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1. Introduction.Virtually all classes of groups considered in the theory
of torsion-free abelian groups of finite rank arise in an attempt to recover
some of the properties of rank 1 torsion-free groups for groups of arbitrary
(finite) rank. The motivation for this paper is the observation that quasi-
isomorphic rank 1 groups are actually isomorphic. The failure of this prop-
erty for torsion-free abelian groups of larger rank has led to the introduction
of the classes of J -groups and finitely faithful S-groups by Arnold [3] and
others: A J -group is a torsion-free abelian group A of finite rank such that
any torsion-free group which is quasi-isomorphic to A is actually isomorphic
to A, while A is an S-group if every subgroup B of finite index in A is of
the form IA for some right ideal I of E(A). The group A is finitely faithful
if IA 6= A for all maximal right ideals I of E(A) which have finite index in
E(A). Every J -group is an S-group.

Arnold showed in [3] that the finitely faithful S-groups are precisely the
torsion-free abelian groups A of finite rank for which rp(E(A)) = [rp(A)]2

for all primes where rp(A) = dimZ/pZ A/pA denotes the p-rank of A. Fur-
thermore, using a result of Warfield, Arnold showed that the finitely faith-
ful S-groups are the torsion-free groups of finite rank for which Ext(A,A)
is torsion-free. In [6], it is shown that a finitely faithful S-group A is a
J -group when A is reduced and satisfies rp(A) 6= 2 for any p, or A is quasi-
isomorphic to A1⊕. . .⊕An such that E(Aj) is commutative for j = 1, . . . , n,
or A = B ⊕ B for some group B. The present authors show in [2] that a
finitely faithful group A is an S-group if and only if SA(G) is a pure subgroup
for all torsion-free groups G, where SA(G) =

∑
{φ(A) | φ ∈ Hom(A,G)} is

the A-socle of G. Equivalently, the A-socle of G is the largest subgroup of
G which is an epimorphic image of a direct sum of copies of A.

It has become customary to study S-groups only in conjunction with
finite faithfulness partially due to the difficulties in handling the S-group
property alone, and in part because of the compatibility of the finitely faith-
ful and S-group conditions. We show in Section 3 of this paper that finite
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faithfulness is not necessary for the purity of A-socles. The purity condi-
tion gives rise to a new class of groups which properly contains the class
of finitely faithful S-groups: A torsion-free abelian group A of finite rank
is a strong S-group if An is an S-group for all n < ω. In Section 2 we give
a characterization of the almost completely decomposable strong S-groups,
which allows us to construct an example of a strong S-group which is flat
as an E(A)-module, but not finitely faithful.

Section 3 gives further characterizations of strong S-groups and strong
S-groups which are flat as modules over their endomorphism ring. In partic-
ular, we show that a strong S-group A has the property that every reduced
p-group is A-solvable whenever p is a prime with A 6= pA. If A is flat as
an E(A)-module, then the converse holds as well. Finally, we show that a
strong S-group A is quotient divisible if and only if every reduced torsion
group G with G[p] = 0 if A = pA is A-solvable. Here, A is quotient divis-
ible if A/F ∼= D ⊕ T for some divisible group D and some finite group T
whenever F is a full free subgroup of A.

2. The structure of almost completely decomposable S-groups.
Our first result shows that the requirement that A is a strong S-group does
not impose severe restrictions on the structure of A, in contrast to those
observed in [3] for finitely faithful S-groups.

Lemma 2.1. Let G be a torsion-free group of finite rank , and X a rank 1
group such that type(X) ≤ IT (G). Then A = X ⊕ G is a strong S-group
which is flat as an E(A)-module.

P r o o f. Ulmer’s Theorem from [8] asserts that A is flat over its endo-
morphism ring if and only if A generates the kernel of any homomorphism
between powers of A. Since SA(U) = U for all pure subgroups U ⊆ An, A
is flat. If B is any group quasi-isomorphic to A, then IT (B) = type(X),
and so B = SX(B) ⊆ SA(B) ⊆ B, and A is an S-group. Finally, An =
X ⊕ [Xn−1 ⊕ Gn] and IT (Xn−1 ⊕ Gn) = type(X) for all 1 < n < ∞. By
the first part of the proof, An is an S-group.

Note that in the case above, B = X ⊕ H for some group H quasi-
isomorphic to G. In particular, B is a J -group if G is. As the next step in
our characterization of almost completely decomposable strong S-groups,
we describe completely decomposable J -groups.

Lemma 2.2. Let A and B be J -groups such that Ext(A,B) is torsion-
free. Then A⊕B is a J -group.

P r o o f. Suppose that Ext(A,B) is torsion-free. If G is quasi-isomorphic
to A ⊕ B, then there is a quasi-split sequence 0 → A1 → G → B1 → 0
where A1 is quasi-isomorphic to A and B1 is quasi-isomorphic to B. Since
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A and B are J -groups, we have A1
∼= A and B1

∼= B. Since Ext(A,B) is
torsion-free, the sequence splits.

Using the last result, we obtain the following one, which was originally
shown in [7], but is restated here for the convenience of the reader since it
will be used in Example 2.5.

Proposition 2.3. Let A = X1 ⊕ . . .⊕Xn where each Xj is a subgroup
of Q of type τj. Then A is a J -group if and only if , for each i 6= j, either
τi ≤ τj , or τj ≤ τi, or π(τi) ∩ π(τj) = ∅ where π(τ) = {p | τ is finite at p}.

P r o o f. Suppose that A is a J -group. If τi and τj are incomparable
and p ∈ π(τi) ∩ π(τj), consider the group G = Xi ⊕Xj + 1

pZ(ai, aj) where

ai ∈ Xi and aj ∈ Xj have p-height 0. It is well known [5] that G is an
indecomposable group, quasi-isomorphic to Xi ⊕ Xj . It follows that A is
quasi-isomorphic to B = G⊕

⊕
k 6=i,j Xk. But A and B are not isomorphic

since the class of completely decomposable groups is closed with respect to
direct summands.

Conversely, we induct on n, and assume without loss of generality that
τ1 is minimal among τ1, . . . , τn. Recall Warfield has shown that, for rank 1
groups X and Y , the group Ext(X,Y ) is torsion-free if and only if type(X) ≤
type(Y ) or π(X)∩π(Y ) = ∅ (cf. [9]). Then Ext(X1,

⊕n
j=2Xj) is torsion-free,

and A is a J -group by Lemma 2.2.

Proposition 2.4. Let A = X1 ⊕ . . .⊕Xn where each Xj is a subgroup
of Q of type τj. Then A is an S-group if and only if , for all i 6= j such
that τi and τj are incomparable but π(τi) ∩ π(τj) 6= ∅, there is k such that
τk ≤ τi ∧ τj.

P r o o f. The stated condition is equivalent to the following: For any two
distinct minimal types τi and τj among {τ1, . . . , τn}, the set π(τi)∩ π(τj) is
empty. Suppose the collection of τi’s satisfies the stated condition. If B is
quasi-isomorphic to A, then B =

⊕m
j=1B(µj) where µ1, . . . , µm are the min-

imal types among {τ1, . . . , τn}. This holds because B
.
= B(µ1)+. . .+B(µm),

while the condition π(µi) ∩ π(µj) = ∅ guarantees equality and directness of
the decomposition. Observe that B(µj) and A(µj) are quasi-isomorphic, and
that A(µj) has a direct summand of type µj = IT (A(µj)). By Lemma 2.1,
A(µj) is an S-group, and so SA(B(µj)) = B(µj), i.e. SA(B) = B.

Conversely, suppose that A is an S-group. We may rewrite the given de-
composition of A as A = A1⊕. . .⊕Ak where each Aj is a homogeneous com-
pletely decomposable group of type τj , and τi 6= τj for i 6= j. Suppose that
τi and τj are minimal types for which we can find p ∈ π(τi)∩π(τj). Choose
rank 1 summands Yi of Ai and Yj of Aj containing elements xi and xj of
p-height 0, and set B = A+ 1

pZ(xi, xj , 0, . . .). The element x = (xi, xj , 0, . . .)

of B has type τi ∧ τj . Therefore, B(τl) = A(τl) for l = 1, . . . , k. Since A is
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an S-group, 1
px ∈ SA(B), and we can find maps φ1, . . . , φm ∈ HA(B) and

elements a1, . . . , am ∈ A such that 1
px =

∑m
t=1 φt(at). No generality is lost

if we assume that each φt maps A into Ai ⊕ Aj . Any map φ : A → B can
be expressed as φ = φη1 + . . . + φηk where η1, . . . , ηk are the idempotents
of E(A) induced by the decomposition A = A1 ⊕ . . .⊕ Ak. Hence, we may
assume that each of the φt has support either in Ai or in Aj . If φt(Aj) = 0,
then φt(Ai) ⊆ Ai, while φt(Ai) = 0 yields φt(Aj) ⊆ Aj . Therefore, each
φt : A→ A, and 1

px ∈ A, a contradiction.

As a direct consequence of the last two propositions and Ulmer’s Theo-
rem we obtain:

Example 2.5. (a) Let X1 and X2 be subgroups of Q of incomparable
types such that π(τ1)∩π(τ2) 6= ∅, and choose a subgroup X0 of Q such that
type(X0) < type(X1), type(X2). Then A = X0 ⊕ X1 ⊕ X2 is a flat strong
S-group which is not a J -group.

(b) Although the strong S-group A constructed in Lemma 2.1 has the
additional property that every pure rank 1 subgroup of A is A-generated,
there are completely decomposable strong S-groups without this property.
For instance, let Π1 and Π2 be non-empty, disjoint subsets of the set Π
of all primes of Z, such that Π = Π1 ∪ Π2, and define two subgroups A1

and A2 of Q by Ai = Z
[
1
p | p ∈ Πi

]
for i = 1, 2. Since π(A1) = Π2 and

π(A2) = Π1, the group A = A1 ⊕ A2 is a strong S-group which contains a
pure subgroup U with A/U ∼= Q. Because Π1 ∩ Π2 = ∅, one has U ∼= Z.
Hence, U is not generated by A.

Theorem 2.6. An almost completely decomposable group A of finite rank
is an S-group if and only if A = A1 ⊕ . . . ⊕ An, where each Ai = Xi ⊕ Gi
for some rank 1 group Xi with type(Xi) ≤ IT (Gi), and if i 6= j, then
π(Xi) ∩ π(Xj) = ∅.

P r o o f. Suppose that A has the described form, and consider a group
B quasi-isomorphic to A. Then B=B1 ⊕ . . .⊕ Bn where each Bj is quasi-
isomorphic to Aj since π(Xi) ∩ π(Xj) = ∅ and SAj

(B) = SXj
(B). By

Lemma 2.1, SAj
(Bj) = Bj , and A is an S-group.

Conversely, choose a non-zero integer m such that mA ⊆ C1 ⊕ . . . ⊕
Cl ⊆ A where each Cj is a pure, homogeneous, completely decomposable
subgroup of A of type τj such that τi 6= τj whenever i 6= j. We show that
τ1, . . . , τl satisfy the conditions of Proposition 2.4. Suppose to the contrary
that, without loss of generality, τ1 and τ2 are minimal among τ1, . . . , τl, but
there is p ∈ π(τ1) ∩ π(τ2).

Let e be the exponent of p in m, and consider

B = A+
1

p2e+1
Z(c1, c2, 0, . . .)
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where ci ∈ Ci has p-height 0 for i = 1, 2. Set x = (c1, c2, 0, . . .), and
observe that (1/p2e+1)x ∈ SA(B) since A is an S-group. Hence, we can find

φ1, . . . , φk ∈ HA(B) and a1, . . . , ak ∈ A with (1/p2e+1)x =
∑k
j=1 φj(aj).

Let j ∈ {1, . . . , k}. Since B(τi) = A(τi) for i = 1, 2, we have φj(Ai) ⊆
φj(A(τi)) ⊆ B(τi) = A(τi). Furthermore, φj(At) = 0 for t > 2 since τ1 and
τ2 are minimal. So, φj(mA) ⊆ φj(A1 ⊕ A2) ⊆ A(τ1) ⊕ A(τ2) ⊆ A. This
shows φj(A) ⊆

(
1
mA
)
∩ B where 1

mA = {u ∈ QA | mu ∈ A}. Therefore,

(m/p2e+1)x =
∑k
j=1mφj(aj) ∈ A. But A/[C1 ⊕ . . .⊕ Cl] has p-component

bounded by pe in view of the choice of e. So, x has p-height at most e
in A, while (m/p2e+1)x ∈ A implies that x has p-height at least e + 1, a
contradiction. It follows that A = A1 ⊕ . . . ⊕ An where Aj = A(τj) and
τ1, . . . , τn are minimal among type(C1), . . . , type(Cl). If Xj is a pure rank 1
subgroup of Aj of type τj , then Aj = Xj ⊕ A′j , and the remainder follows
from Lemma 2.1.

While the question whether every S-group is a strong S-group remains
open, we can give an affirmative answer for almost completely decomposable
S-groups.

Corollary 2.7. Let A be an almost completely decomposable S-group.
Then A is a strong S-group.

3. Strong S-groups and A-solvability. In this section we give sev-
eral characterizations of strong S-groups, and discuss their most important
properties. For the convenience of the reader, we give a short summary of
the notation used in discussion of endomorphism rings which goes back to
[4]: Associated with every abelian group A is a pair (HA, TA) of adjoint
functors between the category of abelian groups and the category of right
E(A)-modules which are defined as HA(G) = Hom(A,G) for an abelian
group G and TA(M) = M⊗E(A)A for a right E(A)-module M . The module
structure on HA(G) is induced by composition of maps. The natural maps
θG : TAHA(G)→ G for an abelian group G and ΦM : M → HATA(M) for a
right E(A)-module M are defined by θG(α ⊗ a) = α(a) and [ΦM (m)](a) =
m ⊗ a for all α ∈ HA(G), m ∈ M , and a ∈ A. The A-generated abelian
groups are the groups G for which θG is onto, while the A-solvable abelian
groups are those for which θG is an isomorphism.

An exact sequence 0 → B
α→ C

β→ G → 0 is (almost) A-balanced if the
induced exact sequence

0→ HA(B)
HA(α)−−−−→HA(C)

HA(β)−−−−→HA(G)

has the property that cokerHA(β) = 0 (cokerHA(β) is torsion).
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Theorem 3.1. The first three of the following conditions are equivalent
for a torsion-free abelian group A of finite rank. Moreover , they imply the
fourth, and the converse holds if A is flat as an E(A)-module.

(a) A is a strong S-group.

(b) If G is an A-generated torsion-free group, and H
.
= G, then H is

A-generated.

(c) SA(G) is a pure subgroup of G whenever G is torsion-free.

(d) If p is a prime with A 6= pA, then all reduced p-groups are A-solvable.

P r o o f. (a)⇒(b). Let H be a subgroup of the torsion-free group G such
that mG ⊆ H ⊆ G for some non-zero integer m. For every h ∈ H, we can
find φ1, . . . , φn ∈ HA(H) such that mh ∈ 〈φ1(A), . . . , φn(A)〉. To simplify
our notation, we denote the latter subgroup of G by U , and set V = 〈U, h〉.
Without loss of generality, we may assume V ⊆ QU . SincemV ⊆ U , we have
V ⊆ 1

mU
∼= U . The maps φ1, . . . , φn induce an epimorphism δ : An → U

which extends to a map δ′ : QAn → QU such that δ′
(

1
mA

n
)

= 1
mU . The

subgroup W = (δ′)−1(V ) of 1
mA

n contains An. Since An is an S-group, we
can find an ideal I of E(An) such that W ∼= mW = IAn. In particular, W
is A-generated, and the same holds for V as an epimorphic image of W .

(b)⇒(c). Let SA(G)∗ denote the Z-purification of SA(G) in the torsion-
free group G. When x ∈ SA(G)∗, the subgroup 〈SA(G), x〉 is quasi-equal to
SA(G) and hence A-generated by virtue of (b). Therefore, x ∈ SA(G), and
(c) holds.

(c)⇒(a). If a subgroup U of An is quasi-equal to An, then SA(U)
.
= U .

Since U/SA(U) is also torsion-free by (c), we see that U is A-generated.
Thus, I = Hom(An, U) is a right ideal of E(An) with U = IAn, and conse-
quently, An is an S-group.

(c)⇒(d). Let p be a prime such that A 6=pA. As a first step, we show that
every bounded p-group G is A-solvable. If pmG = 0, then G is an epimorphic
image of a direct sum of cyclic groups of order pm. Since A/pmA contains
at least one element of order pm, the group G is A-generated. So, there

exists an A-balanced exact sequence 0 → U
α→
⊕

I A
β→ G → 0 for some

index-set I. Since pmG = 0, we have pm
⊕

I A ⊆ α(U). In particular, SA(U)
is quasi-equal to U . On the other hand, SA(U) is pure in U by (c), so that
U is A-generated. Consequently, the map θU in the commutative diagram

TAHA(U)
TAHA(α)−−−−−−→ TAHA(

⊕
IA)

TAHA(β)−−−−−−→ TAHA(G) → 0

↓θU o↓θ⊕IA ↓θG
0 → U

α→
⊕

IA
β→ G → 0

is onto. By the Snake Lemma, θG is an isomorphism.
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Now assume that G is a reduced p-group. For every p-basic subgroup
F of A, the group A/F is p-divisible. Therefore, Hom(A/F,G) = 0, and
we have an embedding 0 → Hom(A,G) → Hom(F,G). Since F is finitely
generated, Hom(A,G) is a p-group. If φ1, . . . , φn ∈ HA(G), then there is
k < ω such that pkφ1 = . . . = pkφn = 0. Therefore, 〈φ1(A), . . . , φn(A)〉 is
bounded by pk, and hence A-solvable by the results of the first paragraph.
Hence, all finitely A-generated subgroups of G are A-solvable; the same
holds for G.

(d)⇒(a). Suppose that A is flat as an E(A)-module. Since the class of
A-solvable groups is closed with respect to finite direct sums, every bounded
group G such that A = pA implies G[p] = 0 is A-solvable by (d). To show
that A is a strong S-group, we consider a subgroup U of An such that
mAn ⊆ U for some non-zero integer m. Without loss of generality, A 6= pA
for all primes p |m. Therefore, An/U is A-solvable by the initial remarks. In
view of the flatness of A as an E(A)-module, U is A-solvable since kernels of
maps between A-solvable groups are A-solvable. But then I = Hom(An, U)
is a right ideal of E(An) with U = IAn.

However, even if A is a strong S-group which is flat as an E(A)-module,
not every reduced torsion group G such that G[p] = 0 whenever A = pA
needs to be A-solvable, as the following result shows. It is easy to see that
a torsion-free group A of finite rank is quotient divisible if and only if, for
every full subgroup U of A, the group (A/U)p is divisible for all but finitely
many primes.

Corollary 3.2. Let A be a strong S-group of finite rank. Every reduced
torsion group G such that A = pA implies G[p] = 0 is A-solvable if and only
if A is quotient divisible.

P r o o f. Suppose that A is a quotient divisible strong S-group. We know
by Theorem 3.1 that every reduced p-group isA-solvable. Consider a reduced
torsion group G such that A=pA implies G[p] = 0, and write G=

⊕
pGp

where Gp denotes the p-primary component of G. By [1], we know that a
direct sum of A-solvable groups {Ui | i ∈ I} is A-solvable if and only if
{Ui | i ∈ I} is A-small, i.e., for every map α ∈ HA(

⊕
i∈I Ui), there is a

finite subset I ′ of I with α(A) ⊆
⊕

i∈I′ Ui. Thus, it suffices to show that
{Gp | p is a prime with A 6= pA} is an A-small family to ensure that G
is A-solvable. For a morphism α : A → G, we choose a free subgroup F
of kerα such that A/F is torsion. Since A is quotient divisible, (A/F )p
is divisible for all but finitely many primes p. We write (A/F )p = Up/F
for some subgroup Up of A containing F , and choose a cofinite subgroup
Vp of Up containing F such that Vp/F is the divisible subgroup of (A/F )p.
Since A is quotient divisible, we have Vp = Up for almost all primes, and
A/〈Vp |A 6= pA〉 is finite. Since G is reduced, Vp⊂ kerα for all primes, and
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so A/kerα is finite. Thus, there are finitely many primes p1, . . . , pn such that
α(A) ⊆ Gp1 ⊕ . . .⊕Gpn , and {Gp | p is a prime with A 6= pA} is A-small.

Conversely, suppose that all the described torsion groups are A-solvable,
and choose a full free subgroup F of A. Suppose that A/F is not divisi-
ble for infinitely many primes. Then there are subgroups V and W of A
containing F such that V/F is divisible, W/F is reduced and infinite, and
A/F = V/F ⊕W/F . Observe that (W/F )p is finite for all primes p. By our
hypothesis, W/F is A-solvable since the fact that it is A-generated guaran-
tees that A = pA implies W/F [p] = 0. However, since W/F is an epimorphic
image of A, the family {(W/F )p | p a prime} is not A-small, which is not
possible.

Theorem 3.3. The following are equivalent for a self-small abelian group
A which is flat as an E(A)-module, and a group B quasi-isomorphic to A.

(a) SA(B) = B and SB(A) = A.

(b) The class of torsion-free A-solvable groups coincides with the class
of torsion-free B-solvable groups.

P r o o f. It remains to show that (a) implies (b). Choose maps σ : A→ B
and τ : B → A such that στ = m1B and τσ = m1A for some non-zero
integer m. For a torsion-free B-solvable group G, we choose a B-balanced

exact sequence 0 → U
α→
⊕

I B
β→ G → 0 such that SB(U) = U . Since

SA(B) = B, every B-generated group is A-generated. Furthermore, since
A is flat as an E(A)-module, the direct sum of a collection of A-generated
subgroups of A is A-solvable. In particular, this holds for

⊕
I B; the group

G is A-solvable once we have established that the above sequence is almost
A-balanced.

Then, M = imHA(β) is a submodule of HA(G) such that HA(G)/M is
torsion as an abelian group. By a standard argument, we deduce that the
evaluation map θ : TA(M) → G is an isomorphism. If ι : M → HA(G) is
the inclusion map, then θGTA(ι) = θ. For x ∈ ker θG we can find a non-zero
integer k and y ∈ TA(M) such that kx = TA(ι)(y). But then θ(y) = 0 yields
y = 0. Since TAHA(G) is torsion-free because A is flat, we have x = 0, and
G is A-solvable.

If φ : A → G, then φτ : B → G, and there is λ : B →
⊕

I B with
φτ = βλ. Hence, βλσ = mφ and the given sequence is almost A-balanced.
Hence, every torsion-free B-solvable group is A-solvable.

The converse holds by symmetry once we have shown that B is E(B)-
flat. To show this, we consider an exact sequence 0 → U → Bn → B. The
flatness of B follows directly from Ulmer’s Theorem once we have shown
that SB(U) = U . Since B is A-solvable, and A is flat as an E(A)-module,
we obtain SA(U) = U . As before, U is B-generated since SB(A) = A.
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Corollary 3.4. The following are equivalent for a torsion-free abelian
group of finite rank which is flat as an E(A)-module.

(a) A is a strong S-group.
(b) If B is quasi-isomorphic to An for some 0 < n < ω, then the class

of torsion-free B-solvable groups coincides with the class of torsion-free A-
solvable groups.

P r o o f. (a)⇒(b). Since An is an S-group, the same holds for B, and
SA(B) = B and SB(An) = An. By Theorem 3.3, the class of torsion-free
B-solvable groups coincides with the class of torsion-free An-solvable groups,
which is the class of torsion-free A-solvables.

(b)⇒(a). If B
.
= An for some n, then B is A-solvable by (b), and B =

HA(B)A = HAn(B)An. This shows that An is an S-group.
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