FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

BY
FLORIAN KAINRATH (GRAZ)

Abstract

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥ 2 there exists some $h \in H$ such that the following are equivalent:

(i) h has a representation $h=u_{1} \cdot \ldots \cdot u_{k}$ for some irreducible elements u_{i},
(ii) $k \in L$.

1. Introduction and notations. Let H be a Krull monoid. For an element h of H its set of lengths $\mathcal{L}(h)$ is defined as the set of all integers k such that there exist irreducible u_{1}, \ldots, u_{k} with $h=u_{1} \cdot \ldots \cdot u_{k}$. If the class group of H is finite, then the sets $\mathcal{L}(h)$ have a special structure:

$$
\begin{array}{rccc}
\mathcal{L}(h)=\left\{x_{1}, \ldots, x_{\alpha},\right. & y_{1}, & \ldots & y_{l} \\
y_{1}+d, & \ldots & y_{l}+d \\
& \ldots & \ldots & \ldots \\
& y_{1}+k d, & \ldots & y_{l}+k d, \\
\left.z_{1}, \ldots, z_{\beta}\right\}
\end{array}
$$

where $x_{1}<\ldots<x_{\alpha}<y_{1}<\ldots<y_{l}<y_{1}+d<y_{l}+k d<z_{1}<\ldots<z_{\beta}$ and $\alpha, \beta, d \leq M$ for some constant M depending only on the class group of H ([1], Theorem 2.13).

In this paper we look at the sets $\mathcal{L}(h)$ when the class group of H is infinite and each divisor class of H contains a prime divisor. Our main result states that in this case every finite set of integers ≥ 2 occurs as a set of lengths of an element in H. We apply this result also to certain integral domains.

Throughout this paper the following notations will be used. We let \mathbb{N} be the set of all nonnegative integers, $\mathbb{N}_{+}=\mathbb{N} \backslash\{0\}$ and $\mathbb{N}_{\geq 2}$ the set of all integers ≥ 2. For a finite set X we denote by $|X|$ the number of elements of X.
2. Sets of lengths. In the following let H be a commutative, cancellative monoid with unit element. By a factorization of an element $h \in H$ we mean a representation of the form $h=u_{1} \cdot \ldots \cdot u_{k}$ with irreducible $u_{i} \in H$. The integer k is called the length of the factorization. Two factorizations

[^0]$h=u_{1} \cdot \ldots \cdot u_{k}=v_{1} \cdot \ldots \cdot v_{l}$ are said to be essentially the same if $k=l$ and after some renumbering $u_{i}=e_{i} \cdot v_{i}$ for some unit e_{i}; they are called essentially different if they are not essentially the same. We denote by $\mathcal{L}(h)=\mathcal{L}_{H}(h)$ the set of lengths of factorizations of h and define a function $v_{h}=v_{H, h}$: $\mathcal{L}(h) \rightarrow \mathbb{N}_{+}$by
$v_{h}(k)=$ the number of essentially different factorizations of h having length k.
Now let H be Krull monoid (see for example [1]), $\partial: H \rightarrow D$ its divisor theory and $G=D / \partial(H)$ its class group. We denote the canonical map $D \rightarrow G$ by $d \mapsto[d]$. We say that every divisor class of H contains a prime divisor if for every $g \in G$ there exists a prime element $p \in D$ with $[p]=g$. Now we can state our main result.

Theorem 1. Let H be a Krull monoid with infinite class group in which every divisor class contains a prime divisor. For a finite subset $L \subset \mathbb{N}_{\geq 2}$ there exists some $h \in H$ such that $\mathcal{L}_{H}(h)=L$. If the class group of H is not of the form $(\mathbb{Z} / 2 \mathbb{Z})^{(N)} \oplus \Gamma$ with an infinite set N and a finite group Γ, then there is such an h satisfying $v_{h}=v$, where v is any given function $L \rightarrow \mathbb{N}_{+}$.

For the proof of this theorem we need the concept of block monoids. Let G be the class group of H. We let $\mathcal{F}(G)$ be the free abelian monoid with basis G. The block monoid $\mathcal{B}(G)$ over G is the submonoid of $\mathcal{F}(G)$ defined by

$$
\mathcal{B}(G)=\left\{\prod_{g \in G} g^{n_{g}} \in \mathcal{F}(G): \sum_{g \in G} n_{g} g=0\right\}
$$

We say that a block $g_{1} \cdot \ldots \cdot g_{n} \in \mathcal{B}(G)$ is square free if the g_{i} are pairwise distinct. For an element $h \in H$ define $\beta(h) \in \mathcal{B}(G)$ by $\beta(h)=\left[p_{1}\right] \cdot \ldots \cdot\left[p_{n}\right]$ where $\partial(h)=p_{1} \cdot \ldots \cdot p_{n}$ is the prime factorization of $\partial(h)$ in D. Then we have

$$
\mathcal{L}_{\mathcal{B}(G)}(\beta(h))=\mathcal{L}_{H}(h)
$$

(see [1], Lemma 3.2). Moreover, it is easy to to see that

$$
v_{H, h}=v_{\mathcal{B}(G), \beta(h)}
$$

if $\beta(h)$ is square free.
For the proof of Theorem 1 we also need the following proposition whose proof will be given in the next section.

Proposition. Let C be a nonzero cyclic group, $L \subset \mathbb{N}_{\geq 2}$ a finite set and $v: L \rightarrow \mathbb{N}_{+}$a function. Then there exists a block B in $\overline{\mathcal{B}\left(C^{k}\right) \text { for some }}$ $k \geq 1$ such that $\mathcal{L}(B)=L$. If $C \neq \mathbb{Z} / 2 \mathbb{Z}$, then there is a square free block $B \in \mathcal{B}\left(C^{k}\right)$ such that $L=\mathcal{L}(B)$ and $v_{B}=v$.

Proof of Theorem 1. Let H be as in Theorem 1, G its class group and choose some finite $L \subset \mathbb{N}_{\geq 2}$ and $v: L \rightarrow \mathbb{N}_{+}$. We show that there is a block
$B \in \mathcal{B}(G)$ with $\mathcal{L}(B)=L$. If G is not of the form $(\mathbb{Z} / 2 \mathbb{Z})^{(N)} \oplus \Gamma$ with an infinite set N and a finite group Γ, then we will choose B such that it is square free and satisfies $v_{B}=v$. By the above considerations this will prove Theorem 1. We consider three cases.

Case 1: G is not a torsion group. Then G contains a subgroup isomorphic to \mathbb{Z}, so we may assume $G=\mathbb{Z}$. By the Proposition (with $C=\mathbb{Z}$) there is a square free block $B \in \mathcal{B}\left(\mathbb{Z}^{k}\right)$ for some k such that $\mathcal{L}(B)=L$ and $v_{B}=v$, say $B=u_{1} \cdot \ldots \cdot u_{n}$. Choose some homomorphism $f: \mathbb{Z}^{k} \rightarrow \mathbb{Z}$ such that

$$
\begin{gathered}
\sum_{i \in I} f\left(u_{i}\right) \neq 0 \quad \text { if } \sum_{i \in I} u_{i} \neq 0, I \subset\{1, \ldots, n\}, \quad \text { and } \\
f\left(u_{i}\right) \neq f\left(u_{j}\right) \quad \text { if } i \neq j
\end{gathered}
$$

Then it is clear that the square free block $C=f\left(u_{1}\right) \cdot \ldots \cdot f\left(u_{n}\right) \in \mathcal{B}(\mathbb{Z})$ satisfies $\mathcal{L}(C)=L$ and $v_{C}=v$.

CASE 2: G is a torsion group which contains elements of arbitrarily high order. Choose first a square free block $B=u_{1} \cdot \ldots \cdot u_{n} \in \mathcal{B}(\mathbb{Z})$ such that $\mathcal{L}(B)=L$ and $v_{B}=v$. This is possible by Case 1 . Define $M \in \mathbb{N}$ by

$$
M=\max \left(\left\{\left|\sum_{i \in I} u_{i}\right|: I \subset\{1, \ldots, n\}\right\} \cup\left\{\left|u_{i}-u_{j}\right|: i, j=1, \ldots, n\right\}\right)
$$

Then it is obvious that for every $N>M$ the square free block $B_{N}=$ $\left(u_{1}+N \mathbb{Z}\right) \cdot \ldots \cdot\left(u_{n}+N \mathbb{Z}\right) \in \mathcal{B}(\mathbb{Z} / N \mathbb{Z})$ satisfies $\mathcal{L}\left(B_{N}\right)=L$ and $v_{B_{N}}=v$ as well. By our hypothesis on G there exists an element of order greater than M, which means that G contains a subgroup isomorphic to $\mathbb{Z} / N \mathbb{Z}$ for some $N>M$. Therefore the theorem is proved in this case.

CASE 3: G is a torsion group in which the orders of all elements are bounded. By Theorem 6 of [4], G is a direct sum of cyclic groups

$$
G=\bigoplus_{i \in I} \mathbb{Z} / n_{i} \mathbb{Z}
$$

for some bounded family of integers $n_{i} \geq 2$. Since by assumption G is infinite there is an integer m such that G contains a subgroup isomorphic to $(\mathbb{Z} / m \mathbb{Z})^{(\mathbb{N})}$. If G is not of the form $(\mathbb{Z} / 2 \mathbb{Z})^{(N)} \oplus \Gamma$ with an infinite set N and a finite group Γ, we may suppose $m>2$. Using the Proposition with $C=\mathbb{Z} / m \mathbb{Z}$, we see that the theorem is proved in this case as well.

In the following we want to apply Theorem 1 to certain integral domains. Let R be a noetherian domain whose integral closure \bar{R} is a finitely generated R-module. Denote by H_{R} the set of all nonzero divisors of \bar{R} / R :

$$
H_{R}=\{r \in R \backslash\{0\}: r \bar{r} \notin R \text { for all } \bar{r} \in \bar{R} \backslash R\}
$$

Then H_{R} is a divisor closed Krull submonoid of $R^{\bullet}=R \backslash\{0\}$ whose class
group is isomorphic to the v-class group of R (cf. [2]). Therefore

$$
\mathcal{L}_{H_{R}}(r)=\mathcal{L}_{R} \cdot(r) \quad \text { and } \quad v_{H_{R}, r}=v_{R \bullet, r}
$$

for all $r \in H_{R}$. Hence we get the following theorem.
Theorem 2. Let R be a noetherian domain with finitely generated integral closure and infinite v-class group. Suppose that in the monoid H_{R} every divisor class contains a prime divisor. Then for every finite set $L \subset \mathbb{N}_{\geq 2}$ there exists an element $r \in R^{\bullet}$ such $\mathcal{L}(r)=L$. If the v-class group of R is not of the form $(\mathbb{Z} / 2 \mathbb{Z})^{(N)} \oplus \Gamma$ with an infinite set N and a finite group Γ, then there is such an r satisfying $v_{r}=v$, where v is any given function $L \rightarrow \mathbb{N}_{+}$.

Remark. Examples of domains satisfying the condition on the divisor classes may be found in [3].
3. Proof of the Proposition. Let $C=\mathbb{Z} / c \mathbb{Z}, c \neq 1$, be some cyclic group. In this section we regard C as a ring. Let X_{1}, \ldots, X_{n} be finite sets. We suppose that $\left|X_{i}\right| \geq 2$ for all i and that

$$
n=2 \text { and }\left|X_{i}\right| \geq 3 \text { for at least one } i \text { or } n \geq 3 \quad \text { if } C \neq \mathbb{Z} / 2 \mathbb{Z}
$$

and

$$
n \geq 3 \quad \text { if } C=\mathbb{Z} / 2 \mathbb{Z}
$$

For a subset $J \subset\{1, \ldots, n\}$ we put

$$
X_{J}=\prod_{j \in J} X_{j}
$$

and let $X=X_{\{1, \ldots, n\}}$ for short. The points x of X will always be written as $x=\left(x_{1}, \ldots, x_{n}\right)$. We denote by $p_{J}: X \rightarrow X_{J}$ the projection mapping. For a point $z \in X$ we define $X_{i}^{(z)}=X_{i} \backslash\left\{z_{i}\right\}$ and

$$
X_{J}^{(z)}=\prod_{j \in J} X_{j}^{(z)}
$$

If $x \in X$ is a second point we let $J_{z}(x)$ be the set of all indices i with $x_{i} \neq z_{i}$. We denote by C^{X} the C-algebra of all functions $X \rightarrow C$. For a subset M of X we let $\chi_{M} \in C^{X}$ be its characteristic function. If $A \subset C^{X}$ then ${ }_{C}\langle A\rangle$ is the C-submodule generated by A.

We now proceed in 10 steps. In Steps 1 to 8 we construct a block in C^{X} / V for some submodule V and calculate its set of lengths. In Steps 9 and 10 we use this construction to prove the proposition.

Step 1. For $z \in X$ the set $\left\{\chi_{p_{J}^{-1}(y)}: y \in X_{J}^{(z)}, J \subset\{1, \ldots, n\}\right\}$ is a basis of C^{X}.

For each i the set $\{1\} \cup\left\{\chi_{y}: y \in X_{i}^{(z)}\right\}$ is obviously a basis of $C^{X_{i}}$. Now, by taking tensor products and by using the canonical isomorphism $\alpha: C^{X_{1}} \otimes \ldots \otimes C^{X_{n}} \cong C^{X}, \alpha\left(f_{1} \otimes \ldots \otimes f_{n}\right)\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)$,
we prove our claim (note also that $\chi_{p_{\emptyset}^{-1}(y)}=1$ if y is the unique element of $X_{\emptyset}^{(z)}$).

Step 2. Define submodules $V, W_{z}(z \in X)$ of C^{X} by

$$
\begin{aligned}
V & ={ }_{C}\left\langle\chi_{p_{i}^{-1}(y)}: y \in X_{i}, i=1, \ldots, n\right\rangle, \\
W_{z} & ={ }_{C}\left\langle\chi_{p_{J}^{-1}(y)}:\right| J\left|\geq 2, y \in X_{J}^{(z)}\right\rangle .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
C^{X}=V \oplus W_{z} \tag{1}
\end{equation*}
$$

for all $z \in X$.
Note that V is generated by $\{1\} \cup\left\{\chi_{p_{i}^{-1}(y)}: y \in X_{i}^{(z)}, i=1, \ldots, n\right\}$ for all $z \in X$. Therefore the assertion follows from Step 1 .

Step 3. Let $z, x \in X$ with $x \neq z$ and $M \subset X, z \notin M$. Then there exist $w_{k} \in W_{z}(k=1,2,3)$ and $Y_{i} \subset X_{i}^{(z)}(i=1, \ldots, n)$ such that:

$$
\begin{align*}
& \chi_{z}=1-\sum_{i=1}^{n} \sum_{y \in X_{i}^{(z)}} \chi_{p_{i}^{-1}(y)}+w_{1}, \tag{2}\\
& \chi_{x}=\left\{\begin{array}{ll}
0 & \text { if }\left|J_{z}(x)\right| \geq 2 \\
\chi_{p_{i}^{-1}\left(x_{i}\right)} & \text { if } J_{z}(x)=\{i\}
\end{array}\right\}+w_{2}, \tag{3}\\
& \chi_{M}=\sum_{i=1}^{n} \sum_{y \in Y_{i}} \chi_{p_{i}^{-1}(y)}+w_{3} . \tag{4}
\end{align*}
$$

Let $w \in X$. Then we have

$$
\begin{aligned}
\chi_{w} & =\prod_{i=1}^{n} \chi_{p_{i}^{-1}\left(w_{i}\right)}=\prod_{i \in J_{z}(w)} \chi_{p_{i}^{-1}\left(w_{i}\right)} \prod_{i \notin J_{z}(w)} \chi_{p_{i}^{-1}\left(z_{i}\right)} \\
& =\prod_{i \in J_{z}(w)} \chi_{p_{i}^{-1}\left(w_{i}\right)} \prod_{i \notin J_{z}(w)}\left(1-\sum_{y \in X_{i}^{(z)}} \chi_{p_{i}^{-1}(y)}\right) .
\end{aligned}
$$

Expanding the last product for $w=x$ and z yields (2) and (3). Formula (4) is an immediate consequence of (3).

Step 4. The cosets $\chi_{x}+V \in C^{X} / V(x \in X)$ are pairwise distinct.
Let $x, z \in X$ be such that $x \neq z$ and suppose $\chi_{z}-\chi_{x} \in V$. By (1)-(3), we obtain

$$
\begin{equation*}
\chi_{z}-\chi_{x}=1-\sum_{i=1}^{n} \sum_{y \in X_{i}^{(z)}} \chi_{p_{i}^{-1}(y)}-\chi_{M}, \tag{5}
\end{equation*}
$$

where $M=\emptyset$ if $\left|J_{z}(x)\right| \geq 2$ and $M=p_{i}^{-1}\left(x_{i}\right)$ if $J_{z}(x)=\{i\}$. Assume first $C \neq \mathbb{Z} / 2 \mathbb{Z}$. Choose $w \in X$ such that $w \neq x$ and $\left|J_{z}(w)\right|=2$. This is possible
by our assumption on n and the X_{i}. Evaluating both sides of (5) at w we get 0 on the left side and -1 or -2 on the right side. This contradiction proves our assertion in the case $C \neq \mathbb{Z} / 2 \mathbb{Z}$. Assume now $C=\mathbb{Z} / 2 \mathbb{Z}$. Since $n \geq 3$ there is some $w \in X$ such that $w \neq x,\left|J_{z}(w)\right|=2$ and, in addition, $i \notin J_{z}(w)$ if $J_{z}(x)=\{i\}$. Again evaluating both sides of (5) at w gives a contradiction.

Step 5. Suppose $C \neq \mathbb{Z} / 2 \mathbb{Z}$ and let M be a subset of X such that $\chi_{M} \in V$. Then $M=p_{i}^{-1}\left(Y_{i}\right)$ for some i and some $Y_{i} \subset X_{i}$.

If $M=X$ there is nothing to do. So assume $z \in X \backslash M$. By (4) there exist subsets $Y_{i} \subset X_{i}^{(z)}$ such that

$$
\chi_{M}=\sum_{i=1}^{n} \sum_{y \in Y_{i}} \chi_{p_{i}^{-1}(y)}
$$

Taking squares we get

$$
\chi_{M}=\chi_{M}^{2}=\sum_{i=1}^{n} \sum_{y \in Y_{i}} \chi_{p_{i}^{-1}(y)}+2 \sum_{i<j} \sum_{y \in Y_{i} \times Y_{j}} \chi_{p_{\{i, j\}}^{-1}(y)} .
$$

Now using Step 1 we infer $Y_{i} \neq \emptyset$ for at most one i, which implies the assertion.

Step 6. Assume $C=\mathbb{Z} / 2 \mathbb{Z}$. Let $M \varsubsetneqq X$ and suppose $\chi_{M} \in V$. For any $z \in X \backslash M$ there exist $Y_{i} \subset X_{i}^{(z)}(i=1, \ldots, n)$ such that

$$
M=\left\{x \in X:\left|\left\{i: x_{i} \in Y_{i}\right\}\right| \text { is odd }\right\} .
$$

By (4) there are $Y_{i} \subset X_{i}^{(z)}$ such that

$$
\chi_{M}=\sum_{i=1}^{n} \sum_{y \in Y_{i}} \chi_{p_{i}^{-1}(y)}=\sum_{i=1}^{n} \chi_{p_{i}^{-1}\left(Y_{i}\right)} .
$$

Now the claim follows from the equation $1+1=0$ in $\mathbb{Z} / 2 \mathbb{Z}$.
Step 7. Let $z \in X$ and $Y_{i}, Y_{i}^{\prime} \subset X_{i}^{(z)}(i=1, \ldots, n)$. Set

$$
M_{Y}=\left\{x \in X:\left|\left\{i: x_{i} \in Y_{i}\right\}\right| \text { is odd }\right\}
$$

and define $M_{Y^{\prime}}$ in the same manner. Suppose we have $\emptyset \varsubsetneqq M_{Y} \varsubsetneqq M_{Y^{\prime}}$. Then there exists an index i such that $M_{Y}=p_{i}^{-1}\left(Y_{i}\right)$ and $M_{Y^{\prime}}=p_{i}^{-1}\left(Y_{i}^{\prime}\right)$, i.e. $Y_{j}=Y_{j}^{\prime}=\emptyset$ for $j \neq i$.

Let $y \in Y_{j}$ for some j. Then $\left(z_{1}, \ldots, z_{j-1}, y, z_{j+1}, \ldots, z_{n}\right) \in M_{Y} \subset M_{Y^{\prime}}$, which implies $y \in Y_{j}^{\prime}$. So we conclude $Y_{j} \subset Y_{j}^{\prime}$ for all j. Since $M_{Y} \neq M_{Y^{\prime}}$ there is some i such that $Y_{i} \neq Y_{i}^{\prime}$. Suppose now $Y_{j} \neq \emptyset$ for some $j \neq i$. Choose $y_{j} \in Y_{j}$ and $y_{i}^{\prime} \in Y_{i}^{\prime} \backslash Y_{i}$. Then $\left(z_{1}, \ldots, y_{i}^{\prime}, \ldots, y_{j}, \ldots, z_{n}\right) \in M_{Y} \backslash M_{Y^{\prime}}$. This contradiction proves $Y_{j}=\emptyset$ for $j \neq i$. Similary, suppose $y_{j}^{\prime} \in Y_{j}^{\prime}$. Choose $y_{i} \in Y_{i}$. Since $Y_{j}=\emptyset$ we obtain $\left(z_{1}, \ldots, y_{i}, \ldots, y_{j}^{\prime}, \ldots, z_{n}\right) \in M_{Y} \backslash M_{Y^{\prime}}$.

Step 8. For any subset M of X define

$$
B_{M}=\prod_{x \in M}\left(\chi_{x}+V\right) \in \mathcal{F}\left(C^{X} / V\right)
$$

Then B_{M} is a block if and only if $\chi_{M} \in V$, in particular $B=B_{X} \in$ $\mathcal{B}\left(C^{X} / V\right)$. We have

$$
\mathcal{L}(B)=\left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}, \quad v_{B}\left(\left|X_{i}\right|\right)=\left|\left\{j:\left|X_{j}\right|=\left|X_{i}\right|\right\}\right| \quad \text { if } C \neq \mathbb{Z} / 2 \mathbb{Z}
$$

and

$$
\mathcal{L}(B)=\left\{2,\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\} \quad \text { if } C=\mathbb{Z} / 2 \mathbb{Z}
$$

By Steps 5-7 the blocks $B_{p_{i}^{-1}(y)}, i=1, \ldots, n, y \in X_{i}$, are irreducible. Therefore B has the following factorizations:

$$
\begin{equation*}
B=\prod_{y \in X_{i}} B_{p_{i}^{-1}(y)}, \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

Suppose first $C \neq \mathbb{Z} / 2 \mathbb{Z}$. We have to show that the factorizations (6) are the only ones for B. By Step 5 the irreducible divisors of B are given by the $B_{p_{i}^{-1}(y)}$ with $y \in X_{i}$ and $i=1, \ldots, n$. Now B is square free and two sets $p_{i}^{-1}(y), p_{j}^{-1}\left(y^{\prime}\right)$ with $i \neq j$ have nonempty intersection. Hence the assertion follows.

Assume now $C=\mathbb{Z} / 2 \mathbb{Z}$. Let $z \in X$ and choose subsets $Y_{i} \subset X_{i}^{(z)}$ such that $Y_{i} \neq \emptyset$ for at least two indices i. Set $M_{Y}=\left\{x \in X: \mid\left\{i: x_{i} \in\right.\right.$ $\left.Y_{i}\right\} \mid$ is odd $\}$. By Steps 6 and 7 the blocks $B_{M_{Y}}$ and $B_{X \backslash M_{Y}}$ are irreducible. Hence we obtain $2 \in \mathcal{L}(B)$. Suppose now that $B=B_{1} \cdot \ldots \cdot B_{k}$ is some factorization different from all the ones in (6). We have to show that $k=2$. Since B is square free there is some partition $X=M_{1} \cup \ldots \cup M_{k}, M_{s} \cap M_{t}=\emptyset$ for $s \neq t$, such that $B_{s}=B_{M_{s}}$ for all s. Since the sets $p_{i}^{-1}(y), p_{j}^{-1}\left(y^{\prime}\right)$ for $i \neq j$ have nonempty intersection, there exists some s, say $s=1$, such that M_{1} and therefore also $X \backslash M_{1}$ are not of the form $p_{i}^{-1}\left(Y_{i}\right)$ (for any $\left.i=1, \ldots, n, Y_{i} \subset X_{i}\right)$. Hence by Steps 6 and 7 again, $B_{X \backslash M_{1}}$ is irreducible, and we get $B_{2}=B_{X \backslash M_{1}}$ and $k=2$.

Step 9. Suppose that $C \neq \mathbb{Z} / 2 \mathbb{Z}$ and let $L \subset \mathbb{N}_{\geq 2}$ be a finite subset and $v: L \rightarrow \mathbb{N}_{+}$a function. We assume first that

$$
\begin{equation*}
(L, v) \neq(\{m\}, m \mapsto 1),(\{2\}, 2 \mapsto 2) \tag{7}
\end{equation*}
$$

for all $m \geq 2$. Set $n=\sum_{l \in L} v(l)$ and choose finite sets X_{1}, \ldots, X_{n} such that for $l \in L$ exactly $v(l)$ of them have cardinality l. Then by our assumption (7) we have $n \geq 3$, or $n=2$ and $\left|X_{i}\right| \geq 3$ for at least one i. Then the block $B \in \mathcal{B}\left(C^{X} / V\right)$ constructed in Step 8 satisfies $\mathcal{L}(B)=L$ and $v_{B}=v$. Note also that by Steps 1 and $2, C^{X} / V$ is free.

To finish the proof of the proposition in the case $C \neq \mathbb{Z} / 2 \mathbb{Z}$ we need to check the two remaining cases
(a) $L=\{m\}, v(m)=1(m \geq 2)$, and
(b) $L=\{2\}, v(2)=2$.

In case (a) one may for example take

$$
B=\left[\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \cdot\left(\begin{array}{r}
-1 \\
0 \\
\vdots \\
0
\end{array}\right)\right] \cdot \ldots \cdot\left[\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{r}
0 \\
\vdots \\
0 \\
-1
\end{array}\right)\right] \in \mathcal{B}\left(C^{m}\right) .
$$

For (b) we can choose

$$
\begin{aligned}
B & =\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)\right] \cdot\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right)\right] \\
& =\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right] \cdot\left[\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right] \in \mathcal{B}\left(C^{3}\right) .
\end{aligned}
$$

Step 10. Assume now $C=\mathbb{Z} / 2 \mathbb{Z}$ and let $L \subset \mathbb{N}_{\geq 2}$ be a finite set. Define $m=\min L$. Suppose that, for some $k \geq 1$, we have constructed a block $B \in \mathcal{B}\left(C^{k}\right)$ with $\mathcal{L}(B)=L-m+2$. Then obviously $\mathcal{L}\left(0^{m-2} B\right)=L$. We may therefore assume that $2 \in L$. In this case, choose finite sets X_{1}, \ldots, X_{n} with $n \geq 3$ and $L=\left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}$. Then the block B constructed in Step 8 satisfies $\mathcal{L}(B)=L$.

REFERENCES

[1] S. Chapman and A. Geroldinger, Krull domains and monoids, their sets of lengths, and associated combinatorial problems, in: Factorization in Integral Domains, D. D. Anderson (ed.), Lecture Notes in Pure and Appl. Math. 189, Marcel Dekker, 1997, 73-112.
[2] F. Kainrath, A divisor theoretic approach towards the arithmetic of noetherian domains, Arch. Math., to appear.
[3] -, The distribution of prime divisors in finitely generated domains, preprint.
[4] I. Kaplansky, Infinite Abelian Groups, third printing, The University of Michigan Press, 1960.

Institut für Mathematik
Karl-Franzes-Universität
Heinrichstraße 36
A-8010 Graz, Austria
E-mail: florian.kainrath@kfunigraz.ac.at

[^0]: 1991 Mathematics Subject Classification: 11R27, 13G05.

