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A GENERAL THEOREM COVERING MANY ABSOLUTE
SUMMABILITY METHODS

BY

W. T. SULA IMAN (QATAR)

Abstract. A general theorem concerning many absolute summability methods is
proved.

1. Introduction. Let
∑
an be a given infinite series with the sequence

of partial sums (sn). By σδn we denote the nth Cesàro mean of order δ > −1
of the sequence (sn),

σδn =
1

Aδn

n∑
v=1

Aδ−1n−vsv.

Here Aδk =
(
k+δ
k

)
= (δ + 1) . . . (δ + k)/k!. It may be easily verified that

Aδk ∼ kδ. The series
∑
an is said to be |C, δ|k summable, k ≥ 1, if
∞∑
n=1

nk−1|σδn − σδn−1|k <∞.

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞.

The transformation

tn =
1

Pn

∞∑
v=0

pvsv

defines the sequence (tn) of the Riesz means of the sequence (sn) generated
by the sequence of coefficients (pn) (see [4]). The series

∑
an is said to be

|R, pn|k summable, k ≥ 1, if
∞∑
n=1

nk−1|tn − tn−1|k <∞.
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The series
∑
an is said to be |N, pn|k summable, k ≥ 1 (Bor [1]), if

∞∑
n=1

(
Pn
pn

)k−1
|tn − tn−1|k <∞.

In the special case when pn = 1 for all values of n, both |R, pn|k and
|N, pn|k summability are the same as |C, 1|k summability.

The series
∑
an is said to be |N, pn| summable if

(1)

∞∑
n=1

|Tn − Tn−1| <∞,

where

Tn =
1

Pn

n∑
v=0

pn−vsv.

The sequence class M is defined by

M =

{
p = {pn} : pn > 0 &

pn+1

pn
≤ pn+2

pn+1
≤ 1, n = 0, 1, . . . , Pn →∞

}
.

It is known (Das [3]) that for p ∈M , (1) holds iff
∞∑
n=1

1

nPn

∣∣∣ n∑
v=1

pn−vvav

∣∣∣ <∞.
For p ∈M , the series

∑
an is said to be |N, pn|k summable, k ≥ 1 (Sulaiman

[5]), if
∞∑
n=1

1

nP kn

∣∣∣ n∑
v=1

pn−vvav

∣∣∣k <∞.
In the special case in which pn = Ar−1n , r > −1, |N, pn|k summability is
equivalent to |C, r|k summability. The series

∑
an is said to be |R, log n, 1|k

summable if it is |N, pn|k summable with pn = 1/(n+1) and Pn ∼ log(n+1).
For any sequence {fn}, we define ∆fn = fn − fn+1.

2. Main result. We prove the following:

Theorem 1. Let {fn}, {gn}, {Gn}, and {Hn} be sequences of positive
constants such that {fn} ∈ M and Fn =

∑n
v=1 fv → ∞ as n → ∞. Let

{εn} be a sequence of constants. Given a sequence {xn} define

Xn =
1

Gn

n∑
v=1

gvxv, Yn =
1

Fn−1Hn

n∑
v=1

vfn−vxvεn

and assume

gn+1 = O(gn),(2)

Hn+1Fn+1

Gn+1
= O

(
HnFn
Gn

)
,(3)
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∆gn = O

(
gn+1

n

)
,(4)

∆

(
gnHnFn
nGn

)
= O

(
gnHn

nGn

)
,(5)

∆

(
nGn

gnHnFn
εn

)
= O

(
1

Fn

)
,(6)

∞∑
n=v+1

fn−v
Fn−1Hk

n

= O

(
1

Hk
v

)
.(7)

Let k ≥ 1. Then a necessary and sufficient condition for the implication:

if
∑
|Xn|k <∞ then

∑
|Yn|k <∞

to hold (for any sequence {xn}) is

(i) εn = O(gnHnFn/(nGn)), and
(ii) ∆εn = O(gn+1Hn/(nGn)).

3. Lemmas

Lemma 1 (Bor [2]). Let k ≥ 1, and let A = (anv) be an infinite matrix
that maps `k into `k. Then anv = O(1) for all n and v.

P r o o f. By the Closed Graph Theorem, A defines a bounded linear map-
ping in `k. Then the bound |anv| ≤ C follows, where C is the norm of A.

Lemma 2 (Sulaiman [6]). Let p ∈M. Then for 0 < r ≤ 1,
∞∑

n=v+1

pn−v−1
nrPn−1

= O(v−r).

Lemma 3. Suppose that εn = O(αnβn), αn, βn > 0, αn+1βn+1 =
O(αnβn), ∆(αnβn) = O(αn) and ∆(εn/(αnβn)) = O(1/βn). Then ∆εn =
O(αn).

P r o o f. We have εn=knαnβn where kn=εn/(αnβn)=O(1). Therefore

∆εn = kn∆(αnβn) +∆kn(αn+1βn+1)

= O(1)O(αn) +O(1/βn)O(αnβn) = O(αn).

4. Proof of Theorem 1. Sufficiency. We have via Abel’s transforma-
tion:

Yn =
1

Fn−1Hn

n∑
v=1

gvxv

(
v
fn−v
gv

εv

)

=
1

Fn−1Hn

[ n−1∑
v=1

( v∑
r=1

grxr

)
∆v

(
v
fn−v
gv

εv

)
+
( n∑
r=1

grxr

)
n
f0
gn
εn

]
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=
1

Fn−1Hn

n−1∑
v=1

GvXv

{
−fn−v

gv
εv + (v + 1)∆g−1v fn−vεv

+ (v + 1)g−1v+1∆vfn−vεv + (v + 1)g−1v+1fn−v−1∆εv

}
+

nGnXnf0
Fn−1Hngn

εn

= Yn,1 + Yn,2 + Yn,3 + Yn,4 + Yn,5, say.

By Minkowski’s inequality,

m∑
n=1

|Yn,1|k = O(1)

m∑
n=1

5∑
r=1

|Yn,r|k.

Applying Hölder’s inequality gives

m+1∑
n=2

|Yn,1|k =

m+1∑
n=2

1

F kn−1H
k
n

∣∣∣∣ n−1∑
v=1

fn−v
Gv
gv
Xvεv

∣∣∣∣k

≤
m+1∑
n=2

1

Fn−1Hk
n

×
{ n−1∑
v=1

fn−v

(
Gv
gv

)k
|Xv|k|εv|k

}{ n−1∑
v=1

fn−v
Fn−1

}k−1

≤ O(1)

m∑
v=1

(
Gv
gv

)k
|Xv|k|εv|k

m+1∑
n=v+1

fn−v
Fn−1Hk

n

≤ O(1)

m∑
v=1

1

Hk
v

(
v

Fv

)k(
Gv
gv

)k
|Xv|k|εv|k,

m+1∑
n=2

|Yn,2|k =

m+1∑
n=2

1

F kn−1H
k
n

∣∣∣ n−1∑
v=1

(v + 1)Gv∆g
−1
v fn−vXvεv

∣∣∣k
≤ O(1)

m+1∑
n=2

1

Fn−1Hk
n

×
{ n−1∑
v=1

vkGkv |∆g−1v |kfn−v|Xv|k|εv|k
}{ n−1∑

v=1

fn−v
Fn−1

}k−1

≤ O(1)
m∑
v=1

vkGkv |∆g−1v ||Xv|k|εv|k
m+1∑
n=v+1

fn−v
Fn−1Hk

n

= O(1)

m∑
v=1

(
v

Hv

)k
Gkv
|∆gv|k

gkvg
k
v+1

|Xv|k|εv|k
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≤ O(1)

m∑
v=1

1

Hk
v

(
v

Fv

)k(
Gv
gv

)k
|Xv|k|εv|k,

m+1∑
n=2

|Yn,3|k =

m+1∑
n=2

1

F kn−1H
k
n

∣∣∣ n−1∑
v=1

(v + 1)g−1v+1Gv∆vfn−vXvεv

∣∣∣k
≤

m+1∑
n=2

1

F kn−1H
k
n

×
{ n−1∑
v=1

vk
(
Gv
gv+1

)k
|∆vfn−v||Xv|k|εv|k

}{ n−1∑
v=1

|∆fn−v|
}k−1

≤ O(1)

m∑
v=1

vk
(
Gv
gv

)k
|Xv|k|εv|k

m+1∑
n=v+1

|∆vfn−v|
F kn−1H

k
n

≤ O(1)

m∑
v=1

1

Hk
v

(
v

Fv

)k(
Gv
gv

)k
|Xv|k|εv|k,

m+1∑
n=2

|Yn,4|k =

m+1∑
n=2

1

F kn−1H
k
n

∣∣∣ n−1∑
v=1

vg−1v+1fn−v−1GvXv∆εv

∣∣∣k
≤

m+1∑
n=2

1

Fn−1Hk
n

×
{ n−1∑
v=1

vk
(
Gv
gv+1

)k
fn−v−1|Xv|k|∆εv|k

}{ n−1∑
v=1

fn−v−1
Fn−1

}k−1

≤ O(1)

m∑
v=1

vk
(
Gv
gv+1

)k
|Xv|k|∆εv|k

m+1∑
n=v+1

fn−v−1
Fn−1Hk

n

≤ O(1)

m∑
v=1

(
v

Hv

)k(
Gv
gv+1

)k
|Xv|k|∆εv|k,

m∑
n=1

|Yn,5|k =

m∑
n=1

∣∣∣∣nGnXnf0εn
Fn−1Hngn

∣∣∣∣k

≤ O(1)

m∑
n=1

(
n

Fn

)k(
Gn
gn

)k
1

Hk
n

|Xn|k|εn|k.

Necessity of (i). By the result of Bor [1], the transformation from (Xn)
into (Yn) maps `k into `k and hence the diagonal elements of this transfor-
mation are bounded (by Lemma 1), so (i) is necessary.
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Necessity of (ii). This follows from Lemma 3 and necessity of (i) by
taking αn ≡ gnHn/(nGn) and βn ≡ Fn, using (2).

This completes the proof of the theorem.

Remark. (1) If we put xn = an, fn = pn and Hn = n1/k in the formula
defining Yn, p ∈M , then the condition

∑
|Yn|k <∞ is equivalent to |N, pn|k

summability of
∑
anεn (note that Pn/Pn−1 is a bounded sequence).

(2) If we put xn = an, Qn = q0 + . . . + qn, gn = Qn−1 and Gn =
Qn−1(Qn/qn)1/k in the formula defining Xn, then the condition

∑
|Xn|k <

∞ simply means |N, qn|k summability of
∑
an.

(3) If we put xn = an, Qn = q0 + . . . + qn, gn = Qn−1 and Gn =
n1/k−1QnQn−1/qn in the formula defining Xn, then the condition

∑
|Xn|k

<∞ means |R, qn|k summability of
∑
an.

5. Applications. Throughout the rest of the paper we assume that
Pn →∞ and Qn →∞ as n→∞.

Theorem 2. Let p ∈M and let nqn = O(Qn), Qn = O(Qn−1), and

Pn+1

Pn
= O

((
Qn
Qn−1

)(
qnQn+1

qn+1Qn

)1/k)
,

∆

(
Pn
n

(
nqn
Qn

)1/k)
= O

(
1

n

(
nqn
Qn

)1/k)
,

∆

(
n

Pn

(
Qn
nqn

)1/k

εn

)
= O

(
1

Pn

)
.

Then a necessary and sufficient condition that
∑
anεn be |N, pn|k summable

whenever
∑
an is |N, qn|k summable, k ≥ 1, is

εn = O

(
Pn
n

(
nqn
Qn

)1/k)
, ∆εn = O

(
1

n

(
nqn
Qn

)1/k)
.

Theorem 3. Let p ∈M and let nqn = O(Qn), Qn = O(Qn−1), and

Pn+1

Pn
= O

(
qnQn+1

qn+1Qn

)
, ∆

(
Pnqn
Qn

)
= O

(
qn
Qn

)
,

∆

(
Qn
Pnqn

εn

)
= O

(
1

Pn

)
.

Then a necessary and sufficient condition that
∑
anεn be |N, pn|k summable

whenever
∑
an is |R, qn|k summable, k ≥ 1, is

εn = O(Pnqn/Qn), ∆εn = O(qn/Qn).

The following results are consequences of Theorem 2.
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Corollary 4. A necessary and sufficient condition that
∑
anεn be

|C,α|k summable, 0 < α < 1, whenever
∑
an is |C, 1|k summable, k ≥ 1, is

εn = O(nα−1), ∆εn = O(n−1),

provided that ∆(n1−αεn) = O(n−α).

Corollary 5. A necessary and sufficient condition that
∑
anεn be

|N, 1/(n+ 1)|k summable whenever
∑
an is |C, 1|k summable, k ≥ 1, is

εn = O(log n/n), ∆εn = O(n−1),

provided that

∆

(
n

log n
εn

)
= O

(
1

log n

)
.

Corollary 6. A necessary and sufficient condition that
∑
anεn be

|N, 1/(n+ 1)|k summable whenever
∑
an is |R, log n, 1|k summable, k ≥ 1,

is

εn = O{(log n)1−1/k/n}, ∆εn = O{1/n(log n)1/k},
provided that

∆

(
n

(log n)1−1/k
εn

)
= O

(
1

log n

)
.

Corollary 7. A necessary and sufficient condition that
∑
anεn be

|C,α|k summable, 0 < α ≤ 1, whenever
∑
an is |R, log n, 1|k summable,

k ≥ 1, is

εn = O{nα−1/(log n)1/k}, ∆εn = O{1/(n(log n)1/k)},

provided that ∆(n1−α(log n)1/kεn) = O(n−α).
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