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NONLINEAR HEAT EQUATION WITH A

FRACTIONAL LAPLACIAN IN A DISK
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VLADIMIR VARLAMOV (BOGOTÁ)

Abstract. For the nonlinear heat equation with a fractional Laplacian

ut + (−∆)
α/2
u = u2, 1 < α ≤ 2,

the first initial-boundary value problem in a disk is considered. Small initial conditions,
homogeneous boundary conditions, and periodicity conditions in the angular coordinate
are imposed. Existence and uniqueness of a global-in-time solution is proved, and the
solution is constructed in the form of a series of eigenfunctions of the Laplace operator in
the disk. First-order long-time asymptotics of the solution is obtained.

1. Introduction. The nonlinear heat equation

(1.1) ut −∆u+ up = 0, x ∈ R
N , t > 0,

and the asymptotic behavior of its solutions were the subject of many papers
(see, e.g., [4–9, 11, 12, 15] and the references there). The authors considered
primarily initial-value problems imposing some restrictions on the initial
data and discussing the asymptotic behavior of solutions in terms of the
parameters N , p, and the exponent of decay of initial data. The existence
of a global-in-time solution of the Cauchy problem for (1.1) with initial data
from L1,loc(R

N ) was proved in [4] and for the corresponding mixed problem
in the bounded domain Ω in [15]. Using the approach of [6–8], i.e., the
rescaling technique and the maximum principle, L. Herraiz [9] examined the
first initial-boundary value problem for (1.1) in the domain R

N \ Ω, where
Ω is bounded. For nonnegative initial data with a power decay at infinity
he calculated the first-order long-time asymptotics of the classical solution.

In [26] C. E. Wayne examined the Cauchy problem for (1.1) with a
sufficiently smooth nonlinear term F (u) and constructed finite-dimensional
invariant manifolds for it. He showed that these manifolds controlled the
long-time behavior of solutions and could be used for calculating the higher-
order long-time asymptotics. As an example he considered the power non-
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linearity u4 and obtained the second-order asymptotics of the solution. For
parabolic partial differential equations on bounded domains the use of in-
variant manifolds usually permits establishing the lowest-order long-time
asymptotics (see [24] and the references therein). The linear operator of the
corresponding equation has a point spectrum, which gives a natural sepa-
ration of the phase space of the linear problem into stable, unstable, and
central subspaces. In this case the asymptotics is characterized by the expo-
nential decay in time rather than the power-law decay that one encounters
in initial-value problems (see [26]).

The aim of the present paper is to study the long-time behavior of solu-
tions of the fractional Laplacian version of (1.1) with the particular quadratic
nonlinearity,

(1.2) ut + (−∆)α/2u = u2, 1 < α ≤ 2.

The case α = 2 corresponds to the standard (Gaussian) diffusion while
0 < α < 2 corresponds to the anomalous one (see [3]). The importance of
examining fractional derivative nonlinear dissipative equations was empha-
sised in [1–3, 13, 14]. Nonlocal Burgers-type equations (similar to (1.2), but
with the nonlinearity containing the gradient of up) appeared as model equa-
tions simplifying the multidimensional Navier–Stokes system with modified
dissipativity [1], describing hereditary effects for nonlinear acoustic waves
[16], and modeling interfacial growth mechanisms which include trapping
surface effects [13]. A variety of physically motivated linear fractal differen-
tial equations with applications to hydrodynamics, statistical physics, and
molecular biology can be found in [15]. We would like to point out that a
rigorous investigation of the long-time behavior of solutions of the Cauchy
problems for fractal Burgers-type equations has been conducted in [3], where
the first two terms of the asymptotics have been found.

Below we study the first initial-boundary value problem for the equa-
tion (1.2) in a circular domain and obtain the higher-order long-time asymp-
totics of its solution. First, we construct a global-in-time mild solution by
means of eigenfunction expansions and perturbation theory, and then we
calculate the first-order long-time asymptotics of this solution. The Laplace
operator in a disk has a point spectrum, therefore it is natural to expect the
exponential decay of the solution in time. The sign of u2 does not matter for
the proof of the existence of global-in-time solutions since we only consider
small initial data.

Note that we do not use any of the methods of [2–9, 11, 12, 24, 26]. The
basic ideas of our approach stem from the monograph [14], where Cauchy
problems for nonlocal evolution equations of the first order in time were
considered (fractional derivative terms describing dispersive and dissipative
effects appear there in connection with equations governing wave propaga-
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tion). In the papers [19–23] this method was developed further and adapted
not only for solving higher-order in time nonlinear dissipative equations,
but also for studying initial-boundary value problems. The latter aspect is
more important for us in our present investigation. In [20] the first initial-
boundary value problem with small initial data was considered for the spa-
tially 1-D Boussinesq equation on an interval. Its solution was constructed
in the form of a Fourier series, whose coefficients in their turn were rep-
resented by series in a small parameter present in the initial conditions.
The first-order long-time asymptotics was calculated, which showed expo-
nentially damped time oscillations and space evolution. In [21] the second
mixed problem with small initial data was studied for the same equation
on an interval. Its solution was constructed, and the second-order long-time
asymptotics was obtained. The main term came from the linear problem, but
the second term was essentially nonlinear and contained Airy functions of a
negative argument. In a certain case a blow up of the solution took place.
In [22] the radially symmetric problem for the damped Boussinesq equation
in a disk was examined. Its global-in-time solution was constructed in the
form of a Fourier–Bessel series, and the first-order long-time asymptotics
was calculated. In [23] the general spatially 2-D case in a disk was studied,
and the long-time asymptotics was computed.

In the radially symmetric problem in a disk considered in [22], we en-
countered the “loss of smoothness effect”, i.e., raising the smoothness of the
initial data does not lead to the increase of the regularity of the solution.
This is a consequence of the combined influence of the geometry and the
nonlinearity. However, in the problem in question, as well as in [23], it does
not take place. The regularity of the solution can be somewhat improved by
means of imposing more periodicity conditions in the angle (in spite of the
poor convergence of the eigenfunction expansion series). It is reflected by the
presence of convolutions in the “angular indices” in the sums representing
the eigenfunction expansion coefficients.

The presence of the fractional Laplacian, the nonlinearity, and the circu-
lar geometry in the problem in question lead to the appearance of the critical
power αcr which determines the decay of the residual term of the long-time
asymptotics. We must also point out that this asymptotics is nonlinear since
the coefficient in its main term is represented by a series of nonlinear ap-
proximations.

2. Notation and function spaces. Let Ω = {(r, θ) : |r| < 1,
θ ∈ [−π, π]}. Our main tool in studying the first initial-boundary value prob-
lem for the equation (1.2) in Ω will be expansions in series of eigenfunctions
of the Laplace operator in the disk. For a function f(r, θ) ∈ L2,r(Ω) (L2(Ω)
with weight r) the corresponding expansion is
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(2.1) f(r, θ) =

∞∑

m=−∞

∞∑

n=1

f̂mnχmn(r, θ),

where the χmn(r, θ) are the eigenfunctions of the Laplace operator in Ω, i.e.,
nontrivial solutions of the problem

∆χ = −Λχ, (r, θ) ∈ Ω,

(2.2) χ|∂Ω = 0, χ(r, θ + 2π) = χ(r, θ), |χ(0, θ)| < ∞.

These eigenfunctions and the corresponding eigenvalues are

(2.3) χmn(r, θ) = Jm(λmnr)e
imθ, Λmn = λ2

mn, m ∈ Z, n ∈ N,

where Jm(z) are Bessel functions of index m, λmn are their positive zeros
numbered in increasing order, and n = 1, 2, . . . is the number of the zero.

The system of functions {χmn(r, θ)}m∈Z, n∈N is orthogonal and complete
in L2,r(Ω) (see [18, 25]). Denoting the scalar product in L2,r(Ω) by (·, ·)r,0
and the corresponding norm by ‖ · ‖r,0 we can write

(χmn, χkl)r,0 = δmkδnl‖χmn‖2r,0,
where δij is the Kronecker symbol. By Parseval’s identity we have

‖f‖2r,0 =
∑

m,n

|f̂mn|2‖χmn‖2r,0, where f̂mn = (f, χmn)r,0/‖χmn‖2r,0.

Denoting by ‖ · ‖r the norm in the weighted space L2,r(0, 1) we obtain

‖χmn‖2r,0 = 2π‖Jm(λmnr)‖2r = 2π

1\
0

rJ2
m(λmnr) dr = πJ2

m+1(λmn).

The following estimates are valid for large positive λ (see [18]):

(2.4) C1/λ ≤ ‖Jm(λr)‖2r ≤ C2/λ.

We shall also need the asymptotics of λmn as n → ∞. For boundedm we
have the following asymptotic formula uniform in m (McMahon’s expansion,
see [10]):

(2.5) λmn = µmn +O

(
1

µmn

)
, µmn =

(
m+ 2n− 1

2

)
π

2
, n → ∞.

On the basis of the weighted Lebesgue space L2,r(Ω), we can introduce
the weighted Sobolev spaces Hs

r (Ω) ≡ W s
2,r(Ω) with the norm defined by

the formula

‖f‖2r,s =
∑

m,n

λ2s
mn|f̂mn|2‖χmn‖2r,0,

where λmn > 0 for all m ∈ Z, n ∈ N.
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We shall also use the Banach space Ck([0,∞),Hs
r (Ω)) equipped with

the norm

‖u‖Ck =

k∑

j=0

sup
t∈[0,∞)

‖∂j
t u(t)‖s,r.

3. Main results. We consider the first initial-boundary value problem
for the equation (1.2) in the unit disk. Using polar coordinates (r, θ) we can
pose this problem as follows:

(3.1)

ut + (−∆)α/2u = u2, (r, θ) ∈ Ω, t > 0,

u(r, θ, 0) = ε2ϕ(r, θ), (r, θ) ∈ Ω,

u|∂Ω = 0, t > 0,

|u(0, θ, t)| < ∞,

periodicity conditions in θ with period 2π,

where 1 < α ≤ 2, ε = const > 0; ϕ(r, θ) is a real-valued function, ∆ =
(1/r)∂r(r∂r) + (1/r2)∂2

θ .
Set A = (−∆)α/2, 1 < α ≤ 2, where ∆ is defined on sufficiently smooth

functions satisfying the conditions (2.2).

Definition. We callu(t) amild solution of the problem (3.1) if it satisfies
the integral equation

(3.2) u(t) = ε2 exp(−tA)ϕ+

t\
0

exp(−(t− τ)A)u2(τ) dτ, t > 0,

in some Banach space E.

Define Ω
(1)
δ = {(r, θ) : 0 ≤ r < δ, θ ∈ [−π, π]} for sufficiently small δ > 0

and Ω
(2)
δ = Ω \Ω(1)

δ . Note that Ω
(2)
δ is a closed domain. Now we formulate

some assumptions for a sufficiently smooth function f(r, θ), (r, θ) ∈ Ω.

Assumptions A.

∂k
θ f(r,−π) = ∂k

θ f(r,−π), k = 0, 1;

f(1, θ) = 0, ∂2
θf(0, θ) = ∂2

θf(1, θ) = 0;

V 1
0 (

√
r ∂rf(r, θ)) = V1(θ) ∈ L1(−π, π),

lim
r→0+

√
r ∂rf(r, θ) = F1(θ) ∈ L1(−π, π),

V 1
0 (

√
r ∂r∂

2
θf(r, θ)) = V1,2(θ) ∈ L1(−π, π),

lim
r→0+

√
r ∂r∂

2
θf(r, θ) = F1,2(θ) ∈ L1(−π, π).

Theorem 1. If 1 < α ≤ 2 and ϕ(r, θ) satisfies Assumptions A, then
there is ε0 > 0 such that for ε ∈ [0, ε0] there exists a unique mild solution
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of the problem (2.1) in the space C0([0,∞),Hs
r (Ω)), s < α− 1/2. It can be

represented as

u(r, θ, t) =
∞∑

n=1

û0n(t)J0(λ0nr)(3.3)

+

∞∑

m,n=1

Jm(λmnr)[ûmn(t)e
imθ + ûmn(t)e

−imθ],

where the bar denotes complex conjugation and the coefficients ûmn(t) are

defined below. Moreover , u(r, θ, t) is continuous and bounded in Ω
(2)
δ ×[0,∞)

and can be represented there as

(3.4) u(r, θ, t) =

∞∑

N=0

εN+1u(N)(r, θ, t),

where the functions u(N)(r, θ, t) are defined in the proof (see (5.9)) and

the series converges absolutely and uniformly with respect to (r, θ) ∈ Ω
(2)
δ ,

t ∈ [0,∞), and ε ∈ [0, ε0].

Remark 3.1. It is easy to construct an example of a function ϕ(r, θ)
satisfying the hypotheses of Theorem 1 by separation of variables. Indeed,
we have

ϕ(r, θ) = R(r)Θ(θ), where R(0) = R(1) = 0,

V 1
0 (

√
rR′(r)) = c1 < ∞, lim

r→0+

√
rR′(r) = c2 < ∞;

Θ(k)(−π) = Θ(k)(π); k = 0, 1; Θ′′(θ) ∈ L1(−π, π).

Remark 3.2. Representation (3.3) is a series of regular perturbations
with respect to the initial data and can be used as an asymptotic series in

the domain Ω
(2)
δ × [0,∞).

Now we sketch briefly the proof of Theorem 1. Seeking the solution of
(3.1) in the form of an expansion in eigenfunctions of the Laplace operator
in the disk,

u(r, θ, t) =

∞∑

m=−∞

∞∑

n=1

ûmn(t)χmn(r, θ),

and calculating the series expansion coefficients of the nonlinearity (u2)∧mn(t)
we substitute the corresponding expansions into (3.1) and obtain an initial-
value problem for ûmn(t). Integrating it with respect to t we deduce a nonlin-
ear integral equation for ûmn(t). To solve this equation we use perturbation
theory. Representing the series expansion coefficients as formal series in ε,
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(3.5) ûmn(t) =

∞∑

N=0

εN+1v̂(N)
mn (t),

we substitute them into the integral equation and obtain

(3.6) v̂(0)mn(t) = εϕ̂mn exp(−λα
mnt),

where the ϕ̂mn are the coefficients of the expansion of the initial function

ϕ(r, θ), and v̂
(N)
mn (t), N ≥ 1, are the nonlinear approximations defined by

the recurrence formulas

v̂(N)
mn (t) =

t\
0

exp[−λα
mn(t− τ)](3.7)

×
{ ∑

p,l≥0; q,s≥1
p+l=m

amnpqls

N∑

j=1

v̂(j−1)
pq (τ)v̂

(N−j)
ls (τ)

+
∑

p,q,l,s≥1
l−p=m

amnpqls

N∑

j=1

v̂
(j−1)
pq (τ)v̂

(N−j)
ls (τ)

+
∑

p,q,l,s≥1
p−l=m

amnpqls

N∑

j=1

v̂(j−1)
pq (τ)v̂

(N−j)
ls (τ)

}
dτ.

Using time estimates of v̂
(N)
mn (t), N ≥ 0, which show the decay in λmn, we

prove that the formally constructed function (3.3) really represents a mild

solution of (3.1) from the required function space. Since in Ω
(2)
δ × [0,∞) the

series (3.3) with ûmn(t) defined by (3.5) converges absolutely and uniformly
we can change the order of summation and obtain (3.4).

We prove the uniqueness in the following way. Assuming that there exist
two solutions of the problem in question, u(1) and u(2), we set w = u(1)−u(2)

and expand w in a series of χmn(r, θ). Thus we obtain an integral equation
for the series expansion coefficients ŵmn(t). From this equation we deduce a
local-in-time estimate of‖w(t)‖r,0 which contains a contradiction. Extending
this estimate to all t ≥ 0 we establish the global-in-time uniqueness.

Theorem 2. Under the hypotheses of Theorem 1, there exists a constant

C such that for all t > 0,

(3.8) ‖u− ũ‖r,s ≤ C

{
exp(−λα

11t), 1 < α ≤ αcr,
exp(−2λα

01t), αcr ≤ α ≤ 2,

where ũ(r, θ, t) = BεJ0(λ01r) exp(−λα
01t), λ01 and λ11 are the first posi-

tive zeros of the Bessel functions J0(z) and J1(z) respectively , αcr =
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ln 2/ln(λ11/λ01) ≃ 1.52, and the coefficient Bε will be defined in the proof

(see (6.2), (6.3)).

4. Auxiliary results. Let f(x, ω) be defined on [0, 1] × [a, b], −∞ <
a, b < ∞. We denote by V 1

0 (f(x, ω)) the total variation of f(x, ω) in
x ∈ [0, 1]. Consider the integral

Im(λ, ω) =

1\
0

xf(x, ω)Jm(λx) dx, m ≥ 0, λ > 0, ω ∈ [a, b].

The following lemma can be found in [23], and it is the extension of the
proposition given in [25, p. 595] to the case when the integral in question
depends on two parameters, λ and ω. Since the proof is not long we present
it below for the reader’s convenience.

Lemma 1. Suppose that for each fixed ω ∈ [a, b] the function
√
xf(x, ω)

has a bounded total variation in x ∈ [0, 1]. Moreover , assume that this

variation is absolutely integrable in ω ∈ [a, b], i.e., V 1
0 (

√
xf(x, ω)) = Vf (ω) ∈

L1(a, b), and

lim
x→0+

√
xf(x, ω) = F (ω) ∈ L1(a, b).

Then for all m ≥ 0, λ > 0, and ω ∈ [a, b],

|Im(λ, ω)| ≤ Cω

λ3/2
,

where Cω ∈ L1(a, b) and is independent of m and λ.

P r o o f. It follows from the asymptotics of Bessel functions as x → ∞
that for any z ∈ (0,∞),

∣∣∣
z\
0

√
xJm(x) dx

∣∣∣ ≤ c < ∞,

where c is independent of m and z.

Set
√
xf(x, ω) = f̃ω(x). We can represent f̃ω(x) as

f̃ω(x) = f (1)
ω (x)− f (2)

ω (x),

where f
(1)
ω (x) = V x

0 (f̃ω(x)) is the total variation of f̃ω(x) in [0, x], x ∈ [0, 1],

and f
(2)
ω (x) = V x

0 (f̃ω(x)) − f̃ω(x). The functions f
(1)
ω (x) and f

(2)
ω (x) are

nondecreasing in x for each fixed ω ∈ [a, b]. We have

f (1)
ω (0) = 0, f (1)

ω (1) = V 1
0 (f̃ω(x)) = Vf (ω) ∈ L1(a, b),

f (2)
ω (0) = −f̃ω(0) = −F (ω) ∈ L1(a, b),

f (2)
ω (1) = V 1

0 (f̃ω(x))− f̃ω(1) = Vf (ω)− f̃ω(1).
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Note that |f̃ω(1)| ≤ |f̃ω(0)|+ V 1
0 (f̃ω(x)) = |F (ω)| + Vf (ω). Applying the

second mean value theorem for integrals we deduce that

∣∣∣
1\
0

√
xf (1)

ω (x)Jm(λx) dx
∣∣∣ ≤ |f (1)

ω (0)|
∣∣∣
ξ\
0

√
xJm(λx) dx

∣∣∣

+ |f (1)
ω (1)|

∣∣∣
1\
ξ

√
xJm(λx) dx

∣∣∣

≤ CVf (ω)λ
−3/2.

Estimating the integral
T1
0

√
xf

(2)
ω (λx)Jm(x) dx in an analogous manner and

combining the results we obtain the required estimate.

The next lemma permits one to increase the decay of Im(λ, ω) in λ.

Lemma 2. Let f(x, ω) have a partial derivative ∂xf(x, ω) in [0, 1] and let

f(0, ω) = f(1, ω) = 0 (in case m = 0 only f(1, ω) = 0). Assume that for any

fixed ω ∈ [a, b],
√
x ∂xf(x, ω) has a bounded total variation in x ∈ [0, 1] which

is absolutely integrable in ω ∈ [a, b], i.e., V 1
0 (

√
x∂xf(x, ω)) = Vf,1(ω) ∈

L1(a, b), and

lim
x→0+

√
x ∂xf(x, ω) = F1(ω) ∈ L1(a, b).

Then for m ≥ 0, λ > 0 and ω ∈ [a, b],

|Im(λ, ω)| ≤ Cω(m+ 1)

λ5/2
,

where Cω ∈ L1(a, b) and is independent of m and λ.

P r o o f. We shall use the notations fω(x) = f(x, ω) and f ′
ω(x) =

∂xf(x, ω). Changing the variable ξ = λx and integrating by parts we obtain

Im(λ, ω) =
1

λ2

λ\
0

ξfω(ξ/λ)Jm(ξ) dξ

= − 1

λ2

λ\
0

[
1

λ
f ′
ω(ξ/λ)ξ −mfω(ξ/λ)

]
Jm+1(ξ) dξ

= − 1

λ

1\
0

[f ′
ω(x)x−mfω(x)]Jm+1(λx) dx.

In order to justify these calculations we note that the hypotheses imply
that there exists a constant Mω ∈ L1(a, b) such that |√xf ′

ω(x)| ≤ Mω for
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x ∈ [0, 1]. Therefore, f ′
ω(x) is absolutely integrable in x ∈ [0, 1]. Expanding

fω(x) around x0 = 0 and using the boundary condition fω(0) = 0 we get,
for x ∈ (0, 1],

fω(x) = f ′
ω(ϑ1x)x, 0 < ϑ1 < 1.

Substituting this expression into the integrand we obtain

Im(λ, ω) = − 1

λ

1\
0

[f ′
ω(x)−mf ′

ω(ϑ1x)]xJm+1(λx) dx.

Applying Lemma 1 we deduce the required estimate. When m = 0 we do
not need to expand fω(x) around x0 = 0 and, therefore, we do not need the
condition fω(0) = 0.

Remark 4.1. The fact that Assumptions A are valid for the initial func-
tion means that ϕ(r, θ) satisfies the hypotheses of Lemma 2 for m = 0 and
its second derivative ∂2

θϕ(r, θ) satisfies the hypotheses of Lemma 2 in the
general case.

In the sequel we shall calculate the eigenfunction expansion coefficients
of u2 by means of multiplying two series, i.e.,

(u2)∧mn(t) =
1

‖χmn‖2r,0

(∑

p,q

ûpq(t)χpq ·
∑

l,s

ûls(t)χls, χmn

)
r,0

=
1

‖χmn‖2r,0

∑

p,q,l,s

(χpqχls, χmn)r,0ûpq(t)ûls(t).

Therefore, we shall need estimates of the coefficients

(4.1) amnpqls=
gmnpqls

‖Jm(λmnr)‖2r
, gmnpqls=

1\
0

rJm(λmnr)Jp(λpqr)Jl(λlsr) dr

for integers m, p, l ≥ 0 and n, q, s ≥ 1.

Lemma 3. The following inequality holds:

(4.2) |amnpqls| ≤ C

√
λmn√
λpqλls

,

where the constant is independent of m,n, p, q, l, s.

P r o o f. Using (2.4) and the estimate [18, 25]

(4.3) |Jν(z)| ≤ C/
√
z, ν ≥ 0, z > 0,

for each of the Bessel functions in the integrand we obtain (4.2).
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Lemma 4. For a function f(r, θ) satisfying Assumptions A the following

estimate holds for integers m ≥ 0, n ≥ 1:

(4.4) |f̂mn| ≤
C

λ
3/2
mn(m+ 1)

.

P r o o f. By Lemma 2 and (2.4), for m = 0 we have

|f̂0n| ≤
1

2π‖J0(λ0nr)‖2r

π\
−π

dθ
∣∣∣
1\
0

rJ0(λ0nr)f(r, θ) dr
∣∣∣

≤ 1

λ
3/2
0n

π\
−π

Cθ dθ ≤ C

λ
3/2
0n ,

where Cθ ∈ L1(−π, π). To justify the use of the iterated integral above we
note that it follows from the hypotheses of the theorem that there exists
Nθ ∈ L1(−π, π) such that |∂rf(r, θ)| ≤ Nθ/

√
r, r ∈ (0, 1). Therefore, since

f(1, θ) = 0, we have

|f(r, θ)| ≤
1\
r

|∂ξf(ξ, θ)| dξ ≤ cNθ

uniformly in r ∈ [0, 1].

For m ≥ 1 we can integrate two times in θ using the periodicity condi-
tions ∂k

θ f(r,−π) = ∂k
θ f(r,−π), k = 0, 1, to get

f̂mn =
1

‖Jm(λmnr)‖2r

1\
0

rJm(λmnr)℘m(r) dr,

℘m(r) = − 1

2πm2

π\
−π

e−imθ∂2
θf(r, θ) dθ.

Changing the order of integration and applying Lemma 2 and (2.4) we de-
duce that

|f̂mn| ≤
1

2π‖Jm(λmnr)‖2rm2

π\
−π

dθ
∣∣∣
1\
0

rJm(λmnr)∂
2
θf(r, θ) dr

∣∣∣

≤ 1

λ
3/2
mn(m+ 1)

π\
−π

Cθ dθ ≤ C

λ
3/2
mn(m+ 1)

.

The inequality (4.4) is established.

Lemma 5. The following estimates are valid for the functions (3.6), (3.7)
with m ≥ 0, n ≥ 1, N ≥ 0, t > 0:

(4.5) |v̂(N)
mn (t)| ≤ cN (N + 1)−2λ−(α−1/2)

mn (m+ 1)−1 exp(−λα
01t).
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P r o o f. First, we notice that the estimates (4.4) hold for the coefficients
ϕ̂mn. Next, we use induction on N . For N = 0 and sufficiently small ε we
have, from (3.6),

|v̂(0)mn(t)| ≤ ε|ϕ̂mn| exp(−λα
mnt) ≤ λ−3/2

mn (m+ 1)−1 exp(−λα
01t).

Assuming that (4.5) holds for all v̂
(k)
mn(t), 0 ≤ k ≤ N −1, we shall prove that

it is valid for k = N . We shall estimate a typical term on the right-hand
side of (3.7) using the inequality [14, p. 181]

j−2(N + 1− j)−2 ≤ 22(N + 1)−2[j−2 + (N + 1− j)−2], 1 ≤ j ≤ N.

Denoting this term by ℑ(N)
mn (t), we have, by (2.4),

|ℑ(N)
mn (t)| ≤ cλmn

t\
0

exp[−λα
mn(t− τ)]

×
∑

p,l≥0; q,s≥1
p+l=m

|amnpqls|
N∑

j=1

|v̂(j−1)
pq (τ)| · |v̂(N−j)

ls (τ)| dτ

≤ cλ1/2
mnSmn(t)ΓmÇ(N),

where

Smn(t) = exp(−λα
mnt)

t\
0

exp[(λα
mn − 2λα

01)τ ] dτ,

Γm =
∑

p,l≥0; q,s≥1
p+l=m

1

λα
pq

· 1

λα
ls

· 1

(p+ 1)(l + 1)
> 0,

Ç(N) =

N∑

j=1

cj−1cN−jj−2(N + 1− j)−2 ≤ cN−1(N + 1)−2.

Now we prove that

(4.6) Smn(t) ≤ C
exp(−λα

01t)

λα
mn

.

For this purpose we consider several subcases.

(i) If m = 0, n = 1, then

S01(t) = exp(−λα
01t)

t\
0

exp(−λα
01τ) dτ = exp(−λα

01t)
1− exp(−λα

01t)

λα
01

≤ exp(−λα
01t)

λα
01

.
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(ii) If m = 0, n ≥ 2, then λ0n ≥ λ02 > 2λ01 since λ02 ≃ 5.52 and
λ01 ≃ 2.42 (see [10]). Therefore, for 1 < α ≤ 2,

λα
0n − 2λα

01 ≥ λα
02 − 2λα

01 ≥ λα
01

[(
λ02

λ01

)α

− 2

]
> 0,

and for n ≥ 2 we have

S0n(t) = exp(−λα
0nt)

t\
0

exp[(λα
0n − 2λα

01)τ ] dτ

= exp(−λα
0nt)

exp[(λα
0n − 2λα

01)t]− 1

λα
0n − 2λα

01

≤ exp(−2λα
01t)

λα
0n[1− 2(λ01/λ0n)α]

≤ C
exp(−λα

01t)

λα
0n

.

(iii) If m = 1, n = 1, then λ11 ≃ 3.83, and λα
11 − 2λα

01 < 0 if 1 < α < αcr,
where αcr = ln 2/ln(λ11/λ01) ≃ 1.53, λα

11 − 2λα
01 = 0 for α = αcr; and

λα
11 − 2λα

01 > 0 for αcr < α ≤ 2.
Therefore, if 1 < α < αcr, we can write

S11(t) = exp(−λα
11t)

t\
0

exp[−(2λα
01 − λα

11)τ ] dτ

= exp(−λα
11t)

1− exp[−(2λα
01 − λα

11)t]

2λα
01 − λα

11

≤ C
exp(−λα

11t)

λα
11[2(λ01/λ11)α − 1]

≤ C
exp(−λα

01t)

λα
11

.

If α = αcr, then

S11(t) = exp(−λα
11t)

t\
0

dτ = t exp(−λα
11t) = t exp(−2λα

01t) ≤ C
exp(−λα

01t)

λα
11

.

If αcr < α ≤ 2, we can repeat the considerations of item (ii) to get

S11(t)= exp(−λα
11t)

t\
0

exp[(λα
11−2λα

01)τ ] dτ ≤C
exp(−2λα

01t)

λα
11

≤C
exp(−λα

01t)

λα
11

.

(iv) If m ≥ 1, n ≥ 2, then λα
mn− 2λα

01 ≥ λα
12− 2λα

01 > 0 since λ12 ≃ 7.02.
Therefore, the same arguments as in (ii) lead to

Smn(t) = exp(−λα
mnt)

exp[(λα
mn − 2λα

01)t]− 1

λα
mn − 2λα

01

≤ C
exp(−2λα

01t)

λα
mn

≤ C
exp(−λα

01t)

λα
mn

.

The estimate (4.6) is established.
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Next, we examine Γm and prove that for m ≥ 0,

(4.7) Γm ≤ C

m+ 1
.

If m = 0, then p = l = 0 and

Γ0 =

∞∑

q,s=1

1

λα
0q

· 1

λα
0s

< ∞

since α > 1. Assuming that m ≥ 1 we can estimate Γm as follows:

Γm ≤ 1

m+ 2

∞∑

q,l,s=1

1

λα
m−l,q

· 1

λα
ls

(
1

m− l + 1
+

1

l + 1

)
≤ C

m+ 1
.

The convergence of the triple sum follows from the asymptotics (2.5) and
the comparison with the corresponding triple integral. Combining (4.6) and
(4.7) we establish (4.5) by induction.

Corollary. The following inequalities hold for N ≥ 0, m = 0, n ≥ 2:

(4.8) |v̂(N)
mn (t)| ≤ cN (N + 1)−2λ−(α−1/2)

mn (m+ 1)−1 exp(−2λα
01t).

Moreover, for m ≥ 1, n ≥ 1,

(4.9) |v̂(N)
mn (t)| ≤ cN (N + 1)−2λ−(α−1/2)

mn (m+ 1)−1 exp(−λα
11t).

P r o o f. Again we use induction on N . For N = 0 we have

|v̂(0)0n (t)| ≤ ε|ϕ̂0n| exp(−λα
0nt) ≤ λ

−3/2
0n exp(−λα

02t) ≤ λ
−3/2
0n exp(−2λα

01t).

Assuming that (4.8) is valid for all v̂
(k)
0n (t), 0 ≤ k ≤ N − 1, we estimate

v̂
(N)
0n (t). Since for m = 0 the condition p + l = m yields p = 0, l = 0 we
should use the inequalities (4.5) to estimate the term

N∑

j=1

|v̂(j−1)
0q (τ)| · |v̂(N−j)

0s (τ)|

and, therefore, obtain for v̂
(N)
0n (t) the same estimate as in item (ii) of the

proof of Lemma 5. Similar considerations are used to establish (4.9).

5. Proof of Theorem 1

5.1. Construction of solutions. We seek solutions of (3.1) in the form

(5.1) u(r, θ, t) =

∞∑

m=−∞

∞∑

n=1

ûmn(t)χmn(r, θ)

with ûmn(t) =
(u, χmn)r,0(t)

‖χmn‖2r,0
.
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Since for integer m ≥ 0, J−m(z) = (−1)mJm(z) and λ−m,n = λm,n, n ≥ 1
(see [18, 25]), we can deduce that

û−m,n(t) = (−1)mû−m,n(t), m ≥ 0, n ≥ 1.

Therefore, we can rewrite (5.1) as

u(r, θ, t) =

∞∑

n=1

û0n(t)J0(λ0nr)(5.2)

+

∞∑

m,n=1

Jm(λmnr)[ûmn(t)e
imθ + ûmn(t)e

−imθ]

=

∞∑∗

m,n

ûmn(t)χmn(r, θ).

The right-hand side of (5.2) will be used as the notation for the sum on the
left-hand side.

First, we expand u2 in a series of the type (5.1), then we substitute it
into (2.1) to obtain

(5.3)

{
û′
mn(t) + λα

mnûmn(t) = (u2)∧mn(t), t > 0,
ûmn(0) = ε2ϕ̂mn, m ∈ Z, n ∈ N,

where ϕ̂mn are the coefficients of the corresponding expansion of ϕ(r, θ), i.e.,

ϕ(r, θ) =
∞∑

m=−∞

∞∑

n=1

ϕ̂mnχmn(r, θ), ϕ̂mn =
(ϕ,χmn)r,0
‖χmn‖2r,0

.

Note that the estimates (4.4) are valid for ϕ̂mn.

Next, we obtain the series expansion coefficients of u2 by multiplying
two series. We have

(u2)∧mn(t)

=
1

‖χmn‖2r,0

1\
0

dr rJm(λmnr)

π\
−π

dθ e−imθ

×
{ ∞∑

q=1

û0q(t)J0(λ0qr) +

∞∑

q,p=1

Jp(λpqr)[ûpq(t)e
ipθ + ûpq(t)e

−ipθ]
}

×
{ ∞∑

s=1

û0s(t)J0(λ0sr) +
∞∑

s,l=1

Jl(λlsr)[ûls(t)e
ilθ + ûls(t)e

−ilθ]
}
.

Calculating the integrals in θ we deduce that for m ≥ 0, n ≥ 1,
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(5.4) (u2)∧mn(t)

=
∑

p,l≥0; q,s≥1
p+l=m

amnpqlsûpq(t)ûls(t) +
∑

p,q,l,s≥1
l−p=m

amnpqlsûpq(t)ûls(t)

+
∑

p,q,l,s≥1
p−l=m

amnpqlsûpq(t)ûls(t),

where the coeffcients amnpqls are defined by (4.1).

Setting Φ̂mn = εϕ̂mn (it is convenient to keep ε in these coefficients in
order to simplify some estimates) we integrate (5.3) in t to get

(5.5) ûmn(t) = εΦ̂mn exp(−λα
mnt) +

t\
0

exp[−λα
mn(t− τ)](u2)∧mn(τ) dτ.

For solving this nonlinear integral equation we use perturbation theory. Rep-
resenting ûmn(t) as a formal series in ε,

(5.6) ûmn(t) =
∞∑

N=0

εN+1v̂(N)
mn (t),

we substitute (5.6) into (5.5), compare the coefficients of equal powers of ε
and get the following recurrence formulas for m ≥ 0, n ≥ 1, N ≥ 0, t > 0:

v̂(0)mn(t) = Φ̂mn exp(−λα
mnt),(5.7)

v̂(N)
mn (t) =

t\
0

exp[−λα
mn(t− τ)]

×
{ ∑

p,l≥0; q,s≥1
p+l=m

amnpqls

N∑

j=1

v̂(j−1)
pq (τ)v̂

(N−j)
ls (τ)

+
∑

p,q,l,s≥1
l−p=m

amnpqls

N∑

j=1

v̂
(j−1)
pq (τ)v̂

(N−j)
ls (τ)

+
∑

p,q,l,s≥1
p−l=m

amnpqls

N∑

j=1

v̂(j−1)
pq (τ)v̂

(N−j)
ls (τ)

}
dτ, N ≥ 1.

In order to prove that the formally constructed function (5.2), (5.6), (5.7)
is really a mild solution of (2.1) in the space C0([0,∞),Hs

r (Ω)), s < α−1/2,
we should examine the convergence of the series

(5.8) u(r, θ, t) =
∑∗

m,n

[ ∞∑

N=0

εN+1v̂(N)
mn (t)

]
χmn(r, θ),
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where the v̂
(N)
mn (t) have the estimates (4.5), (4.8), (4.9). Making use of (5.6)

and choosing ε ≤ ε0 < 1/c we can establish analogous estimates for û
(N)
mn (t)

(with cN (N + 1)−2 replaced by c).

Using (2.4) and (2.5) we deduce that the series
∑

m,n

λ2s
mn|ûmn(t)|2‖Jm(λmnr)‖2r

representing ‖u‖2r,s converges uniformly with respect to t ≥ 0 for s < α−1/2.
To this end we apply Fubini–Tonelli’s theorem to establish the convergence
of the iterated series

∑
m

∑
n by means of the comparison with the integral

∞\
A1

1

m+ 1

∞\
B1

(m+ 2n − 1/2)2s−2α dn

with sufficiently large A1, B1 > 0. Thus, u ∈ C0([0,∞),Hs
r (Ω)) with s <

α− 1/2.

We note that for (r, θ) ∈ Ω
(2)
δ and t ≥ 0 the series (5.2) converges

absolutely and uniformly. Indeed, using the estimate (4.3) we get

∣∣∣
∑∗

m,n

ûmn(t)χmn(r, θ)
∣∣∣ ≤ C√

r

[ ∞∑

n=1

|û0n(t)|√
λ0n

+
∞∑

m,n=1

|ûmn(t)|√
λmn

]
.

Therefore, for ε ≤ ε0 < 1/c (where c comes from the estimates (4.5)) we
can interchange the order of summation in (5.8) and obtain

(5.9)

u(r, θ, t) =

∞∑

N=0

εN+1u(N)(r, θ, t),

u(N)(r, θ, t) =
∑∗

m,n

v̂(N)
mn (t)χmn(r, θ).

From the absolute and uniform (in r, θ, t, ε) convergence of this series it

follows that u(r, θ, t) is continuous and bounded in Ω
(2)
δ × [0,∞).

5.2. Uniqueness of solutions. Assume that there exist two mild solutions
u(1) and u(2) of the problem (2.1) in C0([0,∞),Hs

r (Ω)), s < α− 1/2. Then
each of them can be expanded in a series of the type (5.2), and the estimates
(4.5) are valid for the corresponding coefficients. Setting w = u(1) − u(2) we
expand w in a series of the same type and obtain

w(r, θ, t) =
∑∗

m,n

ŵmn(t)χ(r, θ),

where
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(5.10) ŵmn(t) =

t\
0

exp[−λα
mn(t− τ)]{[(u(1))2]∧mn(τ)− [(u(2))2]∧mn(τ)} dτ.

A typical term in the difference in the integrand can be represented as

Hmn(t) =
∑

p,q,l,s

amnpqls[û
(1)
pq (t)ŵls(t) + û

(2)
ls (t)ŵpq(t)].

For brevity we omit here the convolutions in p and l.

Using the Cauchy–Schwarz inequality and (2.4), (4.2) we can write, for
k = 1, 2,

∣∣∣
∑

p,q,l,s

amnpqlsû
(k)
pq (t)ŵls(t)

∣∣∣

≤ C
√

λmn

∑

p,q,l,s

|û(k)
pq (t)|√
λpq

· |ŵls(t)|√
λls

≤ C
√

λmn

(∑

p,q

|û(k)
pq (t)|2√
λpq

)1/2(∑

l,s

|ŵls(t)|2√
λls

)1/2

≤ C
√

λmn

(∑

p,q

|û(k)
pq (t)|2‖Jp(λpqr)‖2r

)1/2

×
(∑

l,s

|ŵls(t)|2‖Jp(λpqr)‖2r
)1/2

≤ C
√

λmn‖u(k)(t)‖r,0‖w(t)‖r,0.

Since ‖u(k)(t)‖r,0 < ∞ uniformly in t ≥ 0 we deduce from (5.10) that

|ŵmn(t)|2 ≤ Cλmn

( t\
0

exp[−λα
mn(t− τ)]‖w(τ)‖r,0 dτ

)2

.

Multiplying this inequality by ‖χmn‖2r,0 and summing the result over m,n,
we find that for some h > 0 and t ∈ [0, h],

‖w(t)‖2r,0 ≤ CQ(t)( sup
t∈[0,h]

‖w(t)‖2r,0),

where

Q(t) =
∑

m,n

λmn‖χmn‖2r,0
( t\

0

exp[−λα
mn(t− τ)] dτ

)2

=
∑

m,n

λmn‖χmn‖2r,0
(
1− exp(−λα

mnt)

λα
mn

)2

.
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Note that Q(t) is a nondecreasing continuous function on [0, h] andQ(0) = 0.
Therefore,

( sup
t∈[0,T1]

‖w(t)‖r,0)2 ≤ CQ(t)( sup
t∈[0,h]

‖w(t)‖r,0)2 ≤ C(h)( sup
t∈[0,h]

‖w(t)‖r,0)2,

where C(h) = CQ(h). We can make the constant C(h) less than one by
an appropriate choice of h. This contradiction yields the uniqueness for
t ∈ [0, h].

Next, we continue this process for the intervals [T1, T2], [T2, T3], . . .
. . . , [Tk, Tk+1], . . . with Tk = kh and k → ∞. Since

t\
Tk

exp[−λα
mn(t− τ)] dτ =

1− exp[−λα
mn(t− Tk)]

λα
mn

we deduce that for t ∈ [Tk, Tk+1],

( sup
t∈[Tk,Tk+1]

‖w(t)‖r,0)2 ≤ CQ(t− Tk)( sup
t∈[Tk,Tk+1]

‖w(t)‖r,0)2.

Setting t = Tk + η, η ∈ [0, h], so that Q(t− Tk) = Q(η), and observing that
the condition CQ(η) ≤ CQ(h) < 1 has already been satisfied we establish
the uniqueness of solutions for all t ≥ 0.

6. Proof of Theorem 2: long-time asymptotics. Recalling (5.2)
we can represent the solution as

(6.1) u(r, θ, t) = û01(t)J0(λ01r) +R1(r, t) +R2(r, θ, t),

where

R1(r, t) =
∞∑

n=2

û0n(t)J0(λ0nr),

R2(r, θ, t) =

∞∑

m,n=1

Jm(λmnr)[ûmn(t)e
imθ + ûmn(t)e

−imθ].

First, we obtain a subtle asymptotic estimate of û01(t) and then estimate
the residual terms R1,2. By (5.6) we have

û01(t) =

∞∑

N=0

εN+1v̂
(N)
01 (t).

Adding and subtracting the integrals from t to ∞ in the integral represen-

tations of v̂
(N)
01 (t), N ≥ 1, we can write
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(6.2)

v̂
(0)
01 (t) = exp(−λα

01t)B
(0)
ε , v̂

(N)
01 (t) = exp(−λα

01t)[B
(N)
ε +R

(N)
01 (t)],

B(0)
ε = εϕ̂01, B(N)

ε =

∞\
0

exp(λα
01τ)G

(N)
01 (v̂(τ)) dτ,

R
(N)
01 (t) =

∞\
t

exp(λα
01τ)G

(N)
01 (v̂(τ)) dτ,

G
(N)
01 (v̂(t)) =

∞∑

q,s=1

a010q0s

∞∑

j=1

v̂
(j−1)
0q (τ)v̂

(N−j)
0s (τ)

+

∞∑

q,l,s=1

a01lqls

∞∑

j=1

v̂
(j−1)
lq v̂

(N−j)
ls (τ)

+
∞∑

q,l,s=1

a01lqls

∞∑

j=1

v̂
(j−1)
lq (τ)v̂

(N−j)
ls (τ), N ≥ 1,

where v̂
(s)
mn(t), 0 ≤ s ≤ N − 1, are defined by (5.7).

Next, we estimate R
(N)
B (t). By (4.2), (4.5), (4.8), (4.9) we have

|R(N)
01 (t)|

≤ c

∞\
t

exp(λα
01τ)

×
[ ∞∑

q,s=1

1

λα
0q

· 1

λα
0s

exp(−2λα
01τ) +

∞∑

l,q,s=1

1

λα
lq

· 1

λα
ls

exp(−2λα
11τ)

]
dτ

≤ c exp(−λα
01t).

Therefore, for t ≥ 0 we obtain

|û01(t)−Bε exp(−λα
01t)| ≤ C exp(−2λα

01t),

where

(6.3) Bε =

∞∑

N=0

εN+1B(N)
ε ,

and this series converges absolutely and uniformly with respect to ε ∈ [0, ε0].

Using (4.8) and (4.9) we deduce that for t ≥ 0,

(6.4) ‖R1(t)‖r,s ≤ C exp(−2λα
01), ‖R2(t)‖r,s ≤ C exp(−λα

11).

Taking into account that λα
11 ≤ 2λα

01 for 1 < α ≤ αcr and λα
11 ≥ 2λα

01 for
αcr ≤ α ≤ 2 and combining (6.1), (6.3), and (6.4) we obtain (3.8).
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