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FACTORIZATION IN KRULL MONOIDS
WITH INFINITE CLASS GROUP

BY

FLORIAN K A I N R A T H (GRAZ)

Abstract. Let H be a Krull monoid with infinite class group and such that each
divisor class of H contains a prime divisor. We show that for each finite set L of integers
≥ 2 there exists some h ∈ H such that the following are equivalent:

(i) h has a representation h = u1 · . . . · uk for some irreducible elements ui,
(ii) k ∈ L.

1. Introduction and notations. Let H be a Krull monoid. For an
element h of H its set of lengths L(h) is defined as the set of all integers k
such that there exist irreducible u1, . . . , uk with h = u1 · . . . ·uk. If the class
group of H is finite, then the sets L(h) have a special structure:

L(h) = {x1, . . . , xα, y1, . . . yl,
y1 + d, . . . yl + d,
. . . . . . . . .

y1 + kd, . . . yl + kd, z1, . . . , zβ},
where x1 < . . . < xα < y1 < . . . < yl < y1 + d < yl + kd < z1 < . . . < zβ
and α, β, d ≤M for some constant M depending only on the class group of
H ([1], Theorem 2.13).

In this paper we look at the setsL(h) when the class group ofH is infinite
and each divisor class of H contains a prime divisor. Our main result states
that in this case every finite set of integers ≥ 2 occurs as a set of lengths of
an element in H. We apply this result also to certain integral domains.

Throughout this paper the following notations will be used. We let N be
the set of all nonnegative integers, N+ = N \ {0} and N≥2 the set of all inte-
gers ≥ 2. For a finite set X we denote by |X| the number of elements of X.

2. Sets of lengths. In the following let H be a commutative, cancella-
tive monoid with unit element. By a factorization of an element h ∈ H we
mean a representation of the form h = u1 · . . . · uk with irreducible ui ∈ H.
The integer k is called the length of the factorization. Two factorizations
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h=u1 · . . . · uk =v1 · . . . · vl are said to be essentially the same if k= l and
after some renumbering ui=ei ·vi for some unit ei; they are called essentially
different if they are not essentially the same. We denote by L(h) = LH(h)
the set of lengths of factorizations of h and define a function vh = vH,h :
L(h)→ N+ by

vh(k) = the number of

essentially different factorizations of h having length k.

Now let H be Krull monoid (see for example [1]), ∂ : H → D its divisor
theory and G = D/∂(H) its class group. We denote the canonical map
D → G by d 7→ [d]. We say that every divisor class of H contains a prime
divisor if for every g ∈ G there exists a prime element p ∈ D with [p] = g.
Now we can state our main result.

Theorem 1. Let H be a Krull monoid with infinite class group in which
every divisor class contains a prime divisor. For a finite subset L ⊂ N≥2
there exists some h ∈ H such that LH(h) = L. If the class group of H is not
of the form (Z/2Z)(N)⊕Γ with an infinite set N and a finite group Γ , then
there is such an h satisfying vh = v, where v is any given function L→ N+.

For the proof of this theorem we need the concept of block monoids. Let
G be the class group of H. We let F(G) be the free abelian monoid with
basisG. The block monoid B(G) overG is the submonoid of F(G) defined by

B(G) =
{ ∏
g∈G

gng ∈ F(G) :
∑
g∈G

ngg = 0
}
.

We say that a block g1 · . . . · gn ∈ B(G) is square free if the gi are pairwise
distinct. For an element h ∈ H define β(h) ∈ B(G) by β(h) = [p1] · . . . · [pn]
where ∂(h) = p1·. . .·pn is the prime factorization of ∂(h) in D. Then we have

LB(G)(β(h)) = LH(h)

(see [1], Lemma 3.2). Moreover, it is easy to to see that

vH,h = vB(G),β(h)

if β(h) is square free.
For the proof of Theorem 1 we also need the following proposition whose

proof will be given in the next section.

Proposition. Let C be a nonzero cyclic group, L ⊂ N≥2 a finite set
and v : L→ N+ a function. Then there exists a block B in B(Ck) for some
k ≥ 1 such that L(B) = L. If C 6= Z/2Z, then there is a square free block
B ∈ B(Ck) such that L = L(B) and vB = v.

Proof of Theorem 1. Let H be as in Theorem 1, G its class group and
choose some finite L ⊂ N≥2 and v : L→ N+. We show that there is a block
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B ∈ B(G) with L(B) = L. If G is not of the form (Z/2Z)(N) ⊕ Γ with an
infinite set N and a finite group Γ , then we will choose B such that it is
square free and satisfies vB = v. By the above considerations this will prove
Theorem 1. We consider three cases.

Case 1:G is not a torsion group. Then G contains a subgroup isomorphic
to Z, so we may assume G = Z. By the Proposition (with C = Z) there is
a square free block B ∈ B(Zk) for some k such that L(B) = L and vB = v,
say B = u1 · . . . · un. Choose some homomorphism f : Zk → Z such that∑

i∈I
f(ui) 6= 0 if

∑
i∈I

ui 6= 0, I ⊂ {1, . . . , n}, and

f(ui) 6= f(uj) if i 6= j.

Then it is clear that the square free block C = f(u1) · . . . · f(un) ∈ B(Z)
satisfies L(C) = L and vC = v.

Case 2: G is a torsion group which contains elements of arbitrarily high
order. Choose first a square free block B = u1 · . . . · un ∈ B(Z) such that
L(B) = L and vB = v. This is possible by Case 1. Define M ∈ N by

M = max
({∣∣∣∑

i∈I
ui

∣∣∣ : I ⊂ {1, . . . , n}
}
∪ {|ui − uj | : i, j = 1, . . . , n}

)
.

Then it is obvious that for every N > M the square free block BN =
(u1 +NZ) · . . . · (un +NZ) ∈ B(Z/NZ) satisfies L(BN ) = L and vBN

= v as
well. By our hypothesis on G there exists an element of order greater than
M , which means that G contains a subgroup isomorphic to Z/NZ for some
N > M . Therefore the theorem is proved in this case.

Case 3: G is a torsion group in which the orders of all elements are
bounded. By Theorem 6 of [4], G is a direct sum of cyclic groups

G =
⊕
i∈I

Z/niZ

for some bounded family of integers ni ≥ 2. Since by assumption G is
infinite there is an integer m such that G contains a subgroup isomorphic
to (Z/mZ)(N). If G is not of the form (Z/2Z)(N) ⊕ Γ with an infinite set N
and a finite group Γ , we may suppose m > 2. Using the Proposition with
C = Z/mZ, we see that the theorem is proved in this case as well.

In the following we want to apply Theorem 1 to certain integral domains.
Let R be a noetherian domain whose integral closure R is a finitely generated
R-module. Denote by HR the set of all nonzero divisors of R/R:

HR = {r ∈ R \ {0} : rr 6∈ R for all r ∈ R \R}.

Then HR is a divisor closed Krull submonoid of R• = R \ {0} whose class
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group is isomorphic to the v-class group of R (cf. [2]). Therefore

LHR
(r) = LR•(r) and vHR,r = vR•,r

for all r ∈ HR. Hence we get the following theorem.

Theorem 2. Let R be a noetherian domain with finitely generated inte-
gral closure and infinite v-class group. Suppose that in the monoid HR every
divisor class contains a prime divisor. Then for every finite set L ⊂ N≥2
there exists an element r ∈ R• such L(r) = L. If the v-class group of R is not
of the form (Z/2Z)(N)⊕Γ with an infinite set N and a finite group Γ , then
there is such an r satisfying vr = v, where v is any given function L→ N+.

Remark. Examples of domains satisfying the condition on the divisor
classes may be found in [3].

3. Proof of the Proposition. Let C = Z/cZ, c 6= 1, be some cyclic
group. In this section we regard C as a ring. Let X1, . . . , Xn be finite sets.
We suppose that |Xi| ≥ 2 for all i and that

n = 2 and |Xi| ≥ 3 for at least one i or n ≥ 3 if C 6= Z/2Z,
and

n ≥ 3 if C = Z/2Z.
For a subset J ⊂ {1, . . . , n} we put

XJ =
∏
j∈J

Xj

and let X = X{1,...,n} for short. The points x of X will always be written as
x = (x1, . . . , xn). We denote by pJ : X→XJ the projection mapping. For

a point z ∈ X we define X
(z)
i = Xi \ {zi} and

X
(z)
J =

∏
j∈J

X
(z)
j .

If x ∈ X is a second point we let Jz(x) be the set of all indices i with xi 6= zi.
We denote by CX the C-algebra of all functions X → C. For a subset M
of X we let χM ∈ CX be its characteristic function. If A ⊂ CX then C〈A〉
is the C-submodule generated by A.

We now proceed in 10 steps. In Steps 1 to 8 we construct a block in
CX/V for some submodule V and calculate its set of lengths. In Steps 9
and 10 we use this construction to prove the proposition.

Step 1. For z ∈ X the set {χp−1
J

(y) : y ∈ X(z)
J , J ⊂ {1, . . . , n}} is a

basis of CX .
For each i the set {1} ∪ {χy : y ∈ X

(z)
i } is obviously a basis of CXi .

Now, by taking tensor products and by using the canonical isomorphism
α : CX1 ⊗ . . .⊗CXn ∼= CX , α(f1⊗ . . .⊗ fn)(x1, . . . , xn) = f1(x1) . . . fn(xn),
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we prove our claim (note also that χp−1
∅ (y) = 1 if y is the unique element

of X
(z)
∅ ).

Step 2. Define submodules V,Wz (z ∈ X) of CX by

V = C〈χp−1
i

(y) : y ∈ Xi, i = 1, . . . , n〉,

Wz = C〈χp−1
J

(y) : |J | ≥ 2, y ∈ X(z)
J 〉.

Then we have

(1) CX = V ⊕Wz

for all z ∈ X.
Note that V is generated by {1} ∪ {χp−1

i
(y) : y ∈ X(z)

i , i = 1, . . . , n} for

all z ∈ X. Therefore the assertion follows from Step 1.

Step 3. Let z, x ∈ X with x 6= z and M ⊂ X, z 6∈M . Then there exist

wk ∈Wz (k = 1, 2, 3) and Yi ⊂ X(z)
i (i = 1, . . . , n) such that:

χz = 1−
n∑
i=1

∑
y∈X(z)

i

χp−1
i

(y) + w1,(2)

χx =

{
0 if |Jz(x)| ≥ 2

χp−1
i

(xi)
if Jz(x) = {i}

}
+ w2,(3)

χM =

n∑
i=1

∑
y∈Yi

χp−1
i

(y) + w3.(4)

Let w ∈ X. Then we have

χw =

n∏
i=1

χp−1
i

(wi)
=

∏
i∈Jz(w)

χp−1
i

(wi)

∏
i6∈Jz(w)

χp−1
i

(zi)

=
∏

i∈Jz(w)

χp−1
i

(wi)

∏
i 6∈Jz(w)

(
1−

∑
y∈X(z)

i

χp−1
i

(y)

)
.

Expanding the last product for w = x and z yields (2) and (3). Formula (4)
is an immediate consequence of (3).

Step 4. The cosets χx + V ∈ CX/V (x ∈ X) are pairwise distinct.
Let x, z ∈ X be such that x 6= z and suppose χz − χx ∈ V . By (1)–(3),

we obtain

(5) χz − χx = 1−
n∑
i=1

∑
y∈X(z)

i

χp−1
i

(y) − χM ,

where M = ∅ if |Jz(x)| ≥ 2 and M = p−1i (xi) if Jz(x) = {i}. Assume first
C 6= Z/2Z. Choose w ∈ X such that w 6= x and |Jz(w)| = 2. This is possible
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by our assumption on n and the Xi. Evaluating both sides of (5) at w we
get 0 on the left side and −1 or −2 on the right side. This contradiction
proves our assertion in the case C 6= Z/2Z. Assume now C = Z/2Z. Since
n ≥ 3 there is some w ∈ X such that w 6= x, |Jz(w)| = 2 and, in addition,
i 6∈ Jz(w) if Jz(x) = {i}. Again evaluating both sides of (5) at w gives a
contradiction.

Step 5. Suppose C 6= Z/2Z and let M be a subset of X such that
χM ∈ V . Then M = p−1i (Yi) for some i and some Yi ⊂ Xi.

If M = X there is nothing to do. So assume z ∈ X \M . By (4) there

exist subsets Yi ⊂ X(z)
i such that

χM =

n∑
i=1

∑
y∈Yi

χp−1
i

(y).

Taking squares we get

χM = χ2
M =

n∑
i=1

∑
y∈Yi

χp−1
i

(y) + 2
∑
i<j

∑
y∈Yi×Yj

χp−1
{i,j}(y)

.

Now using Step 1 we infer Yi 6= ∅ for at most one i, which implies the
assertion.

Step 6. Assume C = Z/2Z. Let M $ X and suppose χM ∈ V . For any

z ∈ X \M there exist Yi ⊂ X(z)
i (i = 1, . . . , n) such that

M = {x ∈ X : |{i : xi ∈ Yi}| is odd}.

By (4) there are Yi ⊂ X(z)
i such that

χM =

n∑
i=1

∑
y∈Yi

χp−1
i

(y) =

n∑
i=1

χp−1
i

(Yi)
.

Now the claim follows from the equation 1 + 1 = 0 in Z/2Z.

Step 7. Let z ∈ X and Yi, Y
′
i ⊂ X

(z)
i (i = 1, . . . , n). Set

MY = {x ∈ X : |{i : xi ∈ Yi}| is odd}
and define MY ′ in the same manner. Suppose we have ∅ $ MY $ MY ′ .
Then there exists an index i such that MY = p−1i (Yi) and MY ′ = p−1i (Y ′i ),
i.e. Yj = Y ′j = ∅ for j 6= i.

Let y ∈ Yj for some j. Then (z1, . . . , zj−1, y, zj+1, . . . , zn) ∈MY ⊂MY ′ ,
which implies y ∈ Y ′j . So we conclude Yj ⊂ Y ′j for all j. Since MY 6= MY ′

there is some i such that Yi 6=Y ′i . Suppose now Yj 6=∅ for some j 6= i. Choose
yj ∈ Yj and y′i ∈ Y ′i \Yi. Then (z1, . . . , y

′
i, . . . , yj , . . . , zn) ∈MY \MY ′ . This

contradiction proves Yj = ∅ for j 6= i. Similary, suppose y′j ∈ Y ′j . Choose
yi ∈ Yi. Since Yj = ∅ we obtain (z1, . . . , yi, . . . , y

′
j , . . . , zn) ∈MY \MY ′ .
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Step 8. For any subset M of X define

BM =
∏
x∈M

(χx + V ) ∈ F(CX/V ).

Then BM is a block if and only if χM ∈ V , in particular B = BX ∈
B(CX/V ). We have

L(B) = {|X1|, . . . , |Xn|}, vB(|Xi|) = |{j : |Xj | = |Xi|}| if C 6= Z/2Z
and

L(B) = {2, |X1|, . . . , |Xn|} if C = Z/2Z.
By Steps 5–7 the blocks Bp−1

i
(y), i = 1, . . . , n, y ∈ Xi, are irreducible.

Therefore B has the following factorizations:

(6) B =
∏
y∈Xi

Bp−1
i

(y), i = 1, . . . , n.

Suppose first C 6= Z/2Z. We have to show that the factorizations (6)
are the only ones for B. By Step 5 the irreducible divisors of B are given by
the Bp−1

i
(y) with y ∈ Xi and i = 1, . . . , n. Now B is square free and two sets

p−1i (y), p−1j (y′) with i 6= j have nonempty intersection. Hence the assertion
follows.

Assume now C = Z/2Z. Let z ∈ X and choose subsets Yi ⊂ X
(z)
i such

that Yi 6= ∅ for at least two indices i. Set MY = {x ∈ X : |{i : xi ∈
Yi}| is odd}. By Steps 6 and 7 the blocks BMY

and BX\MY
are irreducible.

Hence we obtain 2 ∈ L(B). Suppose now that B = B1 · . . . · Bk is some
factorization different from all the ones in (6). We have to show that k = 2.
Since B is square free there is some partition X = M1∪. . .∪Mk, Ms∩Mt = ∅
for s 6= t, such that Bs = BMs

for all s. Since the sets p−1i (y), p−1j (y′) for
i 6= j have nonempty intersection, there exists some s, say s = 1, such
that M1 and therefore also X \M1 are not of the form p−1i (Yi) (for any
i = 1, . . . , n, Yi ⊂ Xi). Hence by Steps 6 and 7 again, BX\M1

is irreducible,
and we get B2 = BX\M1

and k = 2.

Step 9. Suppose that C 6= Z/2Z and let L ⊂ N≥2 be a finite subset and
v : L→ N+ a function. We assume first that

(7) (L, v) 6= ({m},m 7→ 1), ({2}, 2 7→ 2)

for all m ≥ 2. Set n =
∑
l∈L v(l) and choose finite sets X1, . . . , Xn such that

for l ∈ L exactly v(l) of them have cardinality l. Then by our assumption
(7) we have n ≥ 3, or n = 2 and |Xi| ≥ 3 for at least one i. Then the block
B ∈ B(CX/V ) constructed in Step 8 satisfies L(B) = L and vB = v. Note
also that by Steps 1 and 2, CX/V is free.

To finish the proof of the proposition in the case C 6= Z/2Z we need to
check the two remaining cases
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(a) L = {m}, v(m) = 1 (m ≥ 2), and
(b) L = {2}, v(2) = 2.

In case (a) one may for example take

B =




1
0
...
0

 ·

−1

0
...
0


 · . . . ·




0
...
0
1

 ·


0
...
0
−1


 ∈ B(Cm).

For (b) we can choose

B =

 1
0
0

 ·
−1

0
0

 ·
 0

1
0

 ·
 0

0
1

 ·
 1

0
−1

 ·
−1
−1

0


=

 0
1
0

 ·
−1
−1

0

 ·
 1

0
0

 ·
−1

0
0

 ·
 0

0
1

 ·
 1

0
−1

 ∈ B(C3).

Step 10. Assume now C = Z/2Z and let L ⊂ N≥2 be a finite set. Define
m = minL. Suppose that, for some k ≥ 1, we have constructed a block
B ∈ B(Ck) with L(B) = L −m + 2. Then obviously L(0m−2B) = L. We
may therefore assume that 2 ∈ L. In this case, choose finite sets X1, . . . , Xn

with n ≥ 3 and L = {|X1|, . . . , |Xn|}. Then the block B constructed in
Step 8 satisfies L(B) = L.
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