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A GENERALIZATION OF A RESULT ON
INTEGERS IN METACYCLIC EXTENSIONS

BY

JAMES E. C A R T E R (CHARLESTON, SC)

Abstract. Let p be an odd prime and let c be an integer such that c>1 and c divides
p− 1. Let G be a metacyclic group of order pc and let k be a field such that pc is prime
to the characteristic of k. Assume that k contains a primitive pcth root of unity. We first
characterize the normal extensions L/k with Galois group isomorphic to G when p and c
satisfy a certain condition. Then we apply our characterization to the case in which k is an
algebraic number field with ring of integers o, and, assuming some additional conditions
on such extensions, study the ring of integers OL in L as a module over o.

0. Introduction. The present paper extends results obtained in [1].
Let p be an odd prime and let c be an integer such that c > 1, and c divides
p−1. Let G be the metacyclic group of order pc given in terms of generators
and relations by

〈σ, τ | σp = 1, τ c = 1, τστ−1 = σr〉,

where r is a primitive cth root of unity mod p. Let s be the unique integer
in {2, . . . , p − 1} such that sr ≡ 1 (mod p). Then s is also a primitive cth
root of unity mod p. Hence, sc = 1 + tp for some positive integer t, and
we assume p and c are such that t 6≡ 0 (mod p). Furthermore, we have the
following exact sequence of groups:

Σ : 1→ 〈σ〉 → G→ G/〈σ〉 → 1.

Now let k be an algebraic number field and assume k contains the multi-
plicative group µpc of pcth roots of unity. Fix, once and for all, a tamely ram-
ified normal extension E/k with Gal(E/k) ' G/〈σ〉. Let OE and o denote
the rings of integers in E and k, respectively. Suppose L/k is a normal exten-
sion such that E ⊆ L, and there exists an isomorphism φL : Gal(L/k)→ G.
Furthermore, assume E is the subfield of L fixed by φ−1

L (〈σ〉). An extension
L/k as just described will be called a G-extension with respect to E/k and
Σ. As L varies over all such extensions of k, the Steinitz class C(L, k) of the
extension L/k (see [2], p. 95, Theorem 13, for instance) varies over a subset
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R(E/k,Σ) of the class group C(k) of k. If we consider only tamely ramified
extensions, then we denote this set by Rt(E/k,Σ).

Now assume that l is an odd prime, and let n be any integer greater
than 1. As in [3], define d(2) = 1, d(l) = (l−1)/2, and d(n) = g.c.d.{d(π) | π
is a prime divisor of n}. For x ∈ C(k), H a subgroup of C(k), and m a
positive integer, let xH be the left coset of H in C(k) which contains x, and
let Hm denote the multiplicative group of mth powers of elements of H. In
[1], Theorem 10, we showed that when c = q, an odd prime number, then

Rt(E/k,Σ) = cpd(q)W
qd(p)
E/k ,

where c = C(E, k) and WE/k is the subgroup of C(k) generated by classes
which contain at least one prime ideal that splits completely in E/k. Con-
sequently, when OE is free as an o-module, Rt(E/k,Σ) is a subgroup of the
class group of k ([1], Corollary 11).

A key arithmetic feature of the extensions k ⊆ E ⊆ L which are con-
sidered in Theorem 10 of [1] is that the prime ideals in E which ramify in
L/E, necessarily split completely in E/k ([1], Proposition 9). In the present
paper we show that this is the case for any possible value of c (Proposition 3
below). This fact and a result of McCulloh in [3] enable us to generalize The-
orem 10 and Corollary 11 of [1] to include all possible values of c (Theorem
6 and Corollary 7 below).

1. More metacyclic groups as Galois groups. Let p, c, G, s, and t
be as described in the first paragraph of the previous section. Let k be an
arbitrary field such that pc is prime to the characteristic of k, and µpc ⊆ k.
Now, beginning with the second paragraph of Section 1 of [1], if we replace
“q” with “c” throughout that section, then it is straightforward to verify
that we obtain a complete characterization of Galois extensions L/k with
Gal(L/k) ' G, provided such extensions of k exist.

2. Arithmetic considerations. We now assume that E/k is the exten-
sion of algebraic number fields as described in Section 0 above. In view of
Section 1, we can replace “q” with “c” in the discussion in Section 2 of [1],
up to, and including, Lemma 7 and its proof. We then obtain the following
description of the principal ideal 〈e〉 in the present case:

〈e〉 =
( n∏
i=1

PAi
i

)
A,

where the Pi are distinct prime ideals in E which split completely in E/k
and satisfy Pi ∩ o 6= Pj ∩ o whenever i 6= j; A is an ideal in E which is
divisible only by prime ideals in E which do not split completely in E/k;
and the Ai are elements of Z〈%〉 with nonnegative coefficients.
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As in the paragraph following the description of 〈e〉 on p. 196 of [1],
one shows in the present case that if L is a prime factor of A which either
remains prime or totally ramifies in E/k, then Luθ is a pth power in E, where

θ =
∑c−1
i=0 s

c−1−i%i, and c is any integer satisfying the stated conditions. In
the case in which c is not prime, there may also be prime factors of A which
neither remain prime nor totally ramify in E/k. In that case we have

Lemma 1. If L is a prime factor of A which neither remains prime nor
totally ramifies in E/k, then Luθ is a pth power in E.

P r o o f. Let g and h be integers such that g, h > 1, and gh = c. Let
L1 be a prime factor of A such that lOE = (

∏g
i=1 Li)

e(L1/l), where l is a
prime ideal in o, e(L1/l) is the ramification index of L1 over l, and Lj+1 =
%j(L1) for j = 0, 1, . . . , g − 1. If x is a real number, let bxc denote the
greatest integer less than or equal to x. Then b(c− 1)/gc = h − 1, and we

have Luθ1 =
∏g
i=1 L

uAi
i , where Ai =

∑h−1
j=0 s

c−i−gj for i = 1, . . . , g. Since

(
∑g−1
j=0 s

j)Ag=
∑c−1
j=0 s

j ≡ 0 (mod p), and s is a primitive cth root of unity

mod p, it follows that Ag≡0 (mod p). Since Ag−j = sjAg for j=1, . . . , g−1,
we have Ai ≡ 0 (mod p) for each i = 1, . . . , g, which proves the lemma.

By Lemma 1 and the paragraph preceding it, we obtain, as in (1) of [1],

(1) 〈euθ〉 =
( n∏
i=1

PuAiθ
i

)
Bp,

where B is an ideal in E.

Let N =
∑c−1
j=0 %

j . Also, for A =
∑c−1
j=0 aj%

j ∈ Z〈%〉, let A =
∑c−1
j=0 ajs

j .

Lemma 2. Suppose A =
∑c−1
j=0 aj%

j ∈ Z〈%〉. Then Aθ ≡ Aθ (mod p).

P r o o f. In the proof of Lemma 8 of [1], replace “q” with “c” to obtain a
proof of the present lemma.

We now have

Proposition 3. Suppose L/k is a tamely ramified G-extension with re-
spect to E/k and Σ. Then

〈e〉 =
( n∏
i=1

PAi
i

)
A,

as described in the first paragraph of the present section, and we have

dL/E =
( n∏
i=1

PniN
i

)p−1

,

where ni ∈ {0, 1}. Moreover , ni = 1 if and only if Ai 6≡ 0 (mod p).
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P r o o f. In the proof of Proposition 9 of [1], replace “Lemma 8” of that
paper with “Lemma 2” of the present paper to obtain a proof of the present
proposition (of course, “(1)” which appears in the proof of Proposition 9 of
[1] now refers to (1) of the present paper).

3. Realizable classes. We continue to assume that E/k is the extension
of algebraic number fields of Section 2 above. Then, by [3], Theorem 1, we
have C(E, k) = cd(c) for some c ∈ C(k).

Proposition 4. Rt(E/k,Σ) ⊆ cpd(c)W
cd(p)
E/k .

P r o o f. In the proof of Proposition 12 of [1], replace “Proposition 9” of
that paper with “Proposition 3” of the present paper to obtain a proof of
the present proposition.

Proposition 5. Rt(E/k,Σ) ⊇ cpd(c)W
cd(p)
E/k .

P r o o f. In the last paragraph of the proof of Proposition 13 of [1], replace
“q” with “c”, “Proposition 9” of that paper with “Proposition 3” of the
present paper, and “Proposition 12” of that paper with “Proposition 4” of
the present paper. Then we have a proof of the present proposition.

From Propositions 4 and 5 above, we obtain

Theorem 6. Rt(E/k,Σ) = cpd(c)W
cd(p)
E/k .

As an immediate consequence we have

Corollary 7. If C(E, k) = 1 then Rt(E/k,Σ) = W
cd(p)
E/k .
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