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Abstract. The notion of quasi-p-boundedness for p € w* is introduced and investi-
gated. We characterize quasi-p-pseudocompact subsets of 3(w) containing w, and we show
that the concepts of RK-compatible ultrafilter and P-point in w* can be defined in terms
of quasi-p-pseudocompactness. For p € w*, we prove that a subset B of a space X is
quasi-p-bounded in X if and only if B X Prk (p) is bounded in X x Prk(p), if and only if
Clﬁ(XXPRK(P))(B X PRK (p)) = CIBX B x B(w), where PRK(p) is the set of Rudin—Keisler
predecessors of p.

1. Introduction. All the spaces considered in this paper are Tikhonov
spaces. The Rudin—Keisler pre-order <gk on f((w) is defined by p <gk ¢
if there exists a function g : w — w such that g®(q) = p where ¢° is the
continuous extension of g to f(w). If p <rk ¢q and ¢ <gk p, for p,q € w*,
then we say that p and g are RK-equivalent and we write p ~grk ¢. It is not
difficult to verify that p ~grk ¢ if and only if there is a permutation ¢ of w
such that o?(p) = ¢q. For p € w*, we set Prk(p) = {r € B(w) : r <rx P}
The type of p € w* is the set T'(p) = {r € w* : p =~rk r}. We denote by
X (p) the set T'(p) Uw.

For p,q € B(w) we write p <y ¢ if there is a surjection f : w — w such
that f4(q) = p and for every A € ¢ thereis n < w for which |[ANf~1(n)| = w.
If p <r ¢, r =rk p and s =gk ¢, then r < s. The Rudin pre-order <g on
B(w), introduced in [17], is defined by p <gr ¢ if either p ~grx ¢ or p <gr q.
It is obvious that p <r ¢ implies p <rk ¢. For p € w* let Pg(p) be the set
{r e B(w) : r <gr p}.

An w-partition of w is a cover of w consisting of infinite pairwise disjoint
subsets. For each A C w the symbol A indicates the set {p € f(w) : A € p}.
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Two ultrafilters p,q € w* are RK-compatible if there is s € w* such that
s <rk p and s <Rk ¢.

1.1. DEFINITION. For pew®, a point x € X is said to be a p-limit point of
a sequence (Uy,)n<w of nonempty subsets of X (in symbols: z = p-lim(U,,))
if, for each neighborhood V of z, the set {n < w : U, NV # 0} belongs to p.

This notion was introduced by Ginsburg and Saks [10] by generalizing
the notion of p-limit point discovered and investigated by Bernstein [1]. It
should be mentioned that Bernstein’s p-limit concept was also introduced,
in a different form, by Frolik [5] and Katétov [13], [14]. A subset B of a space
X is said to be bounded (in X) if every real-valued continuous function on
X is bounded on B. In [15] N. Noble proved that B is bounded in X if
(and only if) every sequence of (pairwise disjoint) open sets of X meeting B
has a cluster point. Starting from this fact and the above concept of p-limit
point, S. Garcia-Ferreira [7] introduced the notion of p-bounded subset for
p € w*: a subset B is p-bounded (in X) if every sequence of open subsets
meeting B has a p-limit point. Obviously, for each p € w*, every p-bounded
subset (in X) is bounded but the converse does not hold in general (see e.g.
[7, Theorem 1.10]). Later, p-boundedness was widely studied by the authors
in [18]. Here we are concerned with quasi-p-boundedness, a notion weaker
than p-boundedness:

1.2. DEFINITION. Let p€w*. A subset B of a space X is called quasi-
p-bounded in X if every sequence of pairwise disjoint open subsets of X
meeting B has a subsequence which admits a p-limit point.

Recall that a space is said to be pseudocompact if it is bounded in itself.
Analogously, for p € w*, a space X is quasi-p-pseudocompact (respectively,
p-pseudocompact) if it is quasi-p-bounded (resp., p-bounded) in itself. If
either ¢ <grk p or ¢ and p are <gk-incomparable, then X'(p) is a pseudo-
compact space which is not quasi-g-pseudocompact (see Corollary 3.4 and
Example 3.5). So, p-boundedness implies quasi-p-boundedness and quasi-
p-boundedness implies boundedness but none of these implications can be
reversed.

The paper is organized as follows: Section 2 is devoted to proving several
basic results on quasi-p-boundedness. In Section 3, we characterize the sub-
sets of f(w) which are quasi-p-bounded for some p € w* and we apply these
results to determine when X(q), Prk(q) and T'(q) are quasi-p-pseudocom-
pact. Finally, in Section 4, we show that, for p € w*, a bounded subset B of
X is quasi-p-bounded if and only if its product with Prk(p) is bounded in
X x Prk(p), if and only if clgx B x B(w) = clg(x x Pax (p)) (B X Prx(P))-

Our notation is standard: clx A and intx A denote the closure and the
interior, respectively, of a subset A of X. A subset A of X is called reqular-
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closed if A = clx(intx A). The symbol R stands for the real numbers
endowed with the usual topology. For terminology and notation not defined
here and for general background see [4] and [8].

2. Basic results on quasi-p-bounded subsets. We begin by showing
several useful lemmas.

2.1. LEMMA. Let p € w*, (Up)n<w be a sequence of subsets of a space
X, and x € X. Then:

(1) If g:w — w is a function satisfying g°(p) = r, then x = r-lim(U,)
if and only if x = p-lim(Uy(n));

(2) If there are v’ € w* with ' <gk p, and a subsequence (Vy,)n<w of
(Un)n<w such that x = r'-im(V,,), then there is an r-limit point in X of
(Un)n<w with m <gK p.

Proof. We obtain (1) because W C w belongs to r if and only if
gt W)ep, and {n <w: Uy NA#D} =g '({n <w:U,NA#0}) for
every A C X.

Now we prove (2). For each n<w there is k(n) <w such that V,, =Uy,).
Let g : w — w be defined by g(n) = k(n). By (1), x = r-lim(U,,) where
r = g?(r"). Moreover, r <7’/ <p. m

The following lemma is already known and we omit the proof.

2.2. LEMMA. Let X be a Hausdorff space and let (Ap)n<w be a sequence
of nonempty open subsets of X. Then either there exists ng <w such that
Ay, =Ay, for every n > ng and |A,,| < W, or there is a sequence (ky)n<w
of natural numbers and a sequence (By,)n<. of nonempty disjoint open sub-
sets of X such that By, C Ay, for everyn < w.

2.3. THEOREM. Let X be a topological space and let p € w*. For each
subset B of X, the following conditions are equivalent:

(1) B is quasi-p-bounded in X

(2) Ewvery sequence of open nonempty subsets of X meeting B has a
subsequence which has a p-limit point in X;

(3) For every sequence (Uy,)n<w of nonempty open subsets of X meeting
B there are r € w*, with r <gk p, and © € X such that x = r-lim(U,);

(4) For every sequence (Uy)n<w of open nonempty subsets of X meeting
B, there are a subsequence (Vp)n<w 0f (Up)n<w, an r € w* with r <gk p,
and x € X such that x = r-lim(V},).

Proof. The implications (2)=(1) and (3)=(4) are trivial. Moreover, the
implications (1)=(2), (2)=(3), (4)=(3) and (3)=-(2) are consequences of
Lemmas 2.2, 2.1(1), 2.1(2) and 2.1(1), respectively. =
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In view of this last theorem, the concept of quasi-p-pseudocompactness
is equivalent to the concept of M-pseudocompactness, with M = Prk(p),
introduced in [7], which coincides with condition (3) of Theorem 2.3.

The proof of the following lemma is left to the reader.

2.4. LEMMA. For each p € w*, the following conditions hold:

(1) Quasi-p-boundedness is preserved under continuous functions;
(2) Quasi-p-pseudocompactness is inherited by regular closed subsets.

A Frolik sequence in a space X is a sequence (Up,)n<., of open subsets of
X such that for each filter G of infinite subsets of w,

N ch(U Un) £ 0.
Feg nekl
A subset B of a space X is strongly bounded in X (see [19]) if each
infinite family of mutually disjoint open subsets of X meeting B contains a
disjoint subfamily (U, )<, which is a Frolik sequence. The Frolik class P is
the class of pseudocompact spaces whose product with each pseudocompact
space is also pseudocompact. So, Theorem 3.6 of [6] says:

2.5. THEOREM. A pseudocompact space belongs to the Frolik class P if,
and only if , it is strongly bounded in itself.

2.6. THEOREM. If a subset B is strongly bounded in X, then B is
quasi-p-bounded in X for each p € w*.

Proof. Let p € w* and let (U,)n<, be a sequence of pairwise disjoint
open sets whose elements meet B. Since B is strongly bounded in X, there
exist a subsequence (U, (x))k<w Of (Un)n<w and o € X such that

T e ﬂ clx ( U Un(k)).

Fep keF
It is apparent that z is a p-limit point of (U, x))k<w- ®

As an immediate consequence of the previous result, pseudocompact
spaces in the Frolik class P are quasi-p-pseudocompact for every p € w*.
We shall explore this fact in the following. Consider the (proper) subclass
P* of P defined as the class of spaces X with the property that each sequence
of disjoint open sets in X has a subsequence such that each of its elements
meets some fixed compact set. This class was introduced and studied by
N. Noble in [16]. In particular, Noble showed that X € P* whenever kg X,
the kr-space associated with X (that is, the set X endowed with the weak
topology induced by the real-valued functions on X which are continuous on
all compact subsets of X) is pseudocompact. Thus, pseudocompact spaces
which are locally compact or sequential are quasi-p-pseudocompact for every
p € w* (for an example of a space in P* such that kg X is not pseudocompact,
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see [2] and [12]). As every completely regular space can be embedded as a
closed subspace of a pseudocompact kr-space [16, 2.3], we have the following
result.

2.7. THEOREM. FEvery pseudocompact space can be embedded as a closed
subspace of a space which is quasi-p-pseudocompact for each p € w*. So,
quasi-p-pseudocompactness is not inherited by closed pseudocompact subsets.

In the context of this result the question of characterizing quasi-p-pseu-
docompact spaces whose closed sets are also quasi-p-pseudocompact arises.
We are concerned with this question in the following theorem.

2.8. THEOREM. Let p € w*. Every closed subset of a space X is quasi-
p-pseudocompact if and only if every sequence in X contains a subsequence
which admits a p-limit.

Proof. Suppose that every closed subset of X is a quasi-p-pseudocom-
pact space and let (2, )n<w be a sequence in X. We can assume, without loss
of generality, that {z, : n < w} contains no p-limit points of (z,)n<,. We
prove, by induction on n, that there is a subsequence (y,)n<w Of (Tn)n<w
which is a copy of w. In fact, put yo = x¢ and suppose that, for £ < w,
there exist a subset {yo,...,yx} Where y, = w4 and g(s) < g(s + 1),

s=0,1,...,k—1, and a family (U,),< of pairwise disjoint open subsets
such that

(1) yn €U,, n=0,1,... k,

(2) M, ={t<w:z;€clxU,} &p.

By inductive hypothesis, M = (), . (w \ M,) belongs to p. Let m € M be
such that m > g(k). We define yx+1 = x,,. The induction step is finished by
taking an open neighborhood V' of yx41 which does not meet U,, for every
n < k and such that {n < w: x, € V} & p, and by taking an open set Uy
containing yr4+1 and such that its closure is a subset of V' (so, Ug41 is an
open neighborhood of yx41 which does not meet U, for every n < k and
such that {t <w :z; € clx Ug1} € D).

Now, consider H = clx{yn}n<w- Since {yn}n<w is a copy of w, it is a
sequence of open sets in H. By assumption, (y,)n<. admits a subsequence
having a p-limit point, as was to be proved. The converse is clear. m

Relating to the previous theorems, we construct a space in the class P
which is not p-pseudocompact for any p € w*.

2.9. EXAMPLE. For each p € w*, let X(p) = f(w) \ {p}. Since Prx(p)
is not contained in X (p), X (p) is not p-pseudocompact [7, Lemma 1.9]. Let
Y = Hp cor X(p). For every p € w*, the space Y is not p-pseudocompact
because the image of Y under the p-projection is X (p). But X(p) € P for
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each p € w* [6, Example 4.4] and, since the class P is closed under arbitrary
products [16, Theorem 3.1], Y is also in P. In particular, by Theorem 2.6,
Y is quasi-g-pseudocompact for every q € w*.

Later (in Example 3.2) we will see an example of a quasi-p-pseudocom-
pact space for every p € w* which does not belong to P.

Let a be a cover of a space X. A function g from X into a space Y
is a-continuous if the restriction of g to each member of « is continuous.
A space X for which every real-valued a-continuous function is continuous
is called an agr-space. We say that a point x € X is an agr-point if there
exists a neighborhood of x which is an ag-space. For instance, kr-spaces are
agr-spaces when « is the cover of compact sets. In the following, if p € w*,
we denote by a(p) the cover of all quasi-p-pseudocompact subsets of X.

2.10. THEOREM. Let pew®* and let B be a bounded subset of a space X .
If every point of X is either an a(q)r-point for some ¢ <rk p or a P-point,
then B is quasi-p-bounded in X.

Proof. If B is not quasi-p-bounded in X, by Lemma 2.2 and Theo-
rem 2.3(4), there exists a sequence (Up,),<, of pairwise disjoint open sets
in X meeting B such that for each quasi-¢-pseudocompact subset Y of X,
with ¢ <gk p, only a finite subcolection of {U,, : n < w} meet Y. We shall
see that this fact leads us to a contradiction. Consider a sequence (V},)n <.
of regular-closed sets meeting B and that V,, C U, for every n < w. For
all n < w, let z,, € intx V,, and define a real-valued continuous function f,
such that f,(z,) =n and f,(X \ V) = 0.

We prove that the function f(x) = > _ fn is continuous. Let z € X.
Since V,, N V,, = 0 when n # m, f is continuous in (J,,_,, int V,,. If z is a
P-point of X belonging to X \|,,., Va, then f is zero on the neighborhood
MNn<cw(X \ Vo) of 2. So, f is continuous at .

Suppose now that » € X \J,, ., int V;, is not a P-point. By assumption
x is an «a(q)gr-point for some ¢ <gk p. So there exists a neighborhood V' of
x which is an a(q)gr-space. Let @ C V be a quasi-g-pseudocompact space.
Then @ only meets a finite subcollection of {V}, : n < w} and, consequently,
f agrees on @) with a finite sum of continuous functions. Hence, f is contin-
uous at (). Thus, since V' is an a(q)r-space, f|y is continuous; but V' is a
neighborhood of z, so f is continuous at x. As f is continuous on all of X
and unbounded on B, we have just obtained a contradiction. m

2.11. COROLLARY. Let p € w*. FEach open pseudocompact subset of a
quasi-p-pseudocompact space is quasi-p-pseudocompact.

Proof. Let X be a quasi-p-pseudocompact space and consider an open
pseudocompact subset P of X. Since each point of P belongs to a regular-
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closed subset contained in P, each point of P is an a(p)gr-point. Thus, the
result is a consequence of Theorem 2.10. m

2.12. COROLLARY. Let p € w*. A free topological sum X = @ c 4 Xa,
where X, # 0, is quasi-p-pseudocompact if and only if each X, is quasi-p-
pseudocompact and |A| < Ng.

3. Quasi-p-pseudocompactness in f(w). This section is devoted to
studying the notion of quasi-p-pseudocompactness in S(w). In [7, Lemma
1.9] it was proven that Prk(p) is p-pseudocompact for every p € w*. Our
first result in this section relates quasi-p-pseudocompactness to Pri (p).

3.1. THEOREM. Let w C X C f(w) and p € w*. Then the following
assertions are equivalent:

(1) X is quasi-p-pseudocompact;
(2) X N Pri(p) is quasi-p-pseudocompact;
(3) (X N Pri(p)) \ w is dense in w*.

Proof. (1)=(2). Assume that X is quasi-p-pseudocompact, and let
(Un)n<w be a sequence of pairwise disjoint open sets in X N Prk(p). For
each n < w, choose k,, € U, Nw. The sequence ({k,})n<, has an r-limit
point z € X where r € w* and r <grk p. Define g : w — w by g(n) = k.
If BEx, then {n<w:k, € Bt ={n<w:g(n)eB}=g1(B)er. So
B € ¢g?(r). Thus, ¢°(r) = x; that is, 2 <rx r <rx p. We have just proved
that x € X N Prk(p) and z = r-lim(Uy,, ).

(2)=(3). Let A be an infinite subset of w. We are going to prove that
there exists a free ultrafilter on w that belongs to Pri(p) N X N A. Let
g : w — w be an injective function which enumerates A: A = {g(n) : n < w}.
By assumption, there is a subsequence of ({g(n)})n<, which has a p-limit
point in Prk (p)"X. By Lemma 2.1, the sequence ({g(n)})n<w has an r-limit
point z € X where r € w* and r <gk p. Thus, ¢°(r) = x; that is, for every
B € x, we have g7}(b) = {n < w : g(n) € B} €. So, BN A # (. Then
A € x; and this means that xz € ANX. Moreover, x <rg 7 <rk p, and x is
free because otherwise we contradict the injectivity of g.

(3)=(1). Let (A,,)n<w be a sequence of nonempty subsets of w. We are
going to prove that the sequence (gn N X )n<w of nonempty open subsets of
X has an r-limit point in X, where r € w* and r <gk p. For each n < w,
let g(n) be an element of A,,. Take the set A = {g(n) : n < w}. Using our
hypothesis, we obtain an z, € XﬂPRK(p)ﬂﬁﬂw*. Hence, A € 4, 4 <rk p,
zy€ X and x4 is a free ultrafilter. The collection {g~*(g(n)) : n < w} defines
a partition on w, so it defines an equivalence relation R in w. Let w/R be
the collection of equivalence classes, and let ¢ : w — w/R be the function
which assigns to each n < w its equivalence class. We choose a function &
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on {c(n) : n < w} with values in w such that £(c(n)) € g~1(g(n)). Also,
we take a function h : w — w which satisfies h?(p) = z,. Finally, we define
¢ : w — w in the following way: ¢(n) = &(c(m)) if h(n) = g(m), and
¢(n) =0 if h(n) ¢ A. The relation ¢ is a function from w to w. Let 74 be
the image of p under ¢°. In particular, we have rg <RK P-

We are going to prove that z, = r4-lim{g(n)}, that is, for every B € zg,
g Y(B) € ry. In order to do this, it is enough to prove that for every B € z,,
¢~tg7Y(B) € p. But g71(B) D g7 (BN A) (recall that BN A € x,). Then
¢ (g H(B)) D ¢~ (g (BN A)), and this last set contains h~1(BN A). In
fact, let z € h=1 (BN A), so h(z) = g(m) for some m < w. This means that
é(x) = £(c(m)) € g~ (g(m)). Hence, g(¢(z)) = g(m) € BN A. Therefore,
#(x) € g71 (BN A). Since h"1(BNA) € p, (g7 (B)) € p. This implies
that g~ 1(B) € ry, so 5, = r,-lim{g(n)}. =

Now, we obtain some results that are consequences of the previous the-
orem.

3.2. EXAMPLE. Let p be a free non-RK-minimal ultrafilter on w. The
space X = B(w)\ T (p) is quasi-g-pseudocompact for all ¢ € w* and does not
belong to P.

Proof. In fact, let ¢ € w*. If p #grk ¢ then T(¢) C X N Prk(q), and if
p ~rk ¢ then X N Pri(q) D T(r) where r € w* is strictly less that p in the
Rudin—Keisler pre-order. So, in both cases, X N Prk(q) is dense in w*. By
Theorem 3.1 we conclude that X is quasi-g-pseudocompact for every ¢ € w*.

Now we are going to prove that X does not belong to P. Let U,, = {n}
for each n € w, and let {V,, : n < w} be a subsequence of {U, : n < w}
such that V,, # Vi, if n # m; that is, for each n < w there is k,, < w such
that V,, = Uy, . The function f : w — w defined by f(n) = k,, is one-to-one.
Moreover,

M clx ( U vn) = ) dx(f(V)) = ( M s f(N)) nXx.

NeEp neN Nep Nep
But ﬂNEp clgy f(N) = {f5(p)} and f5(p) € T(p); therefore,

ﬂch(U Vn>:@.

Nep neN
We conclude, using Theorem 2.5, that X is not in P. =m

Another consequence of Theorem 3.1 is the following.

3.3. COROLLARY. Forp,q € w*, Prk(q) is quasi-p-pseudocompact if and
only if p and q are RK-compatible.

Blass and Shelah [3] have defined a model 9 of ZFC in which
M E=Vp,gew” Irew” (r<gg pAT <RK q),
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so, by Corollary 3.3,
M = Vp € w* (Pri(p) is quasi-g-pseudocompact for every g € w™).

(Observe that Prk(p) does not belong to P because if p <grk ¢, then
Prx(p) x X(q) is not pseudocompact.)

By definition, if ¢ <gk p, then every quasi-g-pseudocompact space is
quasi-p-pseudocompact. Moreover, Theorem 3.1 shows that X'(q) is quasi-
g-pseudocompact, and if ¥(q) is quasi-p-pseudocompact, then we must have
q <rk p- So, we obtain:

3.4. COROLLARY. Let p,q € w*. The following are equivalent:

(1) ¢ <rk p;
(2) Every quasi-q-pseudocompact space is quasi-p-pseudocompact;
(3) X(q) is quasi-p-pseudocompact.

Now we are able to give an example of a pseudocompact space which is
not quasi-p-pseudocompact for any p € w*.

3.5. EXAMPLE. Let K be the one-point compactification of the space
D, (Bw) x {p}). The subspace X = P, (X(p) x {p}) U {0} of K,
where x( is the distinguished point in K, is a pseudocompact space. Also,
X contains a clopen copy of X (p) for each p € w*. Since w* does not have
<rk-maximal elements, and because of Lemma 2.4 and Corollary 3.4, X is
not quasi-p-pseudocompact for any p € w*.

We finish this section by studying the space T'(p) related to the properties
that we are analyzing. We begin by determining when 7'(q) is quasi-p-pseu-
docompact and we characterize P-points in w* in terms of quasi-p-pseudo-
compactness of T'(p). The following result, proved in [7], will help us.

3.6. THEOREM. For p,q € w, p <r q if and only if T(q) is p-pseudo-
compact.

3.7. THEOREM. Let p,q € w*. The space T(q) is quasi-p-pseudocompact
if and only if (Prx(p) N Pr(q)) \ 2(q) # 0.

Proof. Assume that T'(¢) is quasi-p-pseudocompact and let (A, )n<., be
an w-partition of w. There are r <gk p and s € T'(q) such that s = r-lim A,.
Thus, for each A € s, {n<w: AN A, #0} € r. Since {n<w : |[ANA,|=Ro}
S{n<w:ANA, #0}, it follows that {n < w: |[AN A,| = No} € r. Let
f 1w — w be defined by f(m) =n if m € A,. The function f is surjective
and {n < w:|AN f~1(n)] = Ro} € r for each A € s. Then r <g s. Since
s ARk ¢, we have r <g ¢. Therefore, r € (Prk(p) N Pr(q)) \ X(q).

Now, if re (Pri (p)NPr(q)) \ X (¢), then r <g ¢, so T'(q) is r-pseudocom-
pact (Theorem 3.6). In particular, T'(¢q) is quasi-p-pseudocompact. m

The result that follows generalizes Theorem 5.3 in [10].
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3.8. COROLLARY. Let q € w*. The following are equivalent:
(1) q is a P-point in w*;

(2) T(q) is not pseudocompact;

(3) T'(q) is not quasi-q-pseudocompact;

(4) T(q) is not quasi-p-pseudocompact for any p € w*;

(

Proof. The implications (2)=(3)=(4)=(5) are trivial, and (5)=-(1) is
a consequence of Theorem 3.6 (it is also a result due to Ginsburg and Saks
in [10]). Finally, (1)=(2) holds because if ¢ is a P-point in w*, then T'(q)
is a P-space, and so it cannot be pseudocompact because pseudocompact
P-spaces are finite. m

Also, as a consequence of Theorems 3.6 and 3.7, the space T'(q) is quasi-
p-pseudocompact if and only if T'(q) is r-pseudocompact for some r <gg p.

4. Products of quasi-p-bounded subsets. Let p € w*. In [7] it
was proved that, if X and Y are p-pseudocompact spaces, then sois X x Y.
However, in Example 2.9 a space Y in the Frolik class P has been constructed
which is not p-pseudocompact for any p € w*. Since Y € P, the product
space X XY is pseudocompact for each pseudocompact space X. These facts
suggest the question of characterizing the spaces whose product with every
p-pseudocompact space is pseudocompact. The following theorem answers
this question.

4.1. THEOREM. Let p € w*. For a subset A of a space X the following
conditions are equivalent:

(1) A is quasi-p-bounded in X;

(2) For each p-bounded subset B of a space Y, A X B is quasi-p-bounded
m X XY,

(3) For each p-bounded subset B of a space Y, A x B is bounded in
X xY;

(4) A x Prk(p) is bounded in X X Prk(p).

Proof. (1)=(2). Let (U, X V;,)n<w be a sequence of open sets in X x Y
meeting A x B. We prove that there is a subsequence of (U,, X V}, ), <. which
admits a p-limit point. By assumption, (U,)n<, has a ¢-limit point for
some ¢ <rk p. So, by Lemma 2.1(1), there exists a subsequence (Uy(y))n<w
of (Un)n<w and a point x € X such that z = p-lim(Uy,). Now, since B
is p-bounded in Y, we can find y € Y such that y = p-lim(Vj,)). Thus,
(a:,y) = p—lim(Ug(n) X Vg(n))n<w-

(2)=(3) and (3)=(4) are clear.

(4)=(1). Let (U,)n<w be a sequence of open sets in X meeting A. Since
X x Prk(p) is bounded, (U,, X {n}),<w has a cluster point (x,r). We claim
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that © = r-lim(U,,). In fact, suppose to the contrary that there exists a
neighborhood U of z such that the set M = {n < w : U, NU # 0} & r.

Since r is an ultrafilter, w\M €r. So, Uxw \ M is a neighborhood of (z, )
missing U,, x {n} for all n < w, which leads us to a contradiction. m

Consequently, a space X is quasi-p-pseudocompact for a p € w* if and
only if X x Prk(p) is pseudocompact.

We remind the reader that a compactification K of a space X is a com-
pact space containing X as a dense subset. Two compactifications K7 and
K5 of X are said to be equivalent if the identity map on X admits a con-
tinuous extension to a homeomorphism from K; onto K5. In this case we
write K1 = Ko.

For bounded subsets A and B of two topological spaces X and Y, re-
spectively, the equality clgx xy)(A x B) = clgx A x clgy B has been widely
studied (see e.g. [9], [11], [18]). In what follows we analyze this equality in
the field of quasi-p-bounded subsets. The following lemma is necessary for
our purposes. A proof is available in [9, Lemma 2.5].

4.2. LEMMA. Let A and B be bounded subsets of X and Y, respectively.
If clgxy Axclgryy B = clgxxy)(A x B), then A x B is bounded in X XY .

We remind the reader that a family {f5}scp of real-valued functions on
a space X is said to be equicontinuous at xg € X if for every € > 0 there
exists a neighborhood V' of ¢ such that, for each 6 € D, |fs(z)— fs(z0)| < &
whenever x € V. For each real-valued bounded continuous function on a
product space X XY we denote by B(f) its continuous extension to (X xY).
Given z € X, B(f)(a,—) stands for the continuous extension to SY of
the bounded function g on Y defined by the requirement g(y) = f(x,y)
whenever y € Y. For each y € BY, 5(f)(a,y) stands for 8(f)(a,—)(y) and,
if y € BY, B(f)(—,y) for the function from X into R defined by

B (= y)(@) = B(f)(z,y)
whenever x € X. As usual, for each subset U of X, we define the oscillation
of f in U, osc(f,U), as sup{| () — f(y)] : (x,) € U x U}.

4.3. THEOREM. Let p € w*. For a bounded subset A of X, the following
conditions are equivalent:

(1) A is quasi-p-bounded;

(2) For each p-bounded subset B of a space Y, clgxxy)(A x B) =
CIBX A X Clﬁy B;

(3) For each p-pseudocompact space Y, clgx xy)(AxY) = clgx Ax Y

(4) cla(x x Prx(p) (A X Pri(p)) = clgx A X f(w).

Proof. (1)=(2). Let 3(i) be the continuous extension to (X x Y') of
the identity mapping ¢ : X XY — X xY C pBX x Y. It is
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clear that ﬂ(i)‘cl,a(xxm(AxB) maps clg x xy)(AxB) onto clgx Axclgy B. We
prove that B(i)|c1ﬁ(XXy>(AxB) is injective. For this, suppose to the contrary
that there exist two different points a and b in clg(xxy)(AxB)\ (A x B) such
that 5(i)(a) = B(i)(b) = (ap, by). Choose a real-valued continuous function
fon B(X xY) such that f(a) =0 and f(b) = 1.

We begin by checking that the family {5(f)(a, —) : a € A} is not equicon-
tinuous at bg. Indeed, let (bs)sep be a net in B converging to bg. Then, if
{B(f)(a,—) : a € A} were equicontinuous at bg, the function 5(f)(—,ao) is
the uniform limit (on A) of the net (8(f)(—,bs))sep and, consequently, it
admits a continuous extension g to clgx A. Consider now a net (as, bs)sep
in A x B converging to a. Then (as,bs)scp converges to (ag,bp). Let € > 0.
Since {5(f)(a,—) : a € A} is equicontinuous at by and g is continuous on
clgx A, there exists 9 € D such that

|f(as,b5) = B(f)(as, bo)| < /2, |B(f)(as,bo) — glao)| < /2

whenever § > Jg. So, by the triangle inequality,

| f(as,bs) — g(ao)| < e.
Thus, g(ap) = 0. In the same way, we obtain g(ag) = 1, a contradiction.
We have just proved that {3(f)(a,—) : a € A} is not equicontinuous at
bo. Hence the following condition is satisfied:

(E)  there exists € > 0 such that, for each neighborhood V' of by in Y,
there are a € A and b € V N B such that

| f(a,b) = B(f)(a,bo)| > e.

Next, we define by induction a sequence (an, by )n<w C A X B and two
sequences (W, ) n<w, (Up XV )n<w of regular-closed subsets of Y and X xY,
respectively, such that:

(1) |f(anvbn) - B(f)(an’b())‘ > ¢ for each n < w;

(2) For each n < w, by € intgy W), and osc(B(f)(an, —), Wy) < e/4;

(3) For each n < w, (an,b,) € intxxy (U, x V,) and osc(f,U, x V,,)
<e/4;

(4) For each n < w, inty V,, C intgy W, and intgy W,, C intgy W,_;.

In fact, by condition (E), we can find a point (a1,b1) € A x B such that

|f(a1,b2) — B(f)(a,bo)| > e.

As f and B(f)(a1,—) are both continuous functions on X x Y and on Y,
respectively, there exists a regular-closed neighborhood (in X xY) Uy x V4
of (ay,b1) and a regular-closed neighborhood (in YY) Wy of by such that

osc(f,Ur x V1) <e/4,  osc(B(f)(ar,—), W1) <e/4.
This completes step n = 1.
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For n > 1, by condition (E) again, there exist b,, € intgy W,,_1 N B and
an € A such that

| f(an,bn) — B(f)(a@n,bo)| > €.
From an argument similar to that given in step n = 1, we can find a
regular-closed neighborhood (in X x Y) U,, x V,, of (an, by,) with inty V,, C
intgy Wy,—1 and a regular-closed neighborhood (in YY) W, of by with
intgy W,, C intgy W,,_1 such that

osc(f, U, x V) <e/4, osc(B(f)(an, =), W,) < e/4.

This completes the induction.

Now, since B is quasi-p-bounded, there exists a subsequence (V,,(x))k<w
which admits a p-limit y in Y. By (4) it is an easy matter to check that y is a
cluster point of (W, ), <. and, consequently, y belongs to W,, for each n < w.
On the other hand, as B(f)(—,y) is continuous, we can find a sequence
(M) n<. of regular-closed sets in X with a,, € intx M,, C U, such that
osc(B(f)(—,y), M,) < e/4 for each n < w. The subset A being p-bounded,
we can choose a p-limit x of the sequence (M, (1))k<w- It is clear that (z,y)
is a cluster point of both (M, ), Vi) ) k<w and (M ey, W) ) k<w-

Next, let U x V' be a regular-closed neighborhood on X x Y such that
|f(a,b) — f(z,y)| < /4 whenever (a,b) € U x V and consider the set
J={k <w:(UxV)N(Mym) % Vo)) #0}. According to (4), JC{k <w:
(U X V)0 (Myry X Vi) # 0} So, by (3),

|f($ay) - f(an(k)ybn(k)” < 8/4
whenever k£ € J.

On the other hand, because y € W,y and osc(B(f)(—,y), Myux)) < /4
for each k < w, we have

|f(anry,y) — B(F)anw),bo)l <e/4, [fla,y) — flanwm),y)| <e/4

whenever a € M, . Therefore, |3(f)(a,y) — B(f)(@n),bo)| < £/2 when-
ever k < w. This contradicts the fact that

| f(@n(r)s b)) — B(f)(ancr), bo)| > €.
Thus, the function 3(7) is injective, as was to be proved.
(2)=(3) and (3)=-(4) are clear.
(4)=(1). Since w C Prk(p) C B(w), we have SPrk(p) = f(w). So,
condition (4) and Lemma 4.2 imply that A x Prk(p) is bounded in X X
Prx(p). The result follows from Theorem 4.1. m

4.4. COROLLARY. Let p € w*. A bounded subset A of a space X is
quasi-p-bounded in X if and only if for each p-bounded subset B of a space
Y, the restriction to Ax B of every real-valued continuous function on X XY
admits a continuous extension to clgx A x clgy B.
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4.5. COROLLARY. Let pew*. A pseudocompact space X is quasi-p-pseu-
docompact if and only if B(X X Prk(p)) = X X f(w).

We give an example which points out that quasi-p-boundedness is not
preserved under finite products.

4.6. EXAMPLE. Let p € w* be a non-RK-minimal free ultrafilter and
choose r <gk p. By Corollary 3.4 both X (p) and X(r) are quasi-p-pseudo-
compact subsets. Since the sequence ((n,n)),<. of open sets in X (p) x X(r)
does not have cluster points, the space X'(p) x X (r) is not pseudocompact.
Now, consider Z = X(p) @ X(r). By Corollary 2.12, Z is quasi-p-pseudo-
compact. However, Z x Z has a clopen copy of X(p) x X(r) which is not
pseudocompact and, consequently, Z X Z is not pseudocompact.
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