = . . . = an = 0.

We investigate (possibly infinite) systems of difference equations of the
form Dif = hi (i ∈ I), where Di is a given difference operator and hi is a
given function for every i, and f is the unknown function.

Formally, by a system of difference equations we mean a set of pairs
S = {(Di, hi) : i ∈ I}, where Di ∈ D and hi ∈ KG for every i ∈ I. By a
solution of the system S we mean a function f ∈ KG such that Dif = hi

for every i ∈ I.
We say that the system S is non-contradictory if, whenever i1, . . . , in ∈ I,

E1, . . . , En ∈ D and
∑n

j=1 EjDij = 0, then
∑n

j=1Ejhij = 0.

Theorem 2.1. A system S is solvable if and only if it is non-contra-

dictory.

P r o o f. Let f be a solution of S. If
∑n

i=1EiDi = 0, where Ei ∈ D and
(Di, hi) ∈ S for every i = 1, . . . , n, then

n
∑

i=1

Eihi =

n
∑

i=1

Ei(Dif) =
(

n
∑

i=1

EiDi

)

f = 0.

This proves the “only if” part of the theorem. In the other direction, suppose
that S is non-contradictory, and let

A =
{

n
∑

i=1

EiDi : n ∈ N, Ei ∈ D, (Di, hi) ∈ S (i = 1, . . . , n)
}

.

Then A is a subalgebra of D. If A ∈ A and A =
∑n

i=1EiDi, where Ei ∈ D
and (Di, hi) ∈ S for every i = 1, . . . , n, then we define

L(A) =

n
∑

i=1

(Eihi)(0).

The map L : A → K is well-defined. Indeed, if

n
∑

i=1

EiDi =
k

∑

j=1

E′
jD

′
j (Ei, E

′
j ∈ D, (Di, hi), (D

′
j , h

′
j) ∈ S),

then, as S is non-contradictory, we have
∑n

i=1 Eihi =
∑k

j=1 E
′
jh

′
j . Clearly,

L is linear on A. Since A is also a linear subspace of D, L can be extended
to D as a linear map. Let L∗ be an extension, and define

(1) f(x) = L∗(Tx) (x ∈ G).

We claim that f is a solution of S. First we show that

(2) (Df)(0) = L∗(D) for every D ∈ D.
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Since L∗ is linear, it is enough to check this for D = Tg (g ∈ G). Now
(Tgf)(0) = f(g) = L∗(Tg) by the definition of f , which proves (2). Let
(D,h) ∈ S and x ∈ G be given. Then TxD ∈ A, and thus (2) and the
definition of L imply

(Df)(x) = (TxDf)(0) = L∗(TxD) = L(TxD) = (Txh)(0) = h(x).

The following theorem is an immediate corollary of Theorem 2.1.

Theorem 2.2. A system of difference equations is solvable if and only if

each of its finite subsystems is solvable.

We say that D ∈ D is supported by a set H ⊂ G if D =
∑n

i=1 aiTgi ,
where gi ∈ H for every i = 1, . . . , n. The family of all difference operators
supported by H is denoted by DH .

Lemma 2.3. Let S = {(Di, hi) : i ∈ I} be a system of difference equa-

tions, and let H be a subgroup of G such that every Di is supported by H.

If S is contradictory , then there are indices i1, . . . , in ∈ I and difference op-

erators A1, . . . , An ∈ DH such that
∑n

j=1 AjDij = 0 and
∑n

j=1Ajhij 6= 0.

P r o o f. Since S is contradictory, we have
∑n

i=1EiDi=0 and
∑n

j=1 Ejhj

6= 0, with suitable (Di, hi) ∈ S and Ei ∈ D (i = 1, . . . , n). There are
finitely many cosets U j = H + uj (j = 1, . . . , k) of the subgroup H such

that each Ei is supported by
⋃k

j=1 U
j . Let Ei =

∑k
j=1A

j
i , where Aj

i is

supported by U j for every i = 1, . . . , n and j = 1, . . . , k. If we represent
Ei and Di as linear combinations of translations, then the sum

∑n
i=1 EiDi

must be formally equal to zero. Since the terms belonging to different cosets
cannot cancel each other, and the terms of Di belong to H, this implies that
∑n

i=1A
j
iDi = 0 for every j. On the other hand,

0 6=
n
∑

i=1

Eihi =
k

∑

j=1

n
∑

i=1

Aj
ihi,

and thus
∑n

i=1A
j
ihi 6= 0 for at least one j. Fix such a j, and put Ai =

T−uj
Aj

i (i = 1, . . . , n). Since Aj
i is supported by U j = H + uj , we have

Ai ∈ DH for every i. Also,
n
∑

i=1

AiDi = T−uj

n
∑

i=1

Aj
iDi = 0, and 0 6= T−uj

n
∑

i=1

Aj
ihi =

n
∑

i=1

Aihi.

3.Operators on bounded functions. In this section we shall consider
linear operators mapping the class B = {f : R → R : f is bounded} into the
class M = {f : R → R : f is measurable} and satisfying Φ(f) = f for every
bounded measurable f . Recall that GΦ denotes the set of those numbers
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a ∈ R for which Φ commutes with the translation Ta. It is easy to see that
GΦ is a subgroup of R.

We use the notation ∆h = Th − T0 for every h ∈ R; thus

∆hf(x) = f(x+ h)− f(x) (f : R → R, x ∈ R).

Lemma 3.1. Let Φ : B → M be a linear operator such that Φ(f) = f for

every f ∈ B ∩M. Then for every f ∈ B there is g : R → R such that f = g
almost everywhere, and g is periodic mod each element of the set

Pf = {h ∈ GΦ : ∆hf = 0 almost everywhere}.

P r o o f. It is easy to see that Pf is a subgroup of R. If Pf is discrete then
either Pf = {0} or Pf = {na : n ∈ Z} where a is a fixed positive number.
In the first case we put g = f . In the second case let g = f on [0, a), and
let g be periodic mod a.

Suppose that Pf is not discrete. If h ∈ Pf then ∆hf = 0 almost every-
where. Then ∆hf ∈ B∩M and, consequently, Φ(∆hf)=∆hf . Let φ=Φ(f).
If h ∈ GΦ, then Φ commutes with Th and ∆h, and thus

∆hφ = ∆h(Φ(f)) = Φ(∆hf) = ∆hf = 0 a.e.

for every h∈Pf . As Pf is dense and φ is measurable, this implies that φ=c
a.e., where c is a constant. We put g = f − (φ − c). Then g = f a.e., and
∆hg = ∆hf −∆hφ = 0 for every h ∈ Pf .

Theorem 3.2. If Φ : B → M is a linear operator such that Φ(f) = f
for every f ∈ B ∩M, then GΦ is of measure zero.

P r o o f. We apply a variant of Sierpiński’s argument in [5, Théorème II,
p. 24]. The Lebesgue outer measure on R is denoted by λ. Suppose
λ(GΦ) > 0, and let κ = min{card(H) : H ⊂ GΦ, λ(H) > 0}. Choose
H ⊂ GΦ such that λ(H) > 0 and card(H) = κ. We may assume that H is
a group. Let U be a maximal subset of H such that the elements of U are
linearly independent over the rationals. Then

card(U) = card(H) = κ.

Let {uα : α < κ} be a well-ordering of U . Then every x ∈ H \ {0} has a
unique representation of the form

(3) x = r1uα1
+ . . . + rnuαn

,

where n ≥ 1, ri 6= 0, ri ∈ Q and α1 < . . . < αn. Let r(x) denote the
coefficient rn in this representation. Let A={x∈H \ {0} : r(x)> 0}. Since

A ∪ (−A) = H \ {0},

we have λ(A) > 0. We claim that

(4) λ((A+ x)△A) = 0 for every x ∈ H,
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where △ denotes symmetric difference. Let the representation of x be given
by (3) and suppose

y = s1uβ1
+ . . .+ skuβk

∈ (A+ x)△A,

where si 6= 0, si ∈ Q (i = 1, . . . , k) and β1 < . . . < βk. We prove that
βk ≤ αn. Indeed, if αn < βk then y ∈ A ⇔ y − x ∈ A, which contradicts
y ∈ (A+x)△A. Therefore every non-zero element of (A+x)△A is a linear
combination of the numbers uβ (β ≤ αn) with rational coefficients. Thus

card((A+ x)△A) ≤ card(αn) < κ,

and then λ((A+ x)△A) = 0 by the choice of κ. This proves (4).
Let f be the characteristic function of A; then H ⊂ Pf by (4). Applying

Lemma 3.1, we obtain a function g such that f = g a.e., and g is periodic
mod each element of H. Since λ(A) > 0, there is a point x∈A such that
g(x) = f(x) = 1. If h ∈ (−A) ⊂ H then g(h) = g(0) = g(x) = 1, since g is
periodic mod h and also mod x. Thus g=1 on −A. Now, since A∩(−A)=0,
we have f = 0 on −A, and hence g = 0 at almost every point of −A. This,
however, contradicts λ(−A) = λ(A) > 0.

In the following theorem we give a “lower estimate” for the possible sizes
of the groups GΦ. Let N denote the ideal of sets of Lebesgue measure zero.
We put

add(N ) = min
{

card(A) : A ⊂ N ,
⋃

A 6∈ N
}

;

then ω < add(N ) ≤ 2ω.

Theorem 3.3. Let G be a subgroup of R with card(G) < add(N ). Then

there is a linear operator Φ : B → M such that Φ(f) = f for every f ∈
B ∩M, and G ⊂ GΦ.

P r o o f. By Theorem 1.2 there exists a linear operator Ψ : B → B ∩
M such that Ψ commutes with every translation, and Ψ(f) = f almost
everywhere for each f ∈ B ∩M. Our aim is to construct a linear operator
Φ : B → M such that Φ(f) = f for every f ∈ B ∩ M, G ⊂ GΦ, and
Φ(f) = Ψ(f) a.e. for every f ∈ B. Let W denote the set of pairs (V,Φ) with
the following properties:

(i) V is a G-invariant subspace of B containing B ∩M;
(ii) Φ : V → M is a linear operator commuting with translations by

elements of G;
(iii) Φ(f) = f for every f ∈ B ∩M; and
(iv) Φ(f) = Ψ(f) a.e. for every f ∈ V .

Then W is non-empty, as (B ∩M, identity) ∈ W. We define a partial order
on W by writing (V1, Φ1) ≤ (V2, Φ2) if V1 ⊂ V2 and Φ2 is an extension of Φ1.
By Zorn’s lemma there is a maximal (V,Φ) ∈ W. In order to prove the
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theorem, it is enough to show that V = B. Suppose this is not true, and
let f0 ∈ B \ V . Let DG denote the set of difference operators of the form
∑n

i=1 aiTgi , where ai ∈ R and gi ∈ G for every i = 1, . . . , n, and let

(5) S = {(D,h) : D ∈ DG, Df0 ∈ V, h = Φ(Df0)}.

We claim that S is non-contradictory. By Lemma 2.3, it is enough to show
that if Ai ∈ DG and (Di, hi) ∈ S are such that

∑n
i=1 AiDi = 0, then

∑n
i=1Aihi = 0. Since G ⊂ GΦ, it follows that Φ commutes with each

element of DG. Therefore
n
∑

i=1

Aihi =

n
∑

i=1

AiΦ(Dif0) =

n
∑

i=1

Φ(AiDif0) = Φ
(

n
∑

i=1

AiDif0

)

= Φ(0) = 0,

and thus S is non-contradictory. By Theorem 2.1, this implies that S is
solvable.

Let EG = {D ∈ DG : D(f0) ∈ V }; then EG is a linear subspace of DG.
Since the translations Tg (g ∈ G) generate DG, we have dimDG ≤ card(G).
Therefore dim EG ≤ card(G), and we can choose a basis UG of EG such that
card(UG) ≤ card(G). If D ∈ EG then Df0 ∈ V and thus the set

AD = {x ∈ R : Φ(Df0)(x) 6= Ψ(Df0)(x)}

is of measure zero. We put

A =
⋃

{AD : D ∈ UG}.

Since card(UG) ≤ card(G) < add(N ), we have A ∈ N . We claim that if
D ∈ EG then

(6) Φ(Df0)(x) = Ψ(Df0)(x) for every x 6∈ A.

Indeed, as UG is a basis of EG, we have D =
∑n

i=1 aiDi, where ai ∈ R and
Di ∈ UG for every i = 1, . . . , n. If x 6∈ A then Φ(Dif0)(x) = Ψ(Dif0)(x) for
every i and thus (6) follows by the linearity of Φ and Ψ .

We define

C = A+G = {a+ g : a ∈ A, g ∈ G} =
⋃

g∈G

(A+ g).

Then C ∈ N , as card(G) < add(N ). Let f1 be a solution of S defined in (5),
and put

f∗(x) =

{

f1(x) if x ∈ C,
Ψ(f0)(x) if x 6∈ C.

We show that f∗ is also a solution of the system S. Let (D,h) ∈ S. If
x ∈ C then x+g ∈ C for every g ∈ G, and thus (Df∗)(x) = (Df1)(x) = h(x),
since f1 is a solution of S. On the other hand, if x 6∈ C then x+ g 6∈ C for
every g ∈ G, which implies

(Df∗)(x) = (D(Ψ(f0)))(x) = Ψ(Df0)(x) = Φ(Df0)(x) = h(x)
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by (6). Now we define

Φ∗(v +Df0) = Φ(v) +Df∗ (v ∈ V, D ∈ DG).

Using the fact that f∗ is a solution of S it is easy to check that Φ∗ is a
well-defined extension of Φ onto the subspace

V ∗ = {v +Df0 : v ∈ V, D ∈ DG}.

Also, Φ∗ commutes with translations by the elements of G. Indeed, if g ∈ G
then

Φ∗(Tg(v +Df0)) = Φ∗(Tgv + TgDf0)

= Φ(Tgv) + TgDf∗ = TgΦ(v) + TgDf∗

= Tg(Φ(v) +Df∗) = TgΦ
∗(v +Df0).

Let v ∈ V and D ∈ DG. Since λ(C) = 0 and Ψ(v) = Φ(v) a.e., we
have Φ∗(v + Df0) = Ψ(v + Df0) a.e. Therefore the pair (V ∗, Φ∗) satisfies
the conditions (i)–(iv). This, however, contradicts the maximality of (V,Φ),
completing the proof.

The results of Theorems 3.2 and 3.3 are rather far apart. Next we show
that, under some set-theoretical assumptions, this gap can be filled; this will
also indicate that the result of Theorem 3.3 is probably closer to the truth
than that of Theorem 3.2. We shall use the additional notation

non(N ) = min{card(A) : A ⊂ R, A 6∈ N}; and

cof(N ) = min{card(A) : A ⊂ N , and

for every X ∈ N there is Y ∈ A such that X ⊂ Y }.

It is well known that

ω < add(N ) ≤ non(N ) ≤ cof(N ) ≤ 2ω.

Theorem 3.4. Suppose that non(N ) = cof(N ) = κ. If Φ : B → M is a

linear operator such that Φ(f) = f for every f ∈ B∩M, then card(GΦ) < κ.

P r o o f. Suppose that card(GΦ)≥κ. Then there is a subset U⊂GΦ such
that the elements of U are linearly independent over Q and card(U) = κ.
Let {gα : α < κ} be a well-ordering of U , and let Gα denote the group
generated by {gβ : β < α}.

Since κ = cof(N ), there is a family {Nα : α < κ} ⊂ N such that for
every N ∈ N there is an α < κ such that N ⊂ Nα.

We define a transfinite sequence of real numbers cα as follows. We put
c0 = 0. Let 0 < α < κ and suppose that cβ are defined for every β < α.
Then the cardinality of the set

Hα =
⋃

β<α

(Gβ + cβ − gα) ∪
⋃

β<α

(Gα + cβ)
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is less than κ, and thus Hα ∈ N . Therefore we can select a point

(7) cα 6∈ Nα ∪ (Nα − gα) ∪Hα,

since the set on the right hand side is of measure zero. In this way we have
selected the points cα for every α < κ. Now we define A =

⋃

α<κ(Gα + cα),
and prove that λ((A + gα) △ A) = 0 for every α < κ. If β > α then
Gβ + cβ + gα = Gβ + cβ , since Gβ is a group containing gα. Therefore

(A+ gα)△A ⊂
⋃

β≤α

[(Gβ + cβ + gα)△ (Gβ + cβ)].

This implies card((A+gα)△A) < κ = non(N ), and thus λ((A+gα)△A) = 0,
as we stated.

Let f denote the characteristic function of A. Then ∆hf=0 a.e. for every
h ∈ {gα : α < κ} and thus, by Lemma 3.1, there is a function g : R → R such
that f = g a.e. and g is periodic mod each gα. Since {x : f(x) 6= g(x)} ∈ N ,
there is α < κ such that {x : f(x) 6= g(x)} ⊂ Nα. Therefore

(8) g(x) =

{

1 for every x ∈ A \Nα,
0 for every x ∈ R \ (A ∪Nα).

Next we prove that

(9) cα ∈ A \Nα and cα + gα ∈ R \ (A ∪Nα).

Since cα ∈ Gα + cα and cα 6∈ Nα by (7), we have cα ∈ A \ Nα. Also,
cα + gα 6∈ Nα by (7), so it remains to show that cα + gα 6∈ A. If β < α
then cα 6∈ Hα gives cα + gα 6∈ Gβ + cβ . If β > α, then cβ 6∈ Hβ implies
cβ 6∈ Gβ + cα, and thus cα + gα 6∈ Gβ + cβ , taking into account that Gβ is a
group containing gα. Finally, cα + gα 6∈ Gα + cα; that is, gα 6∈ Gα, since the
elements gγ (γ ≤ α) are linearly independent over the rationals. This shows

cα + gα 6∈
⋃

γ<κ

(Gγ + cγ) = A,

and hence (9) is proved.
Comparing (8) and (9) we obtain g(cα) = 1 and g(cα + gα) = 0. This,

however, contradicts the fact that g is periodic mod gα.

Theorem 3.5. Assume Martin’s axiom.

(i) If Φ : B → M is a linear operator such that Φ(f) = f for every

f ∈ B ∩M, then card(GΦ) < 2ω.
(ii) If G ⊂ R is a group with card(G) < 2ω then there is a linear operator

Φ : B → M such that Φ(f) = f for every f ∈ B ∩M and G ⊂ GΦ.

P r o o f. Martin’s axiom implies that add(N ) = non(N ) = cof(N ) = 2ω

(see [2, Theorem2.21, p. 59]). Thus the statement follows from Theorems 3.3
and 3.4.
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4. Some special systems of difference equations. Let G and K be
as in Section 2. Recall that ∆g denotes the difference operator Tg−T0. Then
we have ∆gf(x) = f(x+ g) − f(x) for every f ∈ KG and x ∈ G.

The elements g, h ∈ G are said to be independent if ng+kh = 0 (n, k ∈ Z)
implies n = k = 0.

Lemma 4.1. Suppose that g, h ∈ G are independent , and let H denote

the group generated by g and h. Let p, q are positive integers, A,B ∈ DH ,
and suppose A∆p

g =B∆q
h. Then there is a C ∈DH such that A=C∆q

h and

B = C∆p
g.

P r o o f. Every element of DH is a linear combination of translation oper-
ators of the form Tng+kh. If n, k ≥ 0 then Tng+kh = Tn

g T
k
h , and hence every

D ∈ DH is of the form

D = TN
−gT

N
−hp(Tg, Th),

where p ∈ K[x, y], that is, p is a polynomial in two variables with coeffi-
cients from K. Let φ(D) = p(x, y)x−Ny−N . It is easy to check that φ is
a well-defined map from DH into K(x, y), and that φ is an algebra iso-
morphism between DH and the algebra of rational functions of the form
p(x, y)x−Ny−N , where p ∈ K[x, y] and N is a non-negative integer.

Suppose that A,B ∈ DH and A∆p
g = B∆q

h. Let φ(A) = p(x, y)x−Ny−N

and φ(B) = q(x, y)x−Ny−N (p, q ∈ K[x, y], N ≥ 0). From φ(∆g) = x − 1,
φ(∆h) = y − 1 it follows that p(x, y)(x − 1)p = q(x, y)(y − 1)q . Since there
is unique factorization in K[x, y], this implies that p(x, y) = r(x, y)(y − 1)q

and q(x, y) = r(x, y)(x− 1)p with a suitable r ∈ K[x, y]. If

C = r(Tg, Th)T
N
−gT

N
−h,

then we have A = C∆q
h and B = C∆p

g.

Lemma 4.2. Suppose that g, h ∈ G are independent , p, q are positive

integers, and u, v ∈ KG. Then the system ∆p
gf = u, ∆q

hf = v is solvable if

and only if ∆q
hu = ∆p

gv.

P r o o f. LetH denote the group generated by g and h. By Lemma2.3, the
system is non-contradictory if and only if A,B ∈ DH and A∆p

g = B∆q
h imply

Au = Bv. Thus the statement follows from Theorem 2.1 and Lemma 4.1.

In the sequel we consider the case when G = R and K = C.

Lemma 4.3. Let f ∈ CR be measurable, and suppose that

∆n
af(x) = 0 and ∆m

b f(x) = c

for almost every x, where a/b is irrational , 0 < n ≤ m are integers, and c
is a constant. Then c = 0, and f equals a.e. a polynomial of degree < n.
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P r o o f. In the course of the proof, by equality of functions we mean
equality almost everywhere. Suppose first n = m = 1. Then we have

f(x+ kb)− f(x) =

k−1
∑

i=0

∆bf(x+ ib) = kc.

Let jk ∈ Z be such that hk = kb − jka ∈ [0, |a|]. Since ∆af = 0, we have
f(x+ hk)− f(x) = f(x+ kb)− f(x) = kc; that is,

1

k
f(x+ hk) = c+

1

k
f(x)

for every k. However, the sequence of functions f(x + hk)/k converges in
measure to zero on every interval [u, v], since

λ

({

x ∈ [u, v] :

∣

∣

∣

∣

1

k
f(x+ hk)

∣

∣

∣

∣

≥ε

})

≤λ({x ∈ [u, v + |a|] : |f(x)|≥kε}) → 0

as k → ∞. This gives c = 0, and hence ∆af = ∆bf = 0. This implies that
∆ia+jbf = 0 for every i, j ∈ Z. Since the set {ia+jb : i, j ∈ Z} is everywhere
dense, it follows that if x, y are points of approximate continuity of f , then
f(x) = f(y). But f is approximately continuous almost everywhere, so that
f is constant almost everywhere.

Next we consider the case when n = 1 and m is arbitrary. We prove the
statement by induction on m. The case m = 1 was proved above, so we may
assume that m > 1 and that the statement is true for m− 1. Let g = ∆bf .
Then g is measurable and ∆ag = 0 and ∆m−1

b g = c. By the induction
hypothesis this implies that c = 0 and g is constant; that is, ∆bf = d.
According to the case n = m = 1, this implies that f is constant.

Finally, we prove the general statement by induction on n (for arbitrary
m ≥ n). The case n = 1 was proved above, so we may assume that n > 1 and
that the statement is true for n − 1. Let g = ∆af . Then g is measurable
and ∆n−1

a g = 0 and ∆m
b g = 0. By the induction hypothesis, this gives

∆af = g = p, where p is a polynomial of degree < n − 1. Let q be a
polynomial of degree < n such that ∆aq = p, and put h = f − q. Then
∆ah = ∆af −∆aq = p− p = 0 and ∆m

b h = ∆m
b f −∆m

b q = c− 0 = c. This
implies, according to the case n = 1, that c = 0 and h is constant. Then f
equals the polynomial q + h of degree < n.

Let S = {(Di, hi) : i ∈ I} be a system of difference equations (we
still consider the case G = R and K = C). The system S can have a
measurable solution only if hi is measurable for every i and if S is non-
contradictory. However, this condition is not sufficient for the existence of a
measurable solution. Consider the system ∆af = 0, ∆bf = 1, where a/b is
irrational. This system is non-contradictory by Lemma 4.2, but, according
to Lemma 4.3, does not have a measurable solution.
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This example, together with Theorem 2.2, motivates the following ques-
tion. Suppose that every finite subsystem of S has a measurable solution.
Does this imply that S itself has a measurable solution? We show next that
the answer is negative.

Theorem 4.4. There exists a system S such that every finite subsystem

of S has a solution which is a trigonometric polynomial , but S itself does

not have a measurable solution.

P r o o f. Let e(x) = e2πix and an = 2−n. Then

∆an
e(2jx) = εj,ne(2

jx),

where εj,n = e(2j−n) − 1. Note that εj,n = 0 if and only if j ≥ n. Let
cj (j = 0, 1, . . .) be a sequence of complex numbers, and consider the system
S of the equations

∆an
f = hn, where hn =

n−1
∑

j=0

cjεj,ne(2
jx) (n = 1, 2, . . .).

Then the trigonometric polynomial
∑n−1

j=0 cje(2
jx) is a solution of the first

n equations of S. On the other hand, we shall choose the numbers cj in such
a way that S does not have measurable solutions.

If f : R → C is measurable and an → 0, then the sequence of functions
∆an

f converges in measure to zero on every bounded interval. Therefore,
if S has a measurable solution, then hn should converge in measure to zero
on [0, 1]. But we can prevent this by a suitable choice of the sequence cj .
We define cj inductively. If cj has been defined for every j < n − 1, then
we choose cn−1 so large that λ({x ∈ [0, 1] : |hn(x)| > 1}) > 1/2. This
is possible since εn−1,ne(2

n−1x) 6= 0 in [0, 1]. Therefore, with this choice,
hn does not converge (in measure) to zero on [0, 1], and thus S cannot have
measurable solutions.

Our next aim is to show that a similar example with polynomials instead
of trigonometric polynomials does not exist. Moreover, the following is true.

Theorem 4.5. A system S has a polynomial solution if and only if every

at most two-element subsystem of S has a polynomial solution.

Let D =
∑n

i=1 aiTbi be a difference operator, where bi 6= bj for every
i 6= j. Let sk =

∑n
i=1 aib

k
i (k = 0, 1, . . .). We define the order of D to be

min{k : sk 6= 0}. Since the determinant of the elements bki (i = 1, . . . , n;
k = 0, . . . , n− 1) is non-zero, it follows that if D 6= 0 then the order of D is
not greater than n− 1.
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Lemma 4.6. Let D be a non-zero difference operator of order m. Then

(i) A polynomial f(x) =
∑N

i=0 cix
i satisfies Df = 0 if and only if ci = 0

for every i ≥ m; and

(ii) if p is a polynomial of degree r then there is a polynomial f of degree

r +m such that Df = p.

P r o o f. It is easy to check that Dxi = 0 if i <m, and Dxi is a poly-
nomial of degree i − m if i ≥ m. This gives (i). This also implies that
choosing the coefficients cr+m, cr+m−1, . . . , cm appropriately (in this order),
D(cm+rx

m+r + cm+r−1x
m+r−1 + . . . + cmxm) can be any prescribed poly-

nomial of degree r.

Proof of Theorem 4.5. We only have to prove the “if” statement. Let
S = {(Dj , pj) : j ∈ I}. Since Djf = pj has a polynomial solution, it follows
that pj itself has to be a polynomial for every j ∈ I. Also, Dj = 0 implies
pj = 0. Deleting those pairs (Dj , pj) for which Dj = 0, we may assume that
Dj 6= 0 for every j ∈ I.

Let mj be the order of Dj and let rj be the degree of pj . Lemma 4.6

implies that there are numbers cji (i = mj ,mj + 1, . . .) such that cji = 0 for

every i > mj + rj , and a polynomial f(x) =
∑N

i=0 cix
i satisfies Djf = pj

if and only if N ≥ mj + rj , and ci = cji for every mj ≤ i ≤ N . Since
any two-element subsystem of S has a polynomial solution, the sequences
cji must be compatible, that is, if j1, j2 ∈ I and i ≥ max(mj1 ,mj2) then

cj1i = cj2i . Consequently, there exists an infinite sequence ci (i = 0, 1, . . .)

such that ci = cji for every j ∈ I and i ≥ mj . Then f(x) =
∑∞

i=0 cix
i is a

polynomial that satisfies Djf = pj for every j ∈ I.

In Theorem 4.4 we constructed a system S = {(Dn, hn)} with the fol-
lowing properties: Dn is supported by the rationals for every n, S is non-
contradictory, hn is a trigonometric polynomial for every n, but S does not
have measurable solutions. We next show that this phenomenon cannot
happen for polynomials.

Theorem 4.7. Let S = {(Di, pi) : i ∈ I} be a system such that every Di

is supported by the rationals. Then S has a polynomial solution if and only

if S is non-contradictory and pi is a polynomial for every i ∈ I.

For the proof we shall need the notion of transform. If D =
∑n

i=1 aiTbi

is a difference operator, then the transform of D is D∧(z) =
∑n

i=1 aie
biz, as

a function defined on C. It is easy to check that if D 6= 0 then D∧ is not
identically zero. We also have (A + B)∧ = A∧ + B∧ and (AB)∧ = A∧B∧

for every A,B ∈ D.
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Proof of Theorem 4.7. The “only if” part is obvious, so we need only
prove the “if” part. Suppose that S is non-contradictory, and that pi is a
polynomial for every i ∈ I.

If Di = 0 for an i ∈ I then pi = 0, since otherwise S would be contra-
dictory. That is, we may assume Di 6= 0 for every i ∈ I, since otherwise we
delete from S those pairs (Di, pi) in which Di = 0.

By Theorem 4.5, it is enough to show that if j, k ∈ I then the system
Djf = pj , Dkf = pk has a polynomial solution. Let Dj =

∑n
i=1 aiTbi and

Dk =
∑m

i=1 ciTdi
where b1 < . . . < bn and d1 < . . . < dm. Then (Dj)

∧ =
∑n

i=1 aie
bit and (Dk)

∧ =
∑m

i=1 cie
dit. Since, by assumption, the numbers

bi, di are rational, there is an integer N > 0 and there are polynomials
P,Q ∈ C[x] such that

(Dj)
∧(t) = eb1tP (et/N ), (Dk)

∧(t) = ed1tQ(et/N ).

Let R be the g.c.d. of P and Q, and choose polynomials S, T such that
PS +QT = R. Let A,B ∈ D be chosen with

A∧(t) = e−b1tS(et/N ) and B∧(t) = e−d1tT (et/N ).

If E = DjA+DkB, then

E∧ = (Dj)
∧A∧ + (Dk)

∧B∧ = P (y)S(y) +Q(y)T (y) = R(y) (y = et/N ).

Since R 6= 0, this gives E 6= 0. Thus, by Lemma 4.6(ii), there is a polynomial
f such that Ef = Apj +Bpk. We shall complete the proof by showing that
f satisfies both Djf = pj and Dkf = pk.

Since R divides P , there is a polynomial U with P = RU . Let F ∈D be
chosen with F∧(t) = eb1tU(et/N ). Then

(EF )∧ = R(y)eb1tU(y) = eb1tP (y) = (Dj)
∧(y) (y = et/N ),

so that Dj = EF . Therefore Dj = (DjA + DkB)F and (T0 − FA)Dj =
FBDk. Since the system S is non-contradictory, this implies (T0−FA)pj =
FBpk and

pj = F (Apj +Bpk) = F (Ef) = Djf.

We obtain pk = Dkf in the same way.

5. Operators on arbitrary functions. First we show that Theorem
1.1 does not have an analogue for operators defined on the set CR of all
complex-valued functions defined on R. If we factorize the space of complex-
valued measurable functions with respect to the equivalence relation f ∼ g
⇔ f = g a.e., then we obtain the space L0.

Theorem 5.1. Let Φ : CR→L0 be a linear operator such that Φ(ecx) 6=0
for every c ∈ C. Then GΦ is discrete.
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P r o o f. Suppose that G = GΦ is not discrete; then G is dense. We
prove first that for every c ∈ C there is a non-zero constant K(c) such that
Φ(ecx) = K(c)ecx. (Since Φ maps into L0, by equality of functions we mean
equality almost everywhere.) Fix c, and put Φ(ecx) = s. If g ∈ G then Φ
commutes with Tg , and thus

(10) Tgs = TgΦ(e
cx) = Φ(Tge

cx) = Φ(ecx+cg) = ecgs.

Let y ∈ R be arbitrary, and let gn ∈ G be a sequence converging to y.
Since s is measurable, the sequence of functions Tgns converges in measure to
Tys on every compact interval. On the other hand, ecgns → ecys pointwise,
thus (10) gives Tys = ecys for every y ∈ R. Let A = {(u, y) ∈ R2 : s(u+ y)
6= ecys(u)}. Then A is measurable, and each horizontal section of A is of
measure zero. Then, by Fubini’s theorem, almost every vertical section of A
is also of measure zero. Let u be such that the section Au={y : (u, y)∈A} is
of measure zero. Then s(u+y) = ecys(u) for a.e. y, and thus s(x) = K(c)ecx

a.e., where K(c) = e−cus(u). Since s 6= 0 by assumption, we have K(c) 6= 0.
Next we show that the elements of G are pairwise commensurable. Let

0 and 1 denote the identically 0 and identically 1 function, respectively, and
put s = Φ(1). Then, as we proved above, s = K(0)·1 is a non-zero constant.
Suppose that a, b ∈ G are not commensurable. Then, by Lemma 4.2, the
system of difference equations ∆af = 0, ∆bf = 1 is solvable. Let f be a
solution, and put h = Φ(f). Then

∆ah = ∆aΦ(f) = Φ(∆af) = Φ(0) = 0,

∆bh = ∆bΦ(f) = Φ(∆bf) = Φ(1) = s.

Since s is a non-zero constant and h ∈ L0, this contradicts Lemma 4.3. This
proves that the elements of G are pairwise commensurable.

By rescaling R if necessary, we may assume that 1∈G. Then G⊂Q. We
prove that there is a sequence of positive integers n0 < n1 < . . . such that
nk divides nk+1 and 1/nk ∈ G for every k. Let n0 = 1, and suppose that nk

has been chosen. Since G is dense, there is g ∈ G such that 0 < g < 1/nk.
Let H denote the (additive) group generated by g and 1/nk. Since g ∈ Q,
H is discrete, and thus H={ka : k∈Z} with a suitable positive number a.
We put nk+1 = 1/a. Then 1/nk ∈ H implies that nk+1 is an integer multiple
of nk, and g ∈ H shows that nk+1 > nk.

We write ak = 1/nk for every k = 0, 1, . . . Our aim is to construct a
sequence of trigonometric polynomials hk such that the system

(11) ∆ak
f = hk (k = 0, 1, . . .)

is solvable, but the system

(12) ∆ak
f = Φ(hk) (k = 0, 1, . . .)

does not have any measurable solution. This will provide the contradiction
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we are looking for, since if f is a solution of (11), then Φ(f) is a measurable
solution of (12), as Φ commutes with each ak.

In the following construction we repeat the argument of the proof of
Theorem 4.4. Let e(x) = e2πix. Then

∆ak
e(njx) = ηj,ke(njx),

where ηj,k = e(nj/nk) − 1. Note that εj,k = 0 if and only if j ≥ k. Let cj
(j = 0, 1, . . .) be a sequence of complex numbers, and define

hk =
k−1
∑

j=0

cjηj,ke(njx) (k = 1, 2, . . .).

Then the trigonometric polynomial
∑k−1

j=0 cje(njx) is a solution of the first k
equations of the system (11). Thus every finite subsystem of (11) is solvable.
By Theorem 2.2, this implies that (11) itself is solvable.

On the other hand, we shall choose the numbers cj in such a way that
(12) does not have measurable solutions. If f : R → C is measurable and
ak → 0, then the sequence of functions ∆ak

f converges in measure to 0 on
every bounded interval. Therefore, if (12) has a measurable solution, then
Φ(hk) should converge in measure to zero on [0, 1]. But we can prevent this
by a suitable choice of the sequence cj . We define cj inductively. If cj has
been defined for every j < k − 1, then we choose ck−1 so large that

λ({x ∈ [0, 1] : |Φ(hk)(x)| > 1}) > 1/2.

This is possible since

ηk−1,kΦ(e(nk−1x)) = ηk−1,kK(2πink−1)e(nk−1x) 6= 0

in [0, 1]. Therefore, with this choice, Φ(hk) does not converge in measure to
zero on [0, 1], and thus (12) cannot have measurable solutions.

In the first part of the proof of Theorem 5.1 we showed that if Φ(ecx) 6= 0
for any c ∈ C, then the elements of GΦ must be commensurable. The next
theorem generalizes this result. By a polynomial-exponential function we
mean a function of the form

∑n
i=1 pi(x)e

cix, where pi is a polynomial and
ci ∈ C for every i.

Theorem 5.2. Let Φ : CR → L0 be a linear operator , and suppose that

there is a polynomial-exponential function h such that Φ(h) 6= 0. Then the

elements of the group GΦ are pairwise commensurable.

P r o o f. Let h(x) =
∑n

i=1 pi(x)e
cix, where pi is a polynomial and ci ∈ C

for every i. If Φ(h) 6= 0, then there is an i such that Φ(pi(x)e
cix) 6= 0. Let

Φ1(g) = e−cixΦ(gecix) (g ∈ CR).
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Then Φ1 is also a linear operator from CR into L0, Φ1(pi) 6= 0, and, as an
easy computation shows, GΦ1

= GΦ.

Therefore, we may assume that h itself is a polynomial. We may also
suppose that G = GΦ is everywhere dense, since otherwise G is discrete,
and the statement of the theorem is obviously satisfied.

Let n be the smallest integer for which there exists a polynomial p of
degree n such that Φ(p) 6= 0. If g ∈ G then ∆gp is a polynomial of degree
n − 1 and thus Φ(∆gp) = 0. Since Φ and ∆g commute, this implies that
∆g(Φ(p)) = 0 for every g ∈ G. As Φ(p) is measurable and G is dense, this
implies that Φ(p) is constant. We may assume that p is a monic polynomial
and that Φ(p) = 1. Therefore, if q is a polynomial of degree n with leading
coefficient an, then Φ(q) = an · 1.

The function Φ(1) is also constant. Indeed, if n = 0 then 1 = p and thus
Φ(1) = 1. If n > 0, then Φ(1) = 0 by the choice of n.

Suppose that the elements of G are not commensurable, and let a, b ∈ G
be such that a/b is irrational. Then, by Lemma 4.2, there is a function s
such that ∆as = 0 and ∆n

b s = 1. Then ∆a(Φ(s)) = 0 and ∆n
b (Φ(s)) = c · 1.

Since Φ(s) is measurable, it follows from Lemma 4.3 that Φ(s) is constant.
We shall distinguish between two cases.

Case I: Φ(s) = d · 1 where d 6= 0. Let q be a polynomial of degree n
such that ∆bp = ∆aq. Then the system

∆af = p, ∆bf = q + es

is solvable for every e ∈ C, since ∆bp = ∆a(q+ es) = ∆aq. If f is a solution
then ∆a(Φ(f)) = 1 and ∆b(Φ(f))=Φ(q) + ed · 1. Since q is a polynomial of
degree n, Φ(q) is constant, and we can choose e such that ∆b(Φ(f)) = 0. In
this case, however, ∆a(Φ(f)) = 1 contradicts Lemma 4.3.

Case II: Φ(s) = 0. Let r be a polynomial of degree n such that ∆n
b r = 1,

and let h = s− r. Then

∆n
b h = ∆n

b s−∆n
b r = 1− 1 = 0,

and Φ(h) = Φ(s) − Φ(r) is a non-zero constant. Let t be a polynomial of
degree n such that ∆n

b p = ∆n
at. Then the system

∆n
af = p+ eh, ∆n

b f = t

is solvable, since ∆n
b (p+ eh) = ∆n

b p = ∆n
at. If f is a solution, then

∆n
a(Φ(f)) = 1+ eΦ(h) and ∆n

b (Φ(f)) = Φ(t).

Since Φ(h) and Φ(t) are both non-zero constants, we can choose e such that
∆n

a(Φ(f))=0, and∆n
b (Φ(f)) is a non-zero constant. This, again, contradicts

Lemma 4.3, completing the proof.
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We conclude with three constructions of linear operators that commute
with the elements of a prescribed group.

First we note that if V is a translation-invariant subspace of CR, then for
every discrete group G there is a projection Φ : CR → V such that G ⊂ GΦ.
Indeed, let G = {ka : k ∈ Z}, where a > 0. Let V0 = {f |[0,a) : f ∈ V }; then

V0 is a linear subspace of C[0,a), the space of all complex-valued functions
defined on [0, a). Let Ψ : C[0,a) → V0 be a projection, that is, a linear map
such that Ψ(g) = g for every g ∈ V0. Then we define

Φ(f)(x) = Ψ((Tkaf)|[0,a))(x− ka)

for every f ∈ CR and x ∈ R, where k is the unique integer such that
ka ≤ x < (k + 1)a. It is easy to check that Φ satisfies the requirements.

Our next construction is a complement to Theorem 5.2. We denote by
P the set of polynomials.

Theorem 5.3. Let G be a subgroup of R such that the elements of G
are pairwise commensurable. Then there is a projection Φ : CR → P such

that G ⊂ GΦ.

P r o o f. We may assume that G = Q. Let W denote the set of those
pairs (V,Φ) in which V is a Q-invariant subspace of CR containing P, and
Φ : V → P is a projection commuting with rational translations. Then W is
non-empty, as (P, identity) ∈ W. We define a partial order on W by writing
(V1, Φ1) ≤ (V2, Φ2) if V1 ⊂ V2 and Φ2 is an extension of Φ1. By Zorn’s lemma
there is a maximal (V,Φ) ∈ W. In order to prove the theorem, it is enough
to show that V = CR. Suppose this is not true, and let f0 ∈ CR \ V . Then
V ∗ = {v +Df0 : v ∈ V, D ∈ DQ} is the smallest linear subspace of CR that
contains V ∪ {f0} and which is invariant under rational translations. We
prove that Φ can be extended to V ∗ as a linear operator commuting with
rational translations. Since (V,Φ) is maximal, this will be a contradiction,
proving the theorem. Let

S = {(D, p) : D ∈ DQ, Df0 ∈ V, p = Φ(Df0)}.

We claim that the system S is non-contradictory. By Lemma 2.3, it
is enough to show that if Ai ∈ DQ and (Di, pi) ∈ S (i = 1, . . . , n), then
∑n

i=1AiDi = 0 implies
∑n

i=1 Aipi = 0. Since Φ commutes with rational
translations, it also commutes with the elements of DQ, and thus we have

n
∑

i=1

Aipi =

n
∑

i=1

AiΦ(Dif0) =

n
∑

i=1

Φ(AiDif0)

= Φ
((

n
∑

i=1

AiDi

)

f0

)

= Φ(0) = 0.

Then S is non-contradictory, as we stated.
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By Theorem 4.7, S has a polynomial solution. Let q be such a solution;
then Dq = p for every (D, p) ∈ S. Let Φ∗(v +Df0) = Φ(v) +Dq for every
v ∈ V and D ∈ DQ. It is easy to check that Φ∗ is a well-defined extension
of Φ and that it commutes with rational translations.

Our third construction is also related to Theorem 5.2. It shows that if
f0 has linearly independent translates (that is, if Df0 6= 0 for every D ∈ D,
D 6= 0), then there is a linear operator Φ : CR → P such that Φ(f0) 6= 0,
and Φ commutes with every translation.

Theorem 5.4. Let f0 ∈ CR be a function with linearly independent trans-

lates. Then there exists a linear operator Φ mapping CR into the set of poly-

nomials such that Φ(f0) = 1 and GΦ = R.

P r o o f. Let V be a maximal translation-invariant subspace of CR that
does not contain any function of the form Af0 (A ∈ D, A 6= 0). Zorn’s
lemma easily implies that such a maximal subspace exists. Then for every
f ∈ CR there are v ∈ V and A,D ∈ D such that D 6= 0 and v +Df = Af0.
Indeed, if f ∈ V then we may take v = −f , D = T0 (the identity operator)
and A = 0. On the other hand, if f 6∈ V , then the set {v+Df : v ∈ V, D ∈
D} is a translation-invariant subspace of CR strictly larger than V . By the
maximality of V , there are difference operators A,D such that A 6= 0 and
v +Df = Af0. Clearly, this implies D 6= 0.

If v + Df = Af0 (v ∈ V ; D,A ∈ D, D 6= 0) then we define φf (z) =
A∧(z)/D∧(z). This definition makes sense, that is, φf is independent of v, A
and D. Indeed, suppose that v′+D′f = A′f0, where v

′ ∈ V and D′, A′ ∈ D,
D′ 6= 0. Then Dv′ − D′v = (DA′ − D′A)f0. Since Dv′ − D′v ∈ V , this
implies that DA′ = D′A, D∧A′∧ = D′∧A∧ and A∧/D∧ = A′∧/D′∧.

We show that the map f 7→ φf is linear. Let f ∈ CR and a ∈ R. If
v + Df = Af0 then av + D(af) = aAf0, from which φaf = (aA)∧/D∧ =
aA∧/D∧ = aφf . If v +Df = Af0 and w + Eg = Bf0 then (Ev + Dw) +
DE(f + g) = (EA+DB)f0. If D,E 6= 0 then DE 6= 0 and thus

φf+g = (EA+DB)∧/(DE)∧ = (A∧/D∧) + (B∧/E∧) = φf + φg.

If φ(z) is a meromorphic function on the complex plane then we denote
by Lφ the constant term of the Laurent expansion of φ around zero. Then
L is a linear functional, and for every φ, the function x 7→ L(φ(z)exz) is a
polynomial. Indeed, if φ(z) =

∑∞

n=−k anz
n where k ≥ 0, then

L(φ(z)exz) = L

( ∞
∑

n=−k

anz
n ·

∞
∑

m=0

xm

m!
zm

)

=
k

∑

i=0

a−i
xi

i!
.

Now we define

Φ(f)(x) = L(φf (z)e
xz) (x ∈ R)
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for every f ∈ CR. Then Φ(f) is a polynomial for every f , and Φ is a linear
operator. We have φf0 ≡ 1, and Φ(f0)(x) = L(exz) = 1 for every x.

In order to prove that Φ commutes with translations, let f ∈ CR and
g = Tbf where b ∈ R. If v + Df = Af0, where v ∈ V and D 6= 0, then
Tbv +Dg = Tbv +D(Tbf) = TbAf0. This gives φg = (TbA)

∧/D∧; that is,

φg(z) = (TbA)
∧(z)/D∧(z) = T∧

b (z)A∧(z)/D∧(z) = ebzφf (z).

Then

Φ(Tbf)(x) = Φ(g)(x) = L(φge
xz)

= L(φfe
bzexz) = L(φfe

(b+x)z) = Φ(f)(x+ b),

and ΦTb = TbΦ.
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