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SOME REMARKS ON THE ALTITUDE INEQUALITY

BY

NOÔMEN J A R B O U I (SFAX)

Abstract. We introduce and study a new class of ring extensions based on a new for-
mula involving the heights of their primes. We compare them with the classical altitude
inequality and altitude formula, and we give another characterization of locally Jaffard
domains, and domains satisfying absolutely the altitude inequality (resp., the altitude
formula). Then we study the extensions R ⊆ S where R satisfies the corresponding con-
dition with respect to S (Definition 3.1). This leads to a new characterization of integral
extensions.

0. Introduction. Throughout this paper, we adopt the conventions that
each ring considered is integral, commutative, with unit, and an inclusion
(extension) of rings signifies that the smaller ring is a subring of the larger
and has the same multiplicative identity. The quotient field of a ring R is
denoted by qf(R), its Krull dimension by dimR, and its integral closure by
R′. We denote by R[n] the polynomial ring in n indeterminates over R,
and by dimvR the valuative dimension, that is, the limit of the sequence
(dimR[n] − n, n ∈ N). If p is a prime ideal of R, we denote by ht p its
height, and by htv p its valuative height , that is, the limit of the sequence
(ht p[n], n ∈ N). A finite-dimensional ring R is said to be Jaffard if dimvR =
dimR, and locally Jaffard if Rp is a Jaffard ring for each prime p of R ([1]).

For a ring extension R ⊆ S, we denote by tr.deg[S : R] the transcendence
degree of qf(S) over qf(R). Recall that an extension R ⊆ S is said to satisfy
the altitude inequality (resp., the altitude formula, the valuative altitude
formula) if for any prime ideal Q of S over a prime ideal P of R, we have,
respectively,

htQ+ tr.deg[S/Q : R/P ] ≤ htP + tr.deg[S : R],

htQ+ tr.deg[S/Q : R/P ] = htP + tr.deg[S : R],

htvQ+ tr.deg[S/Q : R/P ] = htv P + tr.deg[S : R].
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A domain R satisfies the altitude inequality (resp., the altitude formula, the
valuative altitude formula) if R ⊆ S satisfies the respective condition for
each finite type R-algebra S containing R.

S. Kabbaj established the equivalence between the following statements
[16, Lemme 1.4]:

(i) R is a locally Jaffard domain;

(ii) ht p[n] = ht p for each prime ideal p of R and each positive integer n;

(iii) R satisfies the altitude inequality;

(iv) the extension R ⊆ R[n] satisfies the altitude formula for each positive
integer n.

A. Ayache and P.-J. Cahen [2] generalized Kabbaj’s result as well as
A. Bouvier, D. E. Dobbs and M. Fontana’s result [7, Proposition 9.3]. They
proved that R is a locally Jaffard domain if and only if each extension R ⊆ S
satisfies the altitude inequality.

The main purpose of this paper is to study a new class of extensions.
We say that an extension R ⊆ S of rings satisfies:

(a) the restrictive altitude inequality (RAI) if htQ ≤ ht(Q ∩ R) +
tr.deg[S : R] for each prime ideal Q of S;

(b) the restrictive altitude formula (RAF) if htQ = ht(Q ∩ R) +
tr.deg[S : R] for each prime ideal Q of S;

(c) the restrictive valuative altitude formula (RVAF) if htvQ= htv(Q∩R)
+ tr.deg[S : R] for each prime ideal Q of S.

One shows easily that the extensions satisfying either RAF or RVAF are
algebraic.

There are two basic, classical examples of extensions satisfying RAI:

(1) extensions satisfying the altitude inequality;

(2) algebraic extensions satisfying INC.

Our concern in the first section is primarily with the restrictive alti-
tude inequality. Our initial line of inquiry was to compare the classical and
restrictive altitude inequalities. This section explores consequences of The-
orem 1.2 which states that any finite type extension R ⊆ S satisfying RAI
always satisfies the classical altitude inequality. Perhaps the most surprising
of these consequences, Theorem 1.9, indicates that if R ⊂ S is a finite type
extension such that R is integrally closed in S, then R ⊂ S satisfies RAF if
and only if it satisfies RVAF. On the other hand, we notice that for a ring R,
the extension R ⊂ R[n] always satisfies the valuative altitude formula [12,
Théorème 2.1] for each positive integer n. But if R is not locally Jaffard,
then there exists n such that R ⊂ R[n] does not satisfy the altitude formula.
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The second section is concluded with a study of the relationship between lo-
cally Jaffard domains and RAI. We show that R is a locally Jaffard domain
if and only if each extension R ⊆ S of R satisfies RAI (Proposition 2.1).

Recall that a domain R is said to satisfy absolutely the altitude inequality
if any overring of R is Jaffard (equivalently, the integral closure of R is a
Prüfer domain [2, Théorème 2.6]). R is said to satisfy absolutely the altitude
formula if R ⊆ S satisfies the altitude formula for each overring S of R. We
show in Proposition 2.3 that the following are equivalent:

(i) R satisfies absolutely the altitude formula;

(ii) each ring extension R ⊆ S satisfies RAF;

(iii) each ring extension R ⊆ S satisfies RVAF;

(iv) for each valuation overring V of R, the extension R ⊆ V satisfies
RAF.

In the final section, we turn our attention to the extensions R ⊆ S
where R satisfies RAF (resp., RVAF) with respect to S (Definition 3.1). We
characterize those extensions in terms of residually algebraic pairs [4]. This
leads to a new characterization of integral extensions.

Any unexplained terminology is standard, as in [14] and [17].

1. The restrictive altitude inequality. Recall some definitions given
in the introduction.

Definition 1.1. An extension R ⊂ S of domains satisfies the restrictive
altitude inequality (RAI) if for each prime ideal Q in S,

(]) htQ ≤ ht(Q ∩R) + tr.deg[S : R].

R ⊂ S satisfies the restrictive altitude formula (RAF) if equality holds in (]).

In this section, we collect more information on this kind of extensions,
especially in order to enlighten their relationship with those satisfying the
altitude formula (or inequality).

We start with the following result.

Theorem 1.2. Let R ⊂ S be an extension of domains such that S is a
finitely generated domain over R. Then R ⊂ S satisfies RAI if and only if
it satisfies the altitude inequality.

P r o o f. It is obvious that an extension of domains which satisfies the
altitude inequality always satisfies RAI. Conversely, let Q be a prime ideal
of S, and set P = Q ∩R. We need to prove that

htQ+ tr.deg[S/Q : R/P ] ≤ htP + tr.deg[S : R].
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There exists a maximal ideal MP of SP such that QP ⊆ MP . Since RP is
local with maximal ideal PRP , we get MP ∩RP = PRP . We have

(1) htQ+ ht(M/Q) ≤ htM.

As RP /PRP is a field and SP /QP is finitely generated over RP /PRP , the
extension RP /PRP ⊂ SP /QP satisfies the altitude formula. Therefore

(2) ht(M/Q) + tr.deg[S/M : R/P ] = tr.deg[S/Q : R/P ].

On the other hand, tr.deg[S/M : R/P ] = 0, because the field SP /MP is
finitely generated over RP /PRP [17, Theorem 22]. Hence by (2), we get

(3) ht(M/Q) = tr.deg[S/Q : R/P ].

(1) and (3) give

htQ+ tr.deg[S/Q : R/P ] ≤ htM.

But by hypothesis we have

htM ≤ htP + tr.deg[S : R],

which gives

htQ+ tr.deg[S/Q : R/P ] ≤ htP + tr.deg[S : R].

It was shown in [16] that a domain R is locally Jaffard if and only if
R ⊂ R[n] satisfies the altitude formula for each positive integer n. By the
previous theorem, R is a locally Jaffard domain if and only if R ⊂ R[n]
satisfies RAI for each n.

Remark 1.3. Notice that, in general, if S is not a finitely generated
domain over R, the extension R ⊂ S may satisfy RAI and even RAF without
satisfying the altitude inequality (see Example 4.1 below).

Recall that an extension R ⊂ S of domains is said to be residually
algebraic if R/Q∩R ⊂ S/Q is algebraic for each prime ideal Q of S ([4] and
[13]). In the next result we show that any finite type extension satisfying
RAF is residually algebraic.

Proposition 1.4. Let R ⊂ S be an extension of domains such that S is
a finitely generated domain over R. If R ⊂ S satisfies RAF , then:

(i) R ⊂ S is a residually algebraic extension;
(ii) R ⊂ S satisfies the altitude formula.

P r o o f. (i) According to Theorem 1.2, R ⊂ S satisfies the altitude in-
equality. Thus, for each prime ideal Q of S and P = Q ∩R, we get

htQ+ tr.deg[S/Q : R/P ] ≤ htP + tr.deg[S : R].

Since htQ = htP + tr.deg[S : R], we obtain tr.deg[S/Q : R/P ] = 0. Hence,
R ⊂ S is a residually algebraic extension.
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(ii) It is straightforward to check that a residually algebraic extension
satisfying RAF always satisfies the altitude formula.

For a locally Jaffard domain R, the extension R ⊂ R[n] (where n ≥ 1)
satisfies the altitude formula but does not satisfy RAF because it is not
algebraic. In Example 4.2, we give an algebraic extension R ⊂ S of domains
where S is finitely generated over R, R ⊂ S satisfies the altitude formula
and it is not incomparable (hence not residually algebraic). Thus, by the
previous proposition, R ⊂ S does not satisfy RAF.

Remark 1.5. We claim that there exists an extension R ⊂ S of domains
such that S is not finitely generated over R, R ⊂ S satisfies RAF and is not
residually algebraic (see Example 4.1).

As mentioned in the introduction, A. Ayache and P.-J. Cahen proved
that a domain R is locally Jaffard if and only if each domain extension
R ⊂ S satisfies the altitude inequality. They also proved that any extension
R ⊂ S of domains satisfies the valuative altitude inequality, that is, for each
prime ideal Q of S, we have

htvQ+ tr.deg[S/Q : R/Q ∩R] ≤ htv(Q ∩R) + tr.deg[S : R],

and that this inequality may not be an equality [2, Exemple 5.1]. Hence,
O. Echi in [12] introduced the following definition:

An extension R ⊂ S of domains is said to satisfy the valuative altitude
formula if for each prime ideal Q of S, we have

htvQ+ tr.deg[S/Q : R/Q ∩R] = htv(Q ∩R) + tr.deg[S : R].

There are many examples of ring extensions satisfying the altitude for-
mula without satisfying the valuative altitude formula or conversely (see for
instance [2, Exemple 5.3]). In this vein, we make the following definition.

Definition 1.6. An extension R ⊂ S of domains satisfies the restrictive
valuative altitude formula (RVAF) if for each prime ideal Q of S,

(ℵ) htvQ = htv(Q ∩R) + tr.deg[S : R].

In Theorem 1.9, we prove that if R ⊂ S is an extension of domains where
S is finitely generated over R and integrally closed in S, then R ⊂ S satisfies
RAF if and only if it satisfies RVAF. However, in the general case, there are
extensions satisfying only one of those formulae (Example 4.3).

First of all, we establish the following result:

Proposition 1.7. Let R ⊂ S be an extension of domains satisfying
RVAF. Then:

(i) R[n] ⊂ S[n] is a residually algebraic extension for each n;
(ii) R[n] ⊂ S[n] satisfies the valuative altitude formula for each n.
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We need the following lemma.

Lemma 1.8. Let R ⊂ S be an extension of domains. Then the following
statements are equivalent :

(i) R ⊂ S satisfies RVAF ;
(ii) R[n] ⊂ S[n] satisfies RVAF for each n;

(iii) R[1] ⊂ S[1] satisfies RVAF ;
(iv) there exists a positive integer n such that R[n] ⊂ S[n] satisfies RVAF.

P r o o f. (i)⇒(ii). For each prime ideal Q of S[n], we set P = Q ∩ R[n],
q = Q∩S and p = q∩R. By the special valuative chain theorem [12], we have
htvQ = htv q+∗Q and htv P = htv p+∗P , where ∗Q = ht(Q/q[n]) and ∗P =
ht(P/p[n]). Since R⊂S satisfies RVAF, we have htv q=htv p+tr.deg[S : R].
Hence htvQ = htv P + (∗Q− ∗P ) + tr.deg[S : R]. But by [3, Lemme A], we
have ∗Q− ∗P ≥ 0, which gives htvQ ≥ htv P + tr.deg[S : R]. The opposite
inequality is always true, because R[n] ⊂ S[n] satisfies the valuative altitude
inequality [2, Théorème 1.3]. Therefore, htvQ = htv P + tr.deg[S[n] : R[n]].

(ii)⇒(iii)⇒(iv) are trivial.
(iv)⇒(i). Let q be a prime ideal of S and p = q ∩ R. Then htv q[n] =

htv p[n] + tr.deg[S[n] : R[n]]. Thus, htv q = htv p+ tr.deg[S : R].

Proof of Proposition 1.7. (i) It will suffice to prove that if R ⊂ S satisfies
RVAF, then it is residually algebraic; then we conclude by the previous
lemma. For each prime ideal Q of S, we set P = Q ∩ R. We have htvQ +
tr.deg[S/Q : R/P ] ≤ htv P + tr.deg[S : R] [2, Théorème 1.3]. But htvQ =
htv P + tr.deg[S : R]. Hence, tr.deg[S/Q : R/P ] = 0. Therefore, R ⊂ S is
residually algebraic.

(ii) One can easily check that a residually algebraic extension satisfying
RVAF always satisfies the valuative altitude formula.

Theorem 1.9. Let R ⊂ S be an extension of domains such that S is
finitely generated over R and R is integrally closed in S. Then the following
statements are equivalent :

(i) R ⊂ S satisfies RAF ;
(ii) R ⊂ S satisfies RVAF ;

(iii) for each Q ∈ Spec(S), we have SQ = RQ∩R.

To prove this theorem, we need the following lemma.

Lemma 1.10. Let R ⊂ S be an extension of domains such that S is finitely
generated over R. Then the following statements are equivalent.

(i) R ⊂ S is a residually algebraic extension;
(ii) for each Q∈Spec(S), we have SQ =R∗Q∩R∗ . (R∗ denotes the integral

closure of R in S ).
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P r o o f. (i)⇒(ii). Without loss of generality, we can assume that S =
R[u] where u is algebraic over R. Let Q ∈ Spec(S) and set P = Q ∩ R.
By localization, we can suppose that R is local with P as maximal ideal.
Denote by Φu : R[X] → R[u] the epimorphism of R-algebras that sends
u to X. Let I = KerΦu. We have R[X]/I ' R[u]. Since R ⊂ R[u] is
residually algebraic we have I 6⊆ P [X]. On the other hand, let ϕu : R∗[X]→
R∗[u] = R[u], X 7→ u, and J = Kerϕu. Since I 6⊆ P [X], it follows that
J 6⊆ (Q ∩ R∗)[X]. Consider the multiplicative subset N = R∗ \ (Q ∩R∗)
of R∗. We have N−1J ⊆ N−1(Q ∩ R∗)[X]. The ring R∗Q∩R∗ is local and

integrally closed in N−1(R[u]) = (R∗Q∩R∗)[u] and since N−1(Q ∩R∗) is the

unique maximal ideal of R∗Q∩R∗ , using the u-u−1 Lemma [17, Exercise 31,

pp. 43–44] we obtain u ∈ R∗Q∩R∗ or u−1 ∈ R∗Q∩R∗ .

Now we show that u ∈ R∗Q∩R∗ . For if u 6∈ R∗Q∩R∗ , then u−1 is not

invertible in R∗Q∩R∗ . Hence u−1 ∈ N−1(Q∩R∗). Therefore there is no prime

ideal of (R∗Q∩R∗)[u] lying over N−1(Q ∩ R∗). However, Q ∈ Spec(R[u]) =

Spec(R∗[u]), N−1Q ∈ Spec(N−1(R∗[u])) = Spec((N−1R∗)[u]) and N−1Q ∩
N−1R∗ = N−1(Q ∩R∗). This contradiction yields u ∈ R∗Q∩R∗ .

Thus N−1R∗ = (N−1R∗)[u] = N−1(R[u]), and N−1Q = N−1Q ∩
N−1(R[u]) =N−1Q∩N−1R∗ =N−1(Q∩R∗). Hence Q is the unique ideal
of R[u] maximal for the property of not meeting S. This yields N−1(R[u]) =
(R[u])Q = R∗Q∩R∗ .

(ii)⇒(i). LetQ∈ Spec(S). We have tr.deg[S/Q : R/Q∩R] = tr.deg[S/Q :
R∗/Q∩R∗] + tr.deg[R∗/Q∩R∗ : R/Q∩R] = tr.deg[S/Q : R∗/Q∩R∗] = 0,
since SQ = R∗Q∩R∗ .

Proof of Theorem 1.9. (i)⇒(ii). Assume that R ⊂ S satisfies RAF.
By Proposition 1.4, R ⊂ S is residually algebraic and by Lemma 1.10,
SQ = RQ∩R for each Q ∈ Spec(S). Hence htvQ = htv(Q∩R). Thus R ⊂ S
satisfies RVAF.

(ii)⇒(iii). By Proposition 1.7, R ⊂ S is residually algebraic. Using
Lemma 1.10 we have SQ = RQ∩R for each Q ∈ Spec(S).

(iii)⇒(i). This is straightforward.

Notice that the assumption that R is integrally closed in S is essential
in Theorem 1.9. To see this, consider an integral ring extension of integral
domains R ⊂ S which satisfies RAF but not RVAF (see for instance [2,
Exemple 5.3]).

2. RAI and Jaffard domains. The main purpose of this brief section
is to give a new characterization of locally Jaffard domains in terms of RAI.
We start with the following result.
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Proposition 2.1. Let R be a domain. Then the following statements are
equivalent :

(i) R is a locally Jaffard domain;

(ii) for each domain S containing R, the extension R ⊂ S satisfies RAI ;

(iii) for each finitely generated domain S over R, the extension R ⊂ S
satisfies RAI ;

(iv) for each finitely generated overring S of R, the extension R ⊂ S
satisfies RAI ;

(v) for each overring S of R, the extension R ⊂ S satisfies RAI ;

(vi) for each valuation overring V of R, the extension R ⊂ V satis-
fies RAI.

P r o o f. The implications (i)⇒(ii)⇒(iii)⇒(iv) and (v)⇒(vi) are straight-
forward.

(iv)⇒(v). We assume that S is an overring of R containing a prime ideal
Q such that htQ > ht(Q ∩R). Let s = htQ and consider a maximal chain
of Q : (0) = Q0 ⊂ Q1 ⊂ . . . ⊂ Qs = Q. For each i ∈ {1, . . . , s}, there
exists xi ∈ Qi −Qi−1. If we set T = R[x1, . . . , xs] and Q′ = Q∩ T , we have
htQ′ ≥ s > ht(Q′ ∩ R). Hence, the finite type extension R ⊂ T does not
satisfy RAI, contrary to hypothesis.

(vi)⇒(i). Let P be a prime ideal of R and V a valuation overring of RP

with M as maximal ideal. If we set P ′ = M ∩ R, we get dimV = htM ≤
htP ′ ≤ htP = dimRP . Therefore dimvRP ≤ dimRP . Since the inverse
inequality dimRP ≤ dimvRP always holds, we obtain dimRP = dimvRP .
Hence, R is a locally Jaffard domain.

Remark 2.2. By Proposition 2.1, a domain R satisfies absolutely the
altitude inequality if and only if for each overring S of R, and each overring
T of S, the extension S ⊂ T satisfies RAI.

As was promised, the next result points up the connection between sat-
isfying absolutely the altitude formula and RAF.

Proposition 2.3. Let R be a domain. Then the following statements are
equivalent :

(i) R satisfies absolutely the altitude formula;

(ii) each ring extension R ⊂ S satisfies RAF ;

(iii) each ring extension R ⊂ S satisfies RVAF ;

(iv) for each valuation overring V of R, the extension R ⊂ V satisfies
RAF ;

(v) for each valuation overring V of R, the extension R ⊂ V satisfies
RVAF.



ALTITUDE INEQUALITY 47

P r o o f. (i)⇒(ii). Since R satisfies absolutely the altitude formula, each
ring extension R ⊂ S is residually algebraic and satisfies the altitude formula
[2, Théorèmes 2.6 and 3.8]. Thus, it satisfies RAF.

(ii)⇒(iii). For each overring S of R, and each overring T of S, the ex-
tension S ⊂ T satisfies RAF. Hence, S is a locally Jaffard domain (Propo-
sition 2.1).

(iii)⇒(i) (resp., (v)⇒(i)). By Proposition 1.7, for each overring (resp.
valuation overring) S of R, the extension R ⊂ S is residually algebraic.
Hence R satisfies absolutely the altitude inequality (otherwise R′ is a Prüfer
domain) [2, Théorème 2.6 and Remarque]. Therefore, each overring of R is a
locally Jaffard domain. Hence, for each overring (resp., valuation overring)
S of R, the extension R ⊂ S satisfies the altitude formula. Thus R satisfies
absolutely the altitude formula [2, Théorème 3.3].

(ii)⇒(iv). Trivial.

(iv)⇒(v). This is straightforward, since R is a locally Jaffard domain
(Proposition 2.1).

3. RAF and residually algebraic pairs. Recall that a pair (R,S)
is said to be residually algebraic if for any ring T between R and S, the
extension R ⊂ T is residually algebraic [4, Definition 2.1]. Our work’s prin-
cipal motivation in this section arises from the following characterization of
residually algebraic pairs in terms of RAF.

By analogy to [5], we introduce the following.

Definition 3.1. Let R ⊂ S be an extension of domains. We say that R
satisfies RAF (resp., RVAF) with respect to S if for any ring T between R
and S, the extension R ⊂ T satisfies RAF (resp., RVAF).

Proposition 3.2. Let R ⊂ S be an extension of domains. Then R satis-
fies RAF (resp., RVAF ) with respect to S if and only if (R,S) is a residually
algebraic pair and the extension R ⊆ R∗ satisfies RAF (resp., RVAF ). (R∗

denotes the integral closure of R in S.)

P r o o f. Assume that (R,S) is a residually algebraic pair. Then so is
the pair (R∗, S). Thus by [4, Theorem 2.10], for any ring T between R∗

and S and any prime ideal Q of T , we have TQ = R∗Q∩R∗ . Thus htT Q =
htR∗(Q∩R∗) and htvT Q = htvR∗(Q∩R∗). Hence, R∗ satisfies RAF (resp.,
RVAF) with respect to S. Since R ⊆ R∗ satisfies RAF (resp., RVAF), R
satisfies RAF (resp., RVAF) with respect to S.

Conversely, let T be a ring between R and S. Our task is to show that
R ⊂ T is an incomparable extension. This is immediate since an extension
satisfying RAF or RVAF is incomparable.
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As an immediate consequence, we have:

Corollary 3.3. Let R ⊂ S be an extension of domains such that R is
integrally closed in S. Then the following statements are equivalent :

(i) R satisfies RAF with respect to S;

(ii) R satisfies RVAF with respect to S;

(iii) (R,S) is a residually algebraic pair.

Corollary 3.4. Let R be a domain. The following statements are equiv-
alent :

(i) R satisfies RAF with respect to qf(R);

(ii) R′ is a Prüfer domain and R ⊂ R′ satisfies RAF ;

(iii) R′ is a Prüfer domain and R ⊂ R′ satisfies the altitude formula;

(iv) R satisfies RVAF with respect to qf(R);

(v) R satisfies absolutely the altitude formula.

P r o o f. Note that the pair (R, qf(R)) is residually algebraic if and only
if R′ is a Prüfer domain [4, Corollary 2.8].

After proving 3.5, a number of corollaries are given.

Result 3.5 [5*, Proposition 2.10]. An extension R ⊆ S of domains is
integral if and only if (R[X], S[X]) is a residually algebraic pair.

P r o o f. Of course the “only if” part is immediate, since R[X] ⊆ S[X] is
an integral extension. For the “if” part, we can assume that R is local and
integrally closed in S. Then, by [14, Theorem 10.7], R[X] is integrally closed
in S[X]. Consider the ring T = R + XS[X]; we have R[X] ⊆ T ⊆ S[X].
Denote by M the maximal ideal of R; then Q = M + XS[X] is a prime
ideal of T . Let P = Q ∩R[X]. We have P = M +XR[X]. Pick a ∈ S \R.
Then aX ∈TQ, but aX 6∈R[X]P . Indeed, if not, there exist f ∈R[X] and
g∈R[X]\P such that f/g=aX. Write f =

∑n
i=0 aiX

i and g=
∑m

j=0 bjX
j .

The equality f = aXg shows that n = m+1 and a1 = ab0. But b0 ∈ R\M .
Hence b0 is invertible in R. Therefore a = a1b

−1
0 ∈ R, a contradiction. Thus

TQ 6= R[X]P and by [4, Theorem 2.10], (R[X], S[X]) is not a residually
algebraic pair.

Corollary 3.6. Let R ⊂ S be an extension of domains. The following
statements are equivalent :

(i) R ⊂ S is an integral extension and R[X] ⊂ S[X] satisfies the altitude
formula;

(ii) R ⊂ S is an integral extension and R[X] ⊂ S[X] satisfies RAF ;

(iii) R[X] satisfies RAF with respect to S[X].
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P r o o f. (ii)⇒(iii). This follows immediately from Proposition 3.2.

(iii)⇒(ii). By Proposition 3.2, the pair (R[X], S[X]) is residually alge-
braic, and the extension R[X] ⊂ R∗[X] satisfies RAF. Thus by Result 3.5,
R ⊂ S is an integral extension. Hence R∗ = S, and R[X] ⊂ S[X] satisfies
RAF.

(i)⇔(ii). This is straightforward.

We pause to repeat that the techniques used in the preceding proof
permit one to prove the following corollary.

Corollary 3.7. Let R ⊂ S be an extension of domains. The following
statements are equivalent :

(i) R ⊂ S is an integral extension satisfying RVAF ;

(ii) R ⊂ S is an integral extension satisfying the valuative altitude for-
mula;

(iii) R[X] satisfies RVAF with respect to S[X].

According to [6, Théorème 3, p. 56], if R ⊂ S is an integral extension such
that R is integrally closed then it has the incomparability and going-down
properties. Hence it satisfies both RVAF and RAF. Therefore we get easily
the following.

Corollary 3.8. Let R ⊂ S be a ring extension such that R is integrally
closed. The following statements are equivalent :

(i) R ⊂ S is an integral extension;

(ii) R[X] satisfies RAF with respect to S[X];

(iii) R[X] satisfies RVAF with respect to S[X].

4. Examples and counterexamples. This section is concerned with
examples showing limits of the results established in the previous sections.
First, recall some terminology from [1], [8] and [9]. Specifically, let S be an
integral domain, I a nonzero ideal of S, ϕ : S → S/I the natural epimor-
phism, D a subring of S/I and R = ϕ−1(D) the pullback of the following
diagram:

R D

S S/I
��

//

��
//

We say that R is the ring of the (S, I,D) construction ([8]).

As stated before, if we leave out the assumption “S is finitely generated
over R” in Theorem 1.2, the following example shows, among other facts,
that R ⊂ S may satisfy RAI without satisfying the altitude inequality.
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Example 4.1. This example provides an extension R ⊂ S of domains
such that S is not a finitely generated domain over R, and

(a) R ⊂ S satisfies RAF without satisfying the altitude inequality,
(b) R ⊂ S is not a residually algebraic extension (hence it does not

satisfy RVAF).

Let S be a valuation domain with maximal ideal M and residue field
S/M = K. LetR = ϕ−1(k), where ϕ : S → S/M is the natural epimorphism
and k is a subfield of K. Assume that k ⊂ K is a transcendental extension.

R ⊂ S satisfies RAF, since htS M = htRM + tr.deg[S : R]. However,
htvRM = dimvR = dimS + tr.deg[K : k] > dimS = htvS M . Thus, R ⊂ S
does not satisfy RVAF. On the other hand, we have htS M + tr.deg[S/M :
R/M ] > htRM + tr.deg[S : R]. Hence, R ⊂ S does not satisfy the altitude
inequality.

It is obvious that S is not a finitely generated domain over R.

The next example supplies an algebraic extension R ⊂ S of domains
where S is finitely generated over R, R ⊂ S satisfies the altitude formula
and it is not incomparable (hence not residually algebraic).

Example 4.2. Let R be a domain such that R[X] is catenarian and R′ is
not a Prüfer domain (for instanceR= Z[X]). Therefore by [2, Théorème 2.6],
there exists u ∈ qf(R) such that the extension R ⊂ R[u] = S is not incom-
parable. We consider the epimorphism of R-algebras ϕ : R[X] → R[u],
X 7→ u. We have S = R[u] ' R[X]/P where P = Kerϕ. The extension
R ⊂ S satisfies the altitude formula. This comes from the following lemma.

Lemma [12, Théorème 2.2]. Let R be a domain, n a nonzero positive
integer and P a prime ideal of R[n] such that P ∩ R = (0). Then the
extension R ⊂ R[n]/P satisfies the altitude formula if and only if for any
prime ideal Q of R[n] containing P , we have ht(Q/P ) = htQ− htP .

The following example exhibits a marked difference between the classical
altitude formula (or inequality) and RAF (resp. RAI).

Example 4.3. (a) There is an algebraic extension R ⊂ S of domains
satisfying RAI without satisfying RAF or RVAF.

We consider two incomparable valuation domains V and W with the
same quotient field such that dimW > dimV . We denote by M and N
the maximal ideals of V and W respectively. Let S = V ∩W . Then S is
a Prüfer domain with M ′ = M ∩ S and N ′ = N ∩ S as maximal ideals.
Also we can assume that S/M ' S/N ' K, where K is a subfield of qf(V ).
We set I = M ′ ∩ N ′ and R = ϕ−1(K) where ϕ : S → S/I is the natural
epimorphism. Then S = R′ ([8]). We have dimV = htM ′ = htvM

′ <
ht I + tr.deg[S : R] = htv I + tr.deg[S : R] = dimW . Hence, the extension
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R ⊂ S does not satisfy RAF and RVAF. However, R ⊂ S satisfies RAI
because it is an integral extension.

(b) There exists a ring extension R ⊂ S satisfying the valuative altitude
formula without satisfying RAI.

Let R be a non-locally Jaffard domain. Then there exists a positive
integer n such that the extension R ⊂ S = R[n] does not satisfy the altitude
inequality. Hence, by Theorem 1.2, R ⊂ S does not satisfy RAI, although it
satisfies the valuative altitude formula [12, Théorème 2.1].

(c) There exists an integral extension satisfying the altitude formula with-
out satisfying the valuative altitude formula. Hence, it satisfies RAF without
satisfying RVAF.

(d) There exists an integral extension satisfying the valuative altitude
formula without satisfying the altitude formula. Therefore, it satisfies RAF
without satisfying RVAF.

(e) If R is a locally Jaffard domain, then the extension R ⊂ R[n] satisfies
the altitude formula without satisfying RAF or RVAF.
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