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INVARIANT OPERATORS ON FUNCTION SPACES

ON HOMOGENEOUS TREES

BY

MICHAEL COWL ING (SYDNEY, N.S.W.) STEFANO MEDA (MILANO)

AND ALBERTO G. SETT I (COMO)

A homogeneous tree X of degree q+1 is a connected graph with no loops
in which each vertex is adjacent to q+1 others. We assume that q ≥ 2. The
tree X has a natural measure, counting measure, and a natural distance d,
viz. d(x, y) is the number of edges between vertices x and y. Let o be a
fixed but arbitrary reference point in X, and let Go be the stabiliser of o in
the isometry group G of X. We write |x| for d(x, o). The map g 7→ g · o
identifies the coset space G/Go with X; thus a function f on X gives rise to
a Go-invariant function f ′ on G by the formula f ′(g) = f(g · o), and every
Go-invariant function arises in this way. A function f on X is said to be
radial if f(x) depends only on |x|, or equivalently, if f is Go-invariant, or
f ′ is Go-bi-invariant. We endow the totally disconnected group G with the
Haar measure such that the mass of the open subgroup Go is 1. The reader
may find much more on the group G in the book of Figà-Talamanca and
Nebbia [FTN].

We denote by |E| the measure of a subset E of a measure space. We
write Sn for {x ∈ X : |x| = n}. Clearly, |S0| = 1, and |Sn| = (q + 1)qn−1

when n ∈ Z
+. We pick points w0, w1, w2, . . . in X such that |wd| = d. A

radial function f on X is determined by its restriction to these points.

It is well known that G-invariant linear operators from Lp(X) to Lr(X)
correspond to linear operators from Lp(G/Go) to Lr(G/Go) given by con-
volution on the right by Go-bi-invariant kernels. We denote by Cvrp(X) the
space of radial functions on X associated to these Go-bi-invariant kernels.
The norm of an element k of Cvrp(X) is then defined as the norm of the cor-
responding operator from Lp(X) to Lr(X), and denoted by |||k|||p;r . Equipped
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with this norm, Cvrp(X) is a Banach space. We note that the maps f 7→ f ′

and f ′ 7→ Ef ′ given by the formulae

f ′(g) = f(g · o), Ef ′(g · o) =
\

Go

f ′(gg1) dg1 ∀g ∈ G

are isometric from Lp(X) into Lp(G) and norm-decreasing from Lp(G) into
Lp(X), for all p in [1,∞]. It follows that the norm of an element k in Cvrp(X)
is equal to the norm of its Go-bi-invariant extension k′ to G in Cvrp(G), the
space of convolution operators from Lp(G) to Lr(G).

For any function space E(X) on X, we denote by E(X)♯ the (usually
closed) subspace of E(X) of radial functions. We denote by Lp,r(X) the
standard Lorentz space, as in Bergh and Löfström [BL]. Pytlik [Py] proved
that, given p and r in [1,∞), a radial function f belongs to Lp,r(X) if and
only if the function d 7→ f(wd)|Sd|

1/p is in Lr(N), and

(2)
[∑

d∈N

|f(wd)|
r
|Sd|

r/p
]1/r

∼ ‖f‖p,r.

The key to the proof is that |Sd| grows exponentially in d. Pytlik used this
lemma to show that Lp,1(X)♯ ⊆ Cvpp(X) ⊆ Lp(X)♯, and that the cone of
positive radial convolution operators on Lp(X) coincides with the cone of
positive functions in Lp,1(X).

In this paper, we first outline “spherical harmonic analysis” on G, and
then prove some general theorems on Cvrp(X). In particular, we generalise
results of Pytlik [Py] and of C. Nebbia [N, Thm. 2].

1. Notation and preliminaries. We write τ for 2π/ log q, and define
T to be the torus R/τZ, usually identified with the interval [−τ/2, τ/2). We
denote by F the Fourier transformation on Z, given by

FF (s) =
∑

d∈Z

F (d) q−ids ∀s ∈ T.

Clearly, FF (s+ τ) = FF (s). A distribution m on T is said to be in Mr
p (T)

if convolution with F−1m defines a bounded operator from Lp(Z) to Lr(Z).
We define FLr(T) to be {FF : F ∈ Lr(Z)}, and note that FLr(T) is con-
tinuously included in Lr′(T), by the classical Hausdorff–Young inequality,
for r in [1, 2].

For p in [1,∞], let p′, δ(p), Sp and Sp denote p/(p− 1), 1/p− 1/2,

{z ∈ C : |Im(z)| < |δ(p)|} and {z ∈ C : |Im(z)| ≤ |δ(p)|}.

If f is holomorphic in Sp, then fδ(p) and f−δ(p) denote its boundary functions
f(iδ(p) + ·) and f(−iδ(p) + ·), when these exist distributionally. The letter
C, sometimes with subscripts or superscripts, denotes a positive constant
which may vary from place to place; it may depend on any factor quantified
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(implicitly or explicitly) before its occurrence, but not on factors quantified
afterwards. Given functions A and B, defined on a set D, we say that A ∼ B
in D if there exist C and C ′ such that

CA(t) ≤ B(t) ≤ C ′A(t) ∀t ∈ D.

We conclude this section by summarising some features of spherical anal-
ysis on X. The theory parallels that of spherical analysis on a noncompact
symmetric space of rank one. The Gel’fand pair (G,Go) has associated
spherical functions φz, parametrised by the complex number z. We refer to
[CMS1] for explicit formulae, noting that our parametrisation differs from
that used by some authors (e.g., [FTP] and [FTN]; our φz corresponds to

their φ1/2+iz). The spherical Fourier transform f̃ of f in L1(X)♯ is defined by

f̃(z) =
∑

x∈X

f(x)φz(x) ∀z ∈ S1.

Since φz+τ = φz and φz = φ−z, f̃ is even and τ -periodic in S1. We say that
a holomorphic function in a strip Sp is Weyl-invariant if it satisfies these
conditions in Sp.

We denote by µ the Plancherel measure on T [CMS1, (1.2)]. We note
that the relation c(z) = c(−z) and the symmetry properties of spherical
functions imply that

φs(x)
dµ(s)

ds
= cG c(−s)−1 q(is−1/2)|x| + cG c(s)−1 q(−is−1/2)|x|,

for all x in X and s in T. Therefore, if m : R → C is even and τ -periodic,
then \

T

m(s)φs(x) dµ(s) = cG
\
T

m(s) c(−s)−1q(is−1/2)|x| ds

+ cG
\
T

m(s) c(s)−1q(−is−1/2)|x| ds,

and by changing the variable s to −s, we see that the two integrals on the
right hand side are equal. In particular, if we set č(s) = c(−s), we have

f(x) = 2 cG
\
T

f̃(s) c(s)−1q(−is−1/2)|x| ds(3)

= 2 cG
\
T

f̃(s) č(s)−1q(is−1/2)|x| ds.

In the following theorem, we use the results of [CMS2] on the range of
the radial Abel transformation to characterise the spherical Fourier trans-
forms of the radial functions in the Lorentz spaces Lp,r(X), and derive a
version of the Hausdorff–Young inequality. For related results in the setting
of noncompact symmetric spaces see [CGM].
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Theorem 1.1. Suppose that 1 ≤ p < 2. If f is in Lp,r(X)♯, then f̃ extends

to a Weyl-invariant holomorphic function in Sp, with boundary functions

f̃δ(p) and f̃−δ(p) in FLr(T). If also 1 ≤ r ≤ 2, then the map z 7→ f̃(z + ·) is

continuous from Sp into Lr′(T), and
[\
T

|f̃(z + s)|
r′

ds
]1/r′

≤ C ‖f‖p,r ∀z ∈ Sp.

Conversely , if f is radial and f̃ extends to a Weyl-invariant holomorphic

function in Sp, the map z 7→ f̃(z + ·) is continuous from Sp into the space

of distributions on T, and the boundary functions f̃δ(p) and f̃−δ(p) are in

FLr(T), then f is in Lp,r(X)♯, and

‖f‖p,r ≤ C ‖F−1f̃δ(p)‖r.

P r o o f. Let A denote the Abel transformation on X; see [CMS2] for
notation and discussion. We recall that, for sufficiently nice radial func-
tions on X, the spherical Fourier transformation factors as f̃ = F(Af).
Further, by [CMS2, Thm. 2.5], A is a bicontinuous isomorphism of Lp,r(X)♯

onto the space q−δ(p)|·| Lr(Z), for any p in [1, 2) and r in [1,+∞). Thus,

if f is in Lp,r(X)♯, it follows from the definition of F that f̃ extends to a
holomorphic function on the strip Sp with the required continuity proper-
ties, and with boundary functions in FLr(T). Moreover, from the classical
Hausdorff–Young inequality,

[\
T

|F(Af)(z + s)|
r′
ds
]1/r′

≤ C‖qIm(z)(·)Af‖Lr(Z)

≤ C‖qδ(p)|·|Af‖Lr(Z) ≤ C‖f‖p,r ∀z ∈ Sp.

Conversely, assume that f̃ has the stated properties. By Cauchy’s Theorem,

Af(h) = F−1(f̃(h)) =
1

τ

\
T

f̃(s+ iδ(p)) qi(s+iδ(p))h ds = q−δ(p)hF−1(f̃δ(p)).

Since F−1(f̃δ(p)) is in Lr(Z) by assumption, and Af is even, Af is in

q−δ(p)|·| Lr(Z); the required norm inequality follows from (2).

2. On radial convolutors. Recall that Cvrp(X) denotes the space of
radial kernels which convolve Lp(X) into Lr(X). In this section, we apply
the results of the previous section to study these spaces.

The spherical Fourier transforms of the elements of the space Cvrp(X)
are called spherical Lp-Lr Fourier multipliers, or Lp Fourier multipliers if
p = r. It is easy to see that the Clerc–Stein condition [CS] for spherical Lp

multipliers on noncompact symmetric spaces holds in the present situation.
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Thus a spherical Lp Fourier multiplier extends to a bounded holomorphic
function on Sp [CMS1, Thm. 1.3], and

sup
z∈Sp

|k̃(z)| ≤ |||k|||p ∀k ∈ Cvpp(X).

The symmetry properties of spherical functions imply the Weyl-invariance
of spherical Lp-Lr multipliers in their strip of holomorphy. The following
theorem, which may be proved using Theorem 1.1, generalises the Clerc–
Stein condition.

Theorem 2.1. Suppose that 1 ≤ p < 2 and 1 ≤ r ≤ s ≤ ∞, and that k

is a radial function on X. The following conditions are equivalent :

(i) k̃ extends to a holomorphic function on Sp, and the map z 7→ k̃(z+ ·)
extends to a continuous map from Sp into the space of distributions on T,

and k̃δ(p) is in Ms
r (T);

(ii) the operator of right convolution with k is bounded from Lp,r(X)♯ to

Lp,s(X)♯.

In particular , if k is in Cvpp(X) then k̃δ(p) is in Mp
p (T).

We omit the proof, since it is also an immediate corollary of [CMS2,
Prop. 2.7]. Using Theorem 1.1 we moreover obtain the following.

Theorem 2.2. Suppose that p is in [1, 2) and that k is a radial function

on X whose Fourier transform k̃ is holomorphic on Sp and such that the

map z 7→ k̃(z + ·) is a continuous distribution-valued map on Sp.

(i) If p > 1 and k̃δ(p) is in FLr(T), then right convolution with k is a

bounded operator from Lp,s(X) into Lp,t(X), where 1/t = 1/r + 1/s − 1. In

particular , if k̃ is in H∞(Sp), then right convolution with k is of weak type

(p, p).

(ii) If p > 1 and k̃δ(p) is bounded and smooth in C \ τZ, and satisfies
∣∣∣∣
d

ds
k̃δ(p)(s)

∣∣∣∣ ≤ C |s|−1 ∀s ∈ T,

then right convolution with k maps Lp,s(X) continuously into Lp,t(X) when-
ever t > s.

(iii) If k̃ is in H∞(S1), then right convolution with k is of weak type

(1, 1), and of strong type (p, p) for every p in (1,∞).

P r o o f. We claim that Lp,s(X) ∗ Lp,r(X)♯ ⊆ Lp,t(X) when 1 ≤ p < 2,
1 ≤ r, s, t < ∞, and 1+1/t = 1/r+1/s. Indeed, L1(X)∗L1(X)♯ ⊆ L1(X), and
Pytlik [Py] showed that if p is in (1, 2), then Lp(X) ∗ Lp,1(X)♯ ⊆ Lp(X) (see
also Theorem 2.4 below). The claim then follows by multilinear interpolation
[BL, 3.13.5, p. 76].
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Assume now that k̃δ(p) is in FLr(T). By Theorem 1.1, k is in Lp,r(X),
and the first statement in (i) follows from the claim above.

If k̃ is in H∞(Sp), then k̃δ(p) is in L∞(T) and a fortiori in FL2(T). The
second statement in (i) follows from the first.

Under hypothesis (ii), k̃δ(p) is in FLr(T) when r > 1, and the result
follows from (i).

Finally, assume that k̃ is inH∞(S1). By (i) and interpolation and duality,
it suffices to prove that convolution with k is of weak type (1, 1). By (3), we
see that

k(x) = 2cG
\
T

f̃(s) c(s)−1q(−is−1/2)|x| ds;

by changing the contour of integration and inserting the value of cG, we
deduce that

k(x) =
q log q

2π(q + 1)
q−|x|

\
T

f̃(s − i/2)c(s − i/2)−1q−is|x| ds.

We may therefore estimate

|k(x)| ≤
q

q + 1
q−|x| sup

s∈T

|f̃(s− i/2) c(s − i/2)−1| ≤
q

q − 1
‖f̃‖∞ q−|x|.

Now, according to R. Rochberg and M. Taibleson [RT], Green’s operator
(the inverse of the Laplacian) for a strongly reversible random walk on a
tree of bounded degree is of weak type (1, 1). It is easily verified that the
convolution kernel of Green’s operator on a homogeneous tree of degree q+1
is given by

k(x) =
q

q − 1
q−|x|,

and the required conclusion follows.

We now focus on the Banach space Cvrp(X) of radial convolutors from
Lp(X) to Lr(X). First, we state the analogue of Herz’s principe de majoration

on trees. This is known, and may be found in a more general setting, for
instance, in [Lo].

Proposition 2.3. Suppose that 1 ≤ p ≤ 2, and that k belongs to Cvpp(X).
Then

|||k|||p ≤ ||||k||||p = |k|̃ (iδ(p)),

and equality holds if k is nonnegative.

Denote by Y (X) the Banach space of functions f on X such that ‖f‖Y
< ∞, where

‖f‖Y =
∑

d∈N

(d+ 1)
( ∑

x∈Sd

|f(wd)|
2
)1/2

.

Observe that Y (X)♯ ⊂ L2,1(X)♯; the inclusion is proper, from (2).
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Theorem 2.4. Suppose that 1 ≤ p, r ≤ ∞. Then Cvrp(X) = Cvp
′

r′ (X).
Further ,

(i) if 1 < p < 2, then Lp,1(X)♯ ⊆ Cvpp(X) ⊆ Lp(X)♯, and if k ≥ 0 and k

is in Cvpp(X), then k belongs to Lp,1(X)♯;

(ii) if p = 2, then Y (X)♯ ⊆ Cv22(X) ⊆ L2(X)♯, and if k ≥ 0 and k is in

Cv22(X), then k belongs to Y (X)♯;

(iii) if 1 ≤ p < r ≤ 2, then Cvrp(X) = Lr(X)♯;

(iv) if 1 ≤ p ≤ 2 ≤ r ≤ ∞, and r 6= p′, then Cvrp(X) = Lmin(p′,r)(X)♯;

(v) if 1 < p < 2, then Lp′,p′/2(X)♯ ⊆ Cvp
′

p (X) ⊆ Lp′

(X)♯.

Remarks. Both inclusions in (i) and the right hand inclusion in (v) are
strict. This follows from the study of the Lp-Lr mapping properties of the
resolvent operator of the Laplacian [CMS1]. In addition, both inclusions in
(ii) are strict. Indeed, the image of the space Y (X)♯ under the spherical
Fourier transform is contained in the space of absolutely convergent Fourier
series on T, while the images of Cv22(X) and L2(X)♯ coincide with L∞(T)
and L2(T, µ) respectively. Finally, by considering nonnegative elements of
L2,1(X)♯ which are not in Y (X)♯, it may be seen that L2,1(X)♯ is not con-
tained in Cv22(X).

P r o o f (of Theorem 2.4). Observe that Cvrp(X) ⊆ Lr(X)♯ since the point

mass at o is in Lp(X)♯ for all p in [1,∞]. Moreover, Cvrp(X) = Cvp
′

r′ (X), with
norm equality, by duality, and since X is noncompact, Cvrp(X) is nontrivial
if and only if p ≤ r, by a theorem of Hörmander [Hö].

We first prove (i). As stated above, the left hand inclusion in (i) was
proved in [Py]. We give a shorter proof. Since k is in Cvpp(X) if |k| is, it
suffices to take k nonnegative. For these k, Herz’s principe shows that

|||k|||p = k̃(iδ(p)) =
∑

d∈N

k(wd)φiδ(p)(wd) ∼
∑

d∈N

k(wd) |Sd|
1/p

∼ ‖k‖p,1,

as required. This completes the proof of (i). To prove (ii), we argue in a
similar fashion.

Now we prove (iii). We have already observed that Cvrp(X) ⊆ Lr(X)♯, so
it suffices to show the reverse inclusion. For this, it suffices to prove that if k
is in Lr(X)♯, then the map f 7→ f ∗ k is bounded from Lp(X) to Lr(X); this
follows from the radial form of the Kunze–Stein phenomenon on X (see [N]).

We now prove (iv). Suppose that k is in Cvrp(X); then it also belongs to

Lr(X). Since Cvrp(X) = Cvp
′

r′(X), a similar argument shows that k is also in

Lp′

(X)♯, and hence in Lmin(p′,q)(X)♯, showing that Cvrp(X) ⊆ Lmin(p,r′)(X).

To prove the converse, we consider two cases separately. Suppose first
that p < r′, so that Lr(X) = Lmin(p′,r)(X). Assume that k is in Lr(X). Let
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f be in Lp(X) and h be in Lr′(X); denote by f ′, h′, and k′ respectively the
Go-right-invariant and Go-bi-invariant extensions to G of f, h, and k. Then

〈f ∗ h, g〉
X
= 〈f ′ ∗ k′, h′〉G = 〈k′, (f ′)⋆ ∗ h′〉G,

where (f ′)⋆(g) = (f ′)(g−1). Since G has the Kunze–Stein property [N] and
1 ≤ p < r′ < 2,

‖(f ′)⋆ ∗ h′‖r′ ≤ Cp,r′‖(f
′)⋆‖p‖h

′‖r′ = Cp,r′‖f
′‖p‖h

′‖r′ = Cp,r′‖f‖p‖h‖r′ .

Thus, by Hölder’s inequality,

sup{|〈f ∗ k, h〉X| : ‖f‖p = 1, ‖h‖r′ = 1} ≤ Cp,r′‖k‖r,

so that k is in Cvrp(X), and

|||k|||p;r ≤ Cp,r′‖h‖r,

as required. The case where r′ < p is treated similarly.
Finally we prove (v). As before, the right inclusion is obvious. The left

inclusion follows from the result [CMS2] that, if 1 < p < 2, then Lp(G) ∗
Lp(G) ⊆ Lp,r(G), where r = p/(2−p), much as (iv) follows from the Kunze–
Stein phenomenon. The dual form of this sharp inclusion is the inclusion
Lp(G) ∗ Lp′,r′(G) ⊆ Lp′

(G), where r′ = p′/2; the desired result follows by
specialising to functions with the appropriate invariance properties.
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