VARIETIES OF IDEMPOTENT GROUPOIDS WITH SMALL CLONES
J. G A Ł U S Z K A (GLIWICE)

Abstract

We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.

1. Introduction. The notion of p_{n}-sequences is connected with the concept of compositions of algebraic operations contained in the papers of W. Sierpiński [22], E. Marczewski [18] and G. Grätzer [12]. The main problem connected with representability of p_{n}-sequences was formulated by G. Grätzer in [13] (Problem 42). The problem is still open. The most general case was solved by A. Kisielewicz in [17]. G. Grätzer and A. Kisielewicz devoted a considerable part of their survey paper [14] to representability of p_{n}-sequences. Many authors were interested in p_{n}-sequences of idempotent algebras with small rates of growth (e.g. $[1,2,19,20,6,10,9,8,16,15])$.

In [8] a description of idempotent groupoids with $p_{2} \leq 2$ is given. In this paper we present a full characterization of idempotent groupoids with $p_{2} \leq 3$.

The notations and notions used in this paper are standard and follow [14]. Recall that $p_{n}=p_{n}(\boldsymbol{A})$ denotes the number of all essentially n-ary term operations of a given algebra \boldsymbol{A} for $n \geq 1$ and $p_{0}(\boldsymbol{A})$ is the number of all unary constant term operations in \boldsymbol{A}.

A commutative idempotent groupoid $\boldsymbol{G}=(G, \cdot)$ satisfying $x y^{2}=x$ is called a Steiner quasigroup; if \boldsymbol{G} satisfies $x y^{2}=x y$, then \boldsymbol{G} is called a near-semilattice. Similarly to [8] we use the following notation: for a given groupoid \boldsymbol{G} we write $x y^{n}$ instead of $(\ldots(x y) \ldots) y$ and ${ }^{n} y x$ instead of $y(\ldots(y x) \ldots)$ where y appears n times. Recall that \boldsymbol{G} is a proper groupoid if $\operatorname{card}(G) \geq 1$ and the operation "." depends on both its variables. (In the whole paper we assume that the groupoids \boldsymbol{G} are proper.) For a given groupoid $\boldsymbol{G}=(G, \cdot)$ with the fundamental operation $x y$ we consider the dual groupoid $\boldsymbol{G}^{\mathrm{d}}=(G, \circ)$ where $x \circ y=y x$. If K is a class of groupoids, then K^{d} denotes the class of all groupoids $\boldsymbol{G}^{\mathrm{d}}$ such that $\boldsymbol{G} \in K$. Following [21], we say that an identity is regular if the sets of variables on both sides coincide. Otherwise we say that the identity is nonregular.

[^0]Note that to find $A^{(2)}(\boldsymbol{G})$, the set of all binary term operations over \boldsymbol{G}, we use the following formula (cf. [18]):

$$
\begin{equation*}
A^{(2)}(\boldsymbol{G})=\bigcup_{k=0}^{\infty} A_{k}^{(2)}(\boldsymbol{G}) \tag{1}
\end{equation*}
$$

where $A_{0}^{(2)}(\boldsymbol{G})=\{x, y\}$ and $A_{k+1}^{(2)}(\boldsymbol{G})=A_{k}^{(2)}(\boldsymbol{G}) \cup\left\{f g \mid f, g \in A_{k}^{(2)}(\boldsymbol{G})\right\}$ (we use the convention: $e_{1}^{2}(x, y)=x, e_{2}^{2}(x, y)=y$).

We use also the following notation:

- \mathcal{G} denotes the class of all groupoids,
- \mathcal{G}_{C} denotes the class of all commutative groupoids,
- $\mathcal{G}_{\text {I }}$ denotes the class of all idempotent groupoids,
- $\mathcal{G}_{\text {IC }}$ denotes the class of all idempotent commutative groupoids,
- $\mathcal{G}_{\text {IČ }}$ denotes the class of all idempotent noncommutative groupoids.

If \mathcal{K} is a subclass of \mathcal{G} then $\mathcal{K}_{\left(p_{n}=m\right)}$ denotes the subclass of \mathcal{K} defined by the condition $p_{n}=m$. For example $\mathcal{G}_{\mathrm{I}\left(p_{2}=2\right)}$ denotes the class of all idempotent groupoids having exactly two essentially binary term operations. Similarly $\mathcal{G}_{\left(p_{n} \leq m\right)}$ denotes the class of all groupoids with no more than m essentially n-ary term operations. The clone of an algebra \boldsymbol{A}, denoted by $\operatorname{cl}(\boldsymbol{A})$, is the set of all term operations of \boldsymbol{A}. Minimal clones are atoms in the lattice of all clones on a set A having more than one element (cf. [14]).
2. Main result. Let us recall the results of J. Dudek summarized in [8].

Theorem 2.1 ([8]). Let $\boldsymbol{G} \in \mathcal{G}_{\text {I }}$ (i.e. \boldsymbol{G} is idempotent (and proper)). Then $p_{2}(\boldsymbol{G}) \leq 1$ if and only if \boldsymbol{G} belongs to one of the following varieties:

- $\mathcal{G}_{1}^{1}: x y=y x, x y^{2}=x$ (the variety of Steiner quasigroups);
- $\mathcal{G}_{2}^{1}: x y=y x, x y^{2}=x y$ (the variety of near-semilattices).

Thus $\mathcal{G}_{\mathrm{I}\left(p_{2} \leq 1\right)}=\mathcal{G}_{1}^{1} \cup \mathcal{G}_{2}^{1}$.
Theorem $2.2([8])$. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}}$. Then $p_{2}(\boldsymbol{G}) \leq 2$ if and only if \boldsymbol{G} belongs to one of the following varieties:

- $\mathcal{G}_{1}^{2}: x y^{2}=x, x y=(x y) x=x(y x),{ }^{2} x y=(x y)(y x)=x ;$
- $\mathcal{G}_{2}^{2}: x y^{2}=y,(x y)(y x)=(x y) x=x, x y={ }^{2} x y=y(x y)$;
- $\mathcal{G}_{3}^{2}: x y^{2}=y,(x y) x=x, x y={ }^{2} x y=y(x y)=(y x)(x y)$;
- $\mathcal{G}_{4}^{2}: x y^{2}=y, x y=(y x) y=y(x y)={ }^{2} x y=(y x)(x y)$;
- $\mathcal{G}_{5}^{2}: x y^{2}=x y,(x y) x=x(y x)=(x y)(y x)=x$;
- $\mathcal{G}_{6}^{2}: x y^{2}=x y=(x y) x=x(y x)={ }^{2} x y=(x y)(y x)$;
- $\mathcal{G}_{7}^{2}: x y^{2}=y x,(x y) x=x(y x)=y,{ }^{2} x y=y x,(x y)(y x)=x$;
- $\mathcal{G}_{8}^{2}: x y^{2}=x, x y=y x \quad$ (the variety of Steiner quasigroups);
- $\mathcal{G}_{9}^{2}: x y^{2}=y x^{2}, x y=y x, x y^{2}=x y^{3} \quad\left(\right.$ the variety $\left.\mathbf{N}_{2}\right)$;
or to one of the varieties $\mathcal{G}_{i}^{2 \mathrm{~d}}(i=1, \ldots, 9)$.

From this result it is not difficult to infer that

$$
\begin{aligned}
\mathcal{G}_{\mathrm{I}\left(p_{2} \leq 2\right)} & =\mathcal{G}_{1}^{2} \cup \ldots \cup \mathcal{G}_{9}^{2} \cup \mathcal{G}_{1}^{2 \mathrm{~d}} \cup \ldots \cup \mathcal{G}_{9}^{2 \mathrm{~d}}, \\
\mathcal{G}_{\mathrm{IC}\left(p_{2} \leq 2\right)} & =\mathcal{G}_{8}^{2} \cup \mathcal{G}_{9}^{2}, \\
\mathcal{G}_{\mathrm{IC}\left(p_{2} \leq 2\right)} & =\left(\mathcal{G}_{1}^{2} \cup \ldots \cup \mathcal{G}_{7}^{2} \cup \mathcal{G}_{1}^{2 \mathrm{~d}} \cup \ldots \cup \mathcal{G}_{7}^{2 \mathrm{~d}}\right)-\mathcal{G}_{2}^{1} .
\end{aligned}
$$

Now we formulate our main result.
Theorem 2.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}}$. Then $p_{2}(\boldsymbol{G}) \leq 3$ if and only if \boldsymbol{G} belongs to $\mathcal{G}_{\mathrm{I}\left(p_{2} \leq 2\right)}$ or to one of the following varieties:
(commutative case:)

- $\mathcal{G}_{1}^{3}: x y=y x, x y^{2}=y x^{2}, x y^{3}=x y^{4}$;
- $\mathcal{G}_{2}^{3}: x y=y x, x y=x y^{3}, x y^{2}=\left(x y^{2}\right) x=x(x y)^{2}$;
- $\mathcal{G}_{3}^{3}: x y=y x, x y=\left(x y^{2}\right)\left(y x^{2}\right)=\left(x y^{2}\right) x, x y^{2}=x y^{3}$;
- $\mathcal{G}_{4}^{3}: x y=y x, x y^{2}=y x^{3}, x y^{4}=x ;$
(noncommutative case:)
- $\mathcal{G}_{5}^{3}: x y=(x y) x=x(y x)={ }^{2} x y, x y^{2}=y x^{2} ;$
- $\mathcal{G}_{6}^{3}: x y=(x y) x=y(x y)={ }^{2} x y$,
$(x y)(y x)=(y x)(x y)=x((x y)(y x))=((x y)(y x)) x ;$
- $\mathcal{G}_{7}^{3}: x y=(y x) y=y(x y)=x y^{2},{ }^{2} x y={ }^{2} y x$;
- $\mathcal{G}_{8}^{3}: x y=y(x y)=x y^{2}={ }^{2} x y,(x y) x=(y x) y=(x y)(y x)$;
- $\mathcal{G}_{9}^{3}: x y=y(x y)=x y^{2},{ }^{2} x y={ }^{2} y x=(x y) x=(y x) y=(x y)(y x)$;
- $\mathcal{G}_{10}^{3}:(x y) x=(y x) y=x(y x), x y^{2}=x$;
- $\mathcal{G}_{11}^{3}:(x y) x=(y x) y=x(y x)=(x y)(y x)={ }^{2} x y=x y^{2}=x y^{3}$;
or to one of the varieties $\mathcal{G}_{i}^{3 \mathrm{~d}}(i=5, \ldots, 11)$.
Thus $\mathcal{G}_{\mathrm{I}\left(p_{2} \leq 3\right)}=\mathcal{G}_{\mathrm{I}\left(p_{2} \leq 2\right)} \cup \mathcal{G}_{1}^{3} \cup \ldots \cup \mathcal{G}_{11}^{3} \cup \mathcal{G}_{1}^{3 \mathrm{~d}} \cup \ldots \cup \mathcal{G}_{11}^{3 \mathrm{~d}}$.
Note that \mathcal{G}_{1}^{3} is a subvariety of the variety of all totally commutative groupoids. Such groupoids were considered e.g. in [5]. (Recall that a groupoid \boldsymbol{G} is totally commutative if every essentially binary term operation f over \boldsymbol{G} is commutative, i.e. $f(x, y)=f(y, x)$ for all x, y from G.) It is clear that the variety of affine spaces over $\mathrm{GF}(5)$ is a subvariety of \mathcal{G}_{4}^{3}. We can easily check that the varieties \mathcal{G}_{4}^{3} and \mathcal{G}_{10}^{3} are polynomially equivalent, i.e. there exists a bijection $\varphi: \mathcal{G}_{4}^{3} \rightarrow \mathcal{G}_{10}^{3}$ such that (G, \cdot) and $\varphi((G, \cdot))$ are polynomially equivalent in the sense of [13]. From the proof of Theorem 2.3 we get

Theorem 2.4. Let \boldsymbol{G} be an idempotent groupoid such that $p_{2}(\boldsymbol{G})=3$. Then the following conditions are equivalent:
(i) \boldsymbol{G} satisfies a nonregular identity.
(ii) The clone of \boldsymbol{G} is minimal.
(iii) Every two-generated subgroupoid of \boldsymbol{G} is an affine space over $\mathrm{GF}(5)$.

Theorem 2.3 is proved in Sections 3-13.

COMMUTATIVE CASE

3. The term operation $x y^{3}$. According to Theorem 1 of [5] in any proper commutative idempotent groupoid \boldsymbol{G} we have $x y^{n} \neq y$ for all n.

We start with the following obvious
Lemma 3.1 (cf. [4], Theorem 2.1). Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}}$. If \boldsymbol{G} is a totally commutative groupoid satisfying $x y=x y^{n}$ for some $n \geq 2$ then \boldsymbol{G} is a near-semilattice.

Proof. Since $x y=x y^{n}$ we have $x y^{2}=x y^{n+1}$. Hence $x y^{2}=y(x y)^{n}=$ $\left(y(x y)^{n-1}\right)(x y)=\left(x y^{n}\right)(x y)=(x y)(x y)=x y$. So \boldsymbol{G} is a near-semilattice.

Lemma 3.2. Let $\boldsymbol{G} \in \mathcal{G}_{\text {IC }}$. Then:
(i) If $p_{2}(\boldsymbol{G})=3$ then the term operations $x y^{k}$ for $k=1,2,3$ are essentially binary.
(ii) If $p_{2}(\boldsymbol{G}) \leq 3, x y^{3}$ is commutative and $x y^{3} \notin\left\{x y, x y^{2}, y x^{2}\right\}$ then $x y^{2}$ is commutative.

Proof. (i) For $k=1$ the statement is obvious. If $x y^{2}$ is not essentially binary, then $p_{2}(\boldsymbol{G})<3$. If $x y^{3}$ is not essentially binary then Theorem 3 of [5] shows that $p_{2}(\boldsymbol{G}) \geq 5$, a contradiction.
(ii) Obvious.

Lemma 3.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}}$ satisfy $x y^{2}=y x^{2}$. Then:
(i) $p_{2}(\boldsymbol{G})=3$ if and only if \boldsymbol{G} satisfies $x y^{3}=x y^{4}$ but not $x y^{2}=x y^{3}$.
(ii) $p_{2}(\boldsymbol{G}) \leq 3$ if and only if \boldsymbol{G} satisfies $x y^{3}=x y^{4}$.

Proof. If $\boldsymbol{G} \in \mathcal{G}_{\text {IC }}$ and $x y^{2}=y x^{2}$, then by Theorem 4 of [5], \boldsymbol{G} is totally commutative.
(i) Assume that $p_{2}(\boldsymbol{G})=3$. By the preceding lemma the term operations $x y, x y^{2}$ and $x y^{3}$ are essentially binary. If $x y=x y^{3}$ then \boldsymbol{G} is a nearsemilattice (by Lemma 3.1) and so $p_{2}(\boldsymbol{G})=1$, a contradiction. If $x y^{2}=x y^{3}$ and $x y \neq x y^{2}$, then one can check that $p_{2}(\boldsymbol{G})=2$, a contradiction. Thus $x y, x y^{2}, x y^{3}$ are the only essentially binary term operations over \boldsymbol{G}.

The term operation $x y^{4}$ is essentially binary (recall that G is idempotent and totally commutative so every binary term operation is essentially binary) and $x y^{4} \notin\left\{x y, x y^{2}\right\}$. Indeed, if $x y=x y^{4}$, then \boldsymbol{G} is a near-semilattice (cf. Lemma 2.1), a contradiction. If $x y^{2}=x y^{4}$, then $x y^{2}=\left(x y^{2}\right) y^{2}=$ $y\left(x y^{2}\right)^{2}=\left(x y^{3}\right)\left(x y^{2}\right)$ and hence $x y^{3}=x y^{5}=\left(x y^{3}\right) y^{2}=y\left(x y^{3}\right)^{2}=$ $\left(y\left(x y^{3}\right)\right)\left(x y^{3}\right)=\left(x y^{4}\right)\left(x y^{3}\right)=\left(x y^{2}\right)\left(x y^{3}\right)=x y^{2}$. Thus we get $x y^{2}=x y^{3}$, which gives $p_{2}(\boldsymbol{G}) \leq 2$, a contradiction. Since $p_{2}(\boldsymbol{G})=3$ we deduce that \boldsymbol{G} satisfies $x y^{3}=x y^{4}$ and $x y^{2} \neq x y^{3}$, as required.

Conversely, if $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}}, x y^{2}=y x^{2}, x y^{3}=x y^{4}$ and $x y^{2} \neq x y^{3}$, then using (1) and the fact that \boldsymbol{G} is totally commutative we infer that $x y, x y^{2}, x y^{3}$ are the only essentially binary term operations over \boldsymbol{G}.
(ii) If $p_{2}(\boldsymbol{G})<3$ then $\boldsymbol{G} \in \mathcal{G}_{9}^{2} \subset \mathcal{G}_{1}^{3}$ (recall that \boldsymbol{G} is totally commutative).

If $\boldsymbol{G} \in \mathcal{G}_{1}^{3}$ and $x y^{2}=x y^{3}$ in \boldsymbol{G} then $\boldsymbol{G} \in \mathcal{G}_{9}^{2}$ and by Theorem 2.2, $p_{2}(\boldsymbol{G}) \leq 2$.

Lemma 3.4. If $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}\left(p_{2} \leq 3\right)}$ and the term operation $x y^{2}$ is noncommutative then \boldsymbol{G} satisfies at least one of the following identities:

$$
\begin{align*}
& x y^{3}=y x^{2}, \tag{3.1}\\
& x y^{3}=x y, \tag{3.2}\\
& x y^{3}=x y^{2} . \tag{3.2}
\end{align*}
$$

Proof. Lemma 3.2 shows that $x y^{3}$ is essentially binary, hence must be one of $x y, x y^{2}, y x^{2}$.

Further we write $\mathcal{G}_{\mathrm{IC}(i . j)}$ for the subvariety of $\mathcal{G}_{\mathrm{IC}}$ defined by the identity (i.j) above.

The varieties $\mathcal{G}_{\mathrm{IC}(3.2)}$ and $\mathcal{G}_{\mathrm{IC}(3.1)}$ are well known. For example any Steiner quasigroup and any Płonka sum of Steiner quasigroups are members of $\mathcal{G}_{\mathrm{IC}(3.2)}$. Every affine space over $\mathrm{GF}(5)$ is a model of the variety $\mathcal{G}_{\mathrm{IC}(3.1)}$. The most complicated variety is $\mathcal{G}_{\mathrm{IC}(3.3)}$. Note that any near-semilattice is a member of $\mathcal{G}_{\mathrm{IC}(3.2)} \cap \mathcal{G}_{\mathrm{IC}(3.3)} \cap \mathcal{G}_{\mathrm{IC}(3.1)}$ but we are interested in models \boldsymbol{G} from these varieties satisfying $p_{2}(\boldsymbol{G})=3$.
4. The identity $x y^{3}=y x^{2}$. In this section we deal with commutative idempotent groupoids \boldsymbol{G} satisfying $x y^{3}=y x^{2}$. Using Lemmas 3.2 and 3.3 it is easy to prove:

Lemma 4.1. If $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.1)}$ and $p_{2}(\boldsymbol{G})=3$, then $x y, x y^{2}$ and $y x^{2}$ are the only essentially binary term operations over \boldsymbol{G}.

Lemma 4.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.1)}$. Then:
(i) \boldsymbol{G} is a near-semilattice if and only if it satisfies $x y=x y^{4}$.
(ii) The following conditions are equivalent:
(a) \boldsymbol{G} satisfies $x y^{2}=y x^{2}$.
(b) \boldsymbol{G} satisfies $x y^{2}=x y^{4}$.
(c) \boldsymbol{G} satisfies $x y^{2}=y x^{4}$.

Proof. (i) If \boldsymbol{G} is a near-semilattice, then clearly \boldsymbol{G} satisfies $x y=$ $x y^{4}$. Assume that $x y=x y^{4}$ in \boldsymbol{G}. Putting $x y$ for x in $x y^{3}=y x^{2}$ we get $x y=x y^{4}=y(y x)^{2}$. The identities $x y=y(y x)^{2}$ and $x y=x y^{4}$ give $x y=$ $(x y)(x y)^{2}=y(y x)^{4}=y(y x)=x y^{2}$ and therefore \boldsymbol{G} is a near-semilattice.
(ii) Since $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.1)}, x y^{2}=y x^{2}$ implies $x y^{2}=x y^{3}$ and hence $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and (a) \Rightarrow (c).

Assume that (b) holds. Then $x y^{2}=x y^{4}=(x y) y^{3}=y(y x)^{2}$. Thus $y(y x)=y(y x)^{2}$ and hence $y(y x)^{2}=y(y x)^{3}$. Further $y(y x)^{2}=(y x) y^{3}=$ $x y^{4}=x y^{2}$ and $y(y x)^{3}=(y x) y^{2}=x y^{3}=y x^{2}$. This proves $(\mathrm{b}) \Rightarrow(\mathrm{a})$.

If $x y^{2}=y x^{4}$, then $x y^{2}=y x^{3}=(y x) x^{2}=x(x y)^{4}=\left(x(x y)^{3}\right)(x y)=$ $\left((x y) x^{2}\right)(x y)=\left(y x^{3}\right)(x y)=\left(x y^{2}\right)(x y)=y(y x)^{2}=(y x) y^{3}=x y^{4}=y x^{2}$, which proves $(\mathrm{c}) \Rightarrow(\mathrm{a})$.

Lemma 4.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}}$. Then:
(i) \boldsymbol{G} satisfies $\left(x y^{2}\right) x=x$ if and only if it is a Steiner quasigroup. (Hence $p_{2}(\boldsymbol{G})=1$.)
(ii) The following conditions are equivalent:
(a) \boldsymbol{G} satisfies $\left(x y^{2}\right) x=y$.
(b) \boldsymbol{G} satisfies (3.1) and $x y^{4}=x$.
(c) \boldsymbol{G} satisfies (3.1) and $p_{2}(\boldsymbol{G})=3$.
(d) For every $a, b \in G$ such that $a \neq b$ the subgroupoid $G(a, b)$ of \boldsymbol{G} generated by $\{a, b\}$ is a five-element affine space over GF(5).

Proof. (i) If \boldsymbol{G} is a Steiner quasigroup, then obviously $\left(x y^{2}\right) x=x$ in \boldsymbol{G}. Assume conversely that $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}}$ and \boldsymbol{G} satisfies $\left(x y^{2}\right) x=x$. Then $x=x^{2}=\left(x y^{2}\right) x^{2}$ and hence $x=\left(x y^{2}\right) x=\left(\left(x y^{2}\right) x^{2}\right)\left(x y^{2}\right)=x y^{2}$, which proves that \boldsymbol{G} is a Steiner quasigroup.
(ii) $(\mathrm{a}) \Rightarrow(\mathrm{b})$. First observe that $\left(x y^{2}\right) x=y$ gives $x=\left(\left(x y^{2}\right) x^{2}\right)\left(x y^{2}\right)=$ $(y x)\left(x y^{2}\right)=y(y x)^{2}$. Put $x y^{2}$ for y in $x=y(y x)^{2}$ to get $x=\left(x y^{2}\right)\left(\left(x y^{2}\right) x\right)^{2}=$ $x y^{4}$, as required. Further we have $x y^{3}=\left(x y^{2}\right) y=\left(x y^{2}\right)\left(\left(x y^{2}\right) x\right)=x\left(x y^{2}\right)^{2}$. Thus $x y^{2}=\left(x\left(x y^{2}\right)^{2}\right) x=\left(x y^{3}\right) x$. Hence $y=\left(x y^{2}\right) x=\left(x y^{3}\right) x^{2}$ and so $y x^{2}=\left(x y^{3}\right) x^{4}=x y^{3}$.
$(\mathrm{a}) \Rightarrow(\mathrm{c})$. First we prove that \boldsymbol{G} satisfies the identity $\left(x y^{2}\right)\left(y x^{2}\right)=$ $x y$. Indeed, $\left(x y^{2}\right)\left(y x^{2}\right)=y\left(x y^{2}\right)^{2}=\left(x y^{2}\right) y^{3}\left(\right.$ as $\left.x y^{2}=y x^{3}\right)$ and hence $\left(x y^{2}\right)\left(y x^{2}\right)$
$=x y^{5}=x y$. Using the identities $y=\left(x y^{2}\right) x=y x^{4}=x(x y)^{2}, x y^{3}=y x^{2}$, $x y=\left(x y^{2}\right)\left(y x^{2}\right)$ and (1) one can prove that $p_{2}(\boldsymbol{G})=3$ if $\operatorname{card}(G)>1$.
$(\mathrm{a}) \Rightarrow(\mathrm{d})$. If $a \neq b$, then $G(a, b)=\left\{a, b, a b, a b^{2}, b a^{2}\right\}, \operatorname{card}(G(a, b))=5$ and the groupoid $G(a, b)$ is isomorphic to $(\{0,1,2,3,4\}, 3 x+3 y)$ i.e., to a five-element affine space over GF(5) (for details see [3]).
$(\mathrm{b}) \Rightarrow(\mathrm{a})$ is obvious.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. By Theorem 1 of $[5]$ we see that $x y^{4} \neq y$. Lemma 4.2(i) shows that $x y^{4} \neq x y$. If $x y^{4} \in\left\{x y^{2}, y x^{2}\right\}$, then by Lemma 4.2(ii) we infer that \boldsymbol{G} is totally commutative with $x y^{2}=y x^{2}$. Since \boldsymbol{G} satisfies $x y^{2}=y x^{3}$ we conclude that $p_{2}(\boldsymbol{G})=2$, a contradiction. Thus $p_{2}(\boldsymbol{G})=3$ implies $x y^{4}=x$. Using this identity and $x y^{2}=y x^{3}$ we get $\left(x y^{2}\right) x=y x^{4}=y$, as required.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. We have to check that $\left(a b^{2}\right) a=b$ for all $a, b \in G$. If $a=b$, then the identity is satisfied. If $a \neq b$, then $G(a, b)$ is an affine space over $\operatorname{GF}(5)$ and hence satisfies the identity $\left(x y^{2}\right) x=y$.

As a corollary we get:
Proposition 4.4. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.1)}$. Then $p_{2}(\boldsymbol{G})=3$ if and only if \boldsymbol{G} is a nontrivial groupoid satisfying $x y^{4}=x$ (or equivalently $\left(x y^{2}\right) x=y$).

From Lemma 4.3 and the fact that the clone of a nontrivial affine space over $\operatorname{GF}(p)$, where p is a prime number, is minimal we get

Proposition 4.5. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.1)}$ and $p_{2}(\boldsymbol{G})=3$. Then the clone of \boldsymbol{G} is minimal if and only if \boldsymbol{G} is a nontrivial affine space over $\mathrm{GF}(5)$.
5. The identity $x y^{3}=x y$. In this section we deal with groupoids \boldsymbol{G} from $\mathcal{G}_{\mathrm{IC}(3.2)}$. We start with

LEMMA 5.1. If $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)}$ and $p_{2}(\boldsymbol{G})>1$, then $x y^{2}$ is essentially binary and noncommutative.

Proof. If $x y^{2}$ is not essentially binary, then \boldsymbol{G} satisfies $x y^{2}=x, \boldsymbol{G}$ is a Steiner quasigroup and $p_{2}(\boldsymbol{G})=1$, contrary to assumption.

If $x y^{2}=y x^{2}$, then \boldsymbol{G} is totally commutative, Lemma 3.1 shows that \boldsymbol{G} is a near-semilattice and again $p_{2}(\boldsymbol{G})=1$.

Lemma 5.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)}$. Then:
(i) If \boldsymbol{G} is not a Steiner quasigroup, then $\left(x y^{2}\right) x$ is essentially binary.
(ii) (Lemma 3.1 of [4]) The following are equivalent:
(a) \boldsymbol{G} is a near-semilattice.
(b) $\left(x y^{2}\right) x \in\left\{\left(y x^{2}\right) y, y x^{2},\left(x y^{2}\right)(x y)\right\}$.
(iii) If $p_{2}(\boldsymbol{G})<5$, then \boldsymbol{G} satisfies $\left(x y^{2}\right) x=x y^{2}$.

Proof. (i) If $\left(x y^{2}\right) x=x$, then Lemma 4.3(i) shows that \boldsymbol{G} is a Steiner quasigroup, a contradiction. If $\left(x y^{2}\right) x=y$, then (ii) of the same lemma gives $x y=x y^{3}=y x^{2}$ and hence \boldsymbol{G} is totally commutative. So \boldsymbol{G} is one-element, a contradiction.
(ii) If \boldsymbol{G} is a near-semilattice, then the assertion is obvious.

Assume that \boldsymbol{G} satisfies $\left(x y^{2}\right) x=\left(y x^{2}\right) y$. Then $x y=\left(x y^{3}\right)(x y)=$ $\left(y(x y)^{2}\right) y=\left(\left(x y^{2}\right)(x y)\right) y$. Putting $x y$ for x in the identity $x y=\left(\left(x y^{2}\right)(x y)\right) y$ we get $x y^{2}=\left(\left(x y^{3}\right)\left(x y^{2}\right)\right) y=\left((x y)\left(x y^{2}\right)\right) y=x y$, as required.

If $\left(x y^{2}\right) x=y x^{2}$, then $x y=(x y)(x y)=\left(x y^{3}\right)(x y)=y(x y)^{2}$ and hence $x y=x(x y)^{2}$. This gives $x y=(x y)(x y)=x(x y)^{3}=x(x y)=y x^{2}$, which proves that \boldsymbol{G} is a near-semilattice.

Let $\left(x y^{2}\right) x=\left(x y^{2}\right)(x y)$. Then we have $x y=\left(x y^{3}\right)(x y)=\left((x y) y^{2}\right)(x y)=$ $\left((x y) y^{2}\right)((x y) y)=\left(x y^{3}\right)\left(x y^{2}\right)=(x y)\left(x y^{2}\right)=\left(x y^{2}\right)(x y)=\left(x y^{2}\right) x$. Putting $x y$ for x in the identity $x y=\left(x y^{2}\right) x$ we conclude that \boldsymbol{G} is a near-semilattice.
(iii) If \boldsymbol{G} is a Steiner quasigroup, then obviously $\left(x y^{2}\right) x=x y^{2}$. If \boldsymbol{G} is not a Steiner quasigroup, then $\left(x y^{2}\right) x$ is essentially binary by (i). If \boldsymbol{G} is a near-semilattice, then obviously $\left(x y^{2}\right) x=x y^{2}$. Now assume that $\boldsymbol{G} \in$ $\mathcal{G}_{\mathrm{IC}(3.2)}$ and \boldsymbol{G} is neither a Steiner quasigroup nor a near-semilattice. Then $x y, x y^{2}, y x^{2},\left(x y^{2}\right) x,\left(y x^{2}\right) y$ are essentially binary by (i). Since $p_{2}(\boldsymbol{G})<5$, G satisfies $\left(x y^{2}\right) x=x y^{2}$ by (ii).

Lemma 5.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)}$. Then:
(i) $x(x y)^{2} \neq y$.
(ii) The following are equivalent:
(a) \boldsymbol{G} is a near-semilattice.
(b) $x(x y)^{2} \in\left\{y x^{2}, y(y x)^{2},\left(y x^{2}\right) y\right\}$.
(iii) If \boldsymbol{G} satisfies $x y^{2}=\left(x y^{2}\right) x=x(x y)^{2}$, then $p_{2}(\boldsymbol{G}) \leq 3$.

Proof. (i) If $x(x y)^{2}=y$, then $y x^{2}=x(x y)=x(x y)^{3}=\left(x(x y)^{2}\right)(x y)=$ $y(y x)=x y^{2}$. Thus \boldsymbol{G} is a totally commutative groupoid satisfying a nonregular identity, a contradiction.
(ii) $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious.

If \boldsymbol{G} satisfies $x(x y)^{2}=y x^{2}$, then $x y^{2}=\left(x y^{2}\right)(x y)$. Putting $x y$ for x in this identity we get $x y^{3}=\left(x y^{3}\right)\left(x y^{2}\right)$. Hence $x y=x y^{3}=\left(x y^{3}\right)\left(x y^{2}\right)=$ $(x y)\left(x y^{2}\right)=\left(x y^{2}\right)(x y)=x y^{2}$, which proves that \boldsymbol{G} is a near-semilattice.

If $x(x y)^{2}=y(y x)^{2}$, then by Theorem 2.1 of [4], \boldsymbol{G} is also a nearsemilattice.

Let $x(x y)^{2}=\left(y x^{2}\right) y$. Then $\left(x y^{2}\right) x=\left(x y^{2}\right)(x y)$ and so $x y=\left(x y^{3}\right)(x y)=$ $\left(x y^{3}\right)\left(x y^{2}\right)=\left(x y^{2}\right)(x y)$, which proves that \boldsymbol{G} is a near-semilattice.
(iii) Using $x y^{2}=x(x y)^{2}$ we obtain $x y=x y^{3}=(x y) y^{2}=(x y)\left(x y^{2}\right)^{2}=$ $\left((x y)\left(x y^{2}\right)\right)\left(x y^{2}\right)=\left(y(y x)^{2}\right)\left(x y^{2}\right)=\left(y x^{2}\right)\left(x y^{2}\right)$. Further (by (1)) we have $A_{0}^{(2)}(\boldsymbol{G})=\{x, y\}, A_{1}^{(2)}(\boldsymbol{G})=\{x, y, x y\}$ and $A_{2}^{(2)}(\boldsymbol{G})=\left\{x, y, x y, x y^{2}, y x^{2}\right\}$ $=A_{3}^{(2)}(\boldsymbol{G})$, which proves $p_{2}(\boldsymbol{G}) \leq 3$, as required.

Lemma 5.4. If \boldsymbol{G} is a commutative idempotent groupoid satisfying $x(x y)^{2}$ $=x$, then $\boldsymbol{G} \in \mathcal{G}_{\text {IC (3.2) }}$.

Proof. We have $x=\left(y x^{2}\right)(y x)$ and hence $x y=\left(y(y x)^{2}\right)(y(y x))=$ $y(y(y x))=x y^{3}$, as required.

Now we prove the main result of this section.
Proposition 5.5. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)}$. Then:
(i) $p_{2}(\boldsymbol{G})=3$ iff \boldsymbol{G} is neither a near-semilattice nor a Steiner quasigroup satisfying the following identities:

$$
\begin{align*}
& x y^{2}=\left(x y^{2}\right) x, \tag{5.1}\\
& x y^{2}=x(x y)^{2} . \tag{5.2}
\end{align*}
$$

(ii) Any nontrivial Ptonka sum \boldsymbol{G} of Steiner quasigroups which are not all singletons is a member of the variety $\mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$ and $p_{2}(\boldsymbol{G})=3$.
(iii) If $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$, then the clone of \boldsymbol{G} is minimal iff \boldsymbol{G} is either a nontrivial affine space over $\mathrm{GF}(3)$ or a nontrivial near-semilattice.
(iv) If $1 \leq p_{2}(\boldsymbol{G}) \leq 4$, then the clone of \boldsymbol{G} is minimal iff \boldsymbol{G} is either a proper near-semilattice or a nontrivial affine space over $\mathrm{GF}(3)$.

Proof. (i) If $\boldsymbol{G} \in \mathcal{G}_{\text {IC(3.2)(5.1)(5.2) }}$ and \boldsymbol{G} is neither a Steiner quasigroup nor a near-semilattice, then $x y=\left(x y^{2}\right)\left(y x^{2}\right)$. Indeed, $\left(x y^{2}\right)\left(y x^{2}\right)=$ $\left(x y^{2}\right)\left(\left(x y^{2}\right)(x y)\right)=\left(x y^{2}\right)\left(y x^{2}\right)=(x y)\left(x y^{2}\right)^{2}=(x y)((x y) y)^{2}=x y^{3}=x y$. Hence $A_{2}^{(2)}(\boldsymbol{G})=\left\{x, y, x y, x y^{2}, y x^{2}\right\}$ and $p_{2}(\boldsymbol{G})=3$.

Now let $p_{2}(\boldsymbol{G})=3$. Lemma 5.1 shows that $x y^{2}$ is essentially binary and noncommutative. Since \boldsymbol{G} is neither a Steiner quasigroup nor a nearsemilattice we have $\left(x y^{2}\right) x=x y^{2}$ by Lemma $5.2\left(\right.$ iii). If $x(x y)^{2}=x$, then putting $x y^{2}$ for y we obtain $x=x\left(\left(x y^{2}\right) x\right)^{2}=x\left(x y^{2}\right)^{2}=\left(\left(x y^{2}\right) x\right)\left(x y^{2}\right)=$ $x y^{2}$. This proves that G is a Steiner quasigroup, a contradiction. Now Lemma 5.3 yields $x y^{2}=x(x y)^{2}$ and therefore $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$.
(ii) Any Steiner quasigroup satisfies the identities of $\mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$. Since those identities are regular we infer that Płonka's sums of such algebras are also in $\mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$ (see [21]).
(iii) Obviously the clones of a proper near-semilattice and of a proper affine space over $\mathrm{GF}(3)$ are minimal. Now let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$. In a proper groupoid \boldsymbol{G} we have $x y^{2} \neq y$. If $x y^{2}=x$, then Proposition of [10] shows that the clone of \boldsymbol{G} is minimal if and only if \boldsymbol{G} is a proper affine space over $\operatorname{GF}(3)$. If $x y^{2}=x y$ then \boldsymbol{G} is a near-semilattice. Thus further we may assume that $p_{2}(\boldsymbol{G})>1$. By Lemma $5.1, x y^{2}$ is essentially binary and noncommutative. Consider now (G, \circ) where $x \circ y=x y^{2}$. Using the identities of $\mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$ one can check that $x \circ y=(x \circ y) \circ y=(x \circ y) \circ x=$ $x \circ(x \circ y)=x \circ(y \circ x)=(x \circ y) \circ(y \circ x)$ and hence $p_{2}(G, \circ)=2$. Thus the clone of \boldsymbol{G} is not minimal since the clone of (G, \circ) is its nontrivial subclone.
(iv) Now let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}, 1 \leq p_{2}(\boldsymbol{G}) \leq 4$ and suppose the clone of \boldsymbol{G} is minimal. If $p_{2}(\boldsymbol{G})=1$ or $p_{2}(\boldsymbol{G})=2$ then the assertion follows e.g. from Theorem 2.3 of [4]. If $p_{2}(\boldsymbol{G})=3$, then $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$ and the proof is given above (see also Lemma 2.3 of $[10]$). Now let $p_{2}(\boldsymbol{G})=4$. Lemma 5.2 shows that $\left(x y^{2}\right) x=x y^{2}$ and $x y^{2}$ is essentially binary and noncommutative. By Lemma 5.3, $x(x y)^{2} \notin\left\{y, y x^{2}, y(y x)^{2}\right\}$. If $x(x y)^{2}=x$, then using $\left(x y^{2}\right) x=x y^{2}$ one proves that \boldsymbol{G} is a Steiner quasigroup. Thus
either $x(x y)^{2}=x y^{2}$, or $x y, x y^{2}, y x^{2}, x(x y)^{2}, y(y x)^{2}$ are essentially binary and pairwise distinct. The second case is impossible but in the first case $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.2)(5.1)(5.2)}$ and consequently $p_{2}(\boldsymbol{G})=3$, a contradiction.
6. The identity $x y^{3}=x y^{2}$. In this section we deal with groupoids \boldsymbol{G} from the variety $\mathcal{G}_{\mathrm{IC}(3.3)}$. We start with

Lemma 6.1. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)}$. Then:
(i) The term operations $x y^{2},\left(x y^{2}\right) x$ are essentially binary.
(ii) If $p_{2}(\boldsymbol{G})=3$, then:
(a) The term operation $x y^{2}$ is noncommutative.
(b) \boldsymbol{G} satisfies:

$$
\begin{equation*}
x y=\left(x y^{2}\right)\left(y x^{2}\right) . \tag{6.1}
\end{equation*}
$$

(c) \boldsymbol{G} satisfies at least one of the following identities:

$$
\begin{align*}
& \left(x y^{2}\right) x=x y \tag{6.2}\\
& \left(x y^{2}\right) x=x y^{2} \tag{6.3}\\
& \left(x y^{2}\right) x=y x^{2} \tag{6.4}
\end{align*}
$$

Proof. (i) If $x y^{2}$ or $\left(x y^{2}\right) x$ is not essentially binary, then Theorem 9 of [11] shows that \boldsymbol{G} is cancellative and hence the identity $x y^{2}=x y^{3}$ gives $\operatorname{card}(G)=1$, a contradiction.
(ii) If $x y^{2}=y x^{2}$ and $x y \neq x y^{2}$, then \boldsymbol{G} is a totally commutative groupoid satisfying $x y^{2}=x y^{3}$. It is easy to check that $p_{2}(\boldsymbol{G})=2$, a contradiction. Since $p_{2}(\boldsymbol{G})=3$ and $x y, x y^{2}, y x^{2}$ are the only essentially binary term operations over \boldsymbol{G} we infer that $x y=\left(x y^{2}\right)\left(y x^{2}\right)$, and at least one of (6.2)(6.4) holds.

Lemma 6.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)}$ satisfy (6.2) or (6.3) (i.e. $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)(6.2)} \cup$ $\left.\mathcal{G}_{\mathrm{IC}(3.3)(6.3)}\right)$. If \boldsymbol{G} satisfies (6.1) then:
(i) \boldsymbol{G} satisfies $x(x y)^{2}=y x^{2}$ and consequently $p_{2}(\boldsymbol{G}) \leq 3$.
(ii) If \boldsymbol{G} is not a near-semilattice then the clone $\operatorname{cl}(G, \circ)$, where $x \circ y=$ $x y^{2}$, is a proper subclone of $\operatorname{cl}(\boldsymbol{G})$ and consequently the latter is not minimal.
(iii) If \boldsymbol{G} is not a near-semilattice, then $p_{2}(\boldsymbol{G})=3$.

Proof. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)(6.2)}$.
(i) Putting $x y$ for x in $x y=\left(x y^{2}\right) x$ we obtain $x y^{2}=\left(x y^{3}\right)(x y)=$ $\left(x y^{2}\right)(x y)=y(y x)^{2}$.
(ii) To prove that $p_{2}(G, \circ) \leq 2$ we use $A^{(2)}(\boldsymbol{G})=\left\{x, y, x y, x y^{2}, y x^{2}\right\}$ and the fact that $x \circ x=x, x \circ y=(x \circ y) \circ y=(y \circ x) \circ y=x \circ(x \circ y)=(y \circ x) \circ(x \circ y)$. For example, $(x \circ y) \circ(y \circ x)=\left(\left(x y^{2}\right)\left(y x^{2}\right)\right)\left(y x^{2}\right)=x(x y)^{2}=y x^{2}=y \circ x$, as required. Since $p_{2}(G, \circ)=2$ the clone of G is not minimal (cf. also Lemma 2.5 of [10]).
(iii) Easy.

The proof for $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)(6.3)}$ runs analogously.
Lemma 6.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)(6.1)}$. Then:
(i) If \boldsymbol{G} satisfies (6.3) then \boldsymbol{G} is a near-semilattice and $p_{2}(\boldsymbol{G})=1$.
(ii) If \boldsymbol{G} satisfies (6.4) then
(a) \boldsymbol{G} satisfies $x(x y)^{2}=x y$.
(b) \boldsymbol{G} is a near-semilattice and $p_{2}(\boldsymbol{G})=1$.

Proof. (i) By assumption $x y=\left(x y^{2}\right)\left(y x^{2}\right)$. So $(x y)\left(x y^{2}\right)=\left(y x^{2}\right)\left(x y^{2}\right)^{2}$. Hence (Lemma 6.2(i)) $x y^{2}=y(y x)^{2}=\left(y x^{2}\right)\left(x y^{2}\right)^{2}$. Then $\left(x y^{2}\right)\left(y x^{2}\right)=$ $\left(\left(y x^{2}\right)\left(x y^{2}\right)\right)\left(y x^{2}\right)$. By (6.3), $\left(x y^{2}\right)\left(y x^{2}\right)=\left(y x^{2}\right)\left(x y^{2}\right)^{2}$. Hence $\left(x y^{2}\right)\left(y x^{2}\right)=$ $x y^{2}$. By (6.1), $x y^{2}=x y$ and consequently \boldsymbol{G} is a near-semilattice.
(ii) (a) We have $x(x y)^{2}=\left(y x^{2}\right)(x y)=\left(y x^{2}\right)\left(\left(x y^{2}\right)\left(y x^{2}\right)\right)$. So $x(x y)^{2}=$ $\left(x y^{2}\right)\left(y x^{2}\right)^{2}=\left(\left(y x^{2}\right) y\right)\left(y x^{2}\right)^{2}=y\left(y x^{2}\right)^{3}=y\left(y x^{2}\right)^{2}=\left(y\left(y x^{2}\right)\right)\left(y x^{2}\right)=$ $\left(x y^{2}\right)\left(y x^{2}\right)=x y$.
(b) By Lemma 4.1 of [4].

Proposition 6.4. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}(3.3)}$. Then $p_{2}(\boldsymbol{G})=3$ if and only if \boldsymbol{G} is not a near-semilattice and belongs to the variety

$$
\mathcal{G}_{3}^{3}: \quad x y=y x, x y=\left(x y^{2}\right)\left(y x^{2}\right)=\left(x y^{2}\right) x, x y^{2}=x y^{3} .
$$

Proof. This follows from Lemmas 6.1-6.3 and formula (1).

NONCOMMUTATIVE CASE

7. The term operation $(x y) x$. Now assume that \boldsymbol{G} is a groupoid from the class $\mathcal{G}_{\text {IC }}$ (so the term operations $x y$ and $y x$ are both essentially binary and distinct). If $p_{2}(\boldsymbol{G}) \leq 3$ then at least one of the following identities holds in \boldsymbol{G} (up to duality):

$$
\begin{align*}
(x y) x & =x \tag{7.1}\\
(x y) x & =y \tag{7.2}\\
(x y) x & =x y \tag{7.3}\\
(x y) x & =y x \tag{7.4}\\
(x y) x & =(y x) y . \tag{7.5}
\end{align*}
$$

8. Groupoids with $(x y) x=x$

LEmma 8.1. Let \boldsymbol{G} be an idempotent groupoid satisfying (7.1) ($\boldsymbol{G} \in$ $\left.\mathcal{G}_{\mathrm{I}(7.1)}\right)$. Then the identity $x(x y)=x y$ holds in \boldsymbol{G}.

Proof. By assumption, $(x y) x=x$. Hence $x y=((x y) x)(x y)=x(x y)$.

Assume that \boldsymbol{G} satisfies (7.1). If $p_{2}(\boldsymbol{G}) \leq 3$, then at least one of the following identities holds in \boldsymbol{G} :

$$
\begin{align*}
& x(y x)=x \tag{8.1}\\
& x(y x)=y \tag{8.2}\\
& x(y x)=x y \tag{8.3}\\
& x(y x)=y x \tag{8.4}\\
& x(y x)=y(x y) . \tag{8.5}
\end{align*}
$$

Lemma 8.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.1)}$. Then:
(i) If \boldsymbol{G} satisfies (8.1) and $p_{2}(\boldsymbol{G}) \leq 3$ then $\boldsymbol{G} \in \mathcal{G}_{5}^{2}$ and consequently $p_{2}(\boldsymbol{G}) \leq 2$.
(ii) If $p_{2}(\boldsymbol{G})=3$ then (8.1) does not hold in \boldsymbol{G}.
(iii) (8.2), (8.3), (8.5) do not hold in \boldsymbol{G}.
(iv) If \boldsymbol{G} satisfies (8.4) then $x y^{2}=y$ holds in \boldsymbol{G}.
(v) If \boldsymbol{G} satisfies (8.4) and $p_{2}(\boldsymbol{G}) \leq 3$ then $\boldsymbol{G} \in \mathcal{G}_{2}^{2} \cup \mathcal{G}_{3}^{2}$ and consequently $p_{2}(\boldsymbol{G}) \leq 2$.
(vi) If $p_{2}(\boldsymbol{G})=3$ then (8.4) does not hold in \boldsymbol{G}.

Proof. (i) Assume that (8.3) holds in \boldsymbol{G}. Then $x y=(x y)(y(x y))=x y^{2}$. So by Lemma 8.1 we have $A_{2}^{(2)}(\boldsymbol{G})=\{x, y, x y, y x,(x y)(y x),(y x)(x y)\}$. Now assume that $p_{2}(\boldsymbol{G}) \leq 3$. So $(x y)(y x) \in\{x, y, x y, y x,(y x)(x y)\}$. Suppose that $(x y)(y x)=x$. Then $\boldsymbol{G} \in \mathcal{G}_{5}^{2}$. If $(x y)(y x)=y$, then $y=\left(x y^{2}\right)(y(x y))=$ $\left(x y^{2}\right) y=x y^{2}=x y$, a contradiction. Assume that $(x y)(y x)=x y$. Putting $y x$ for x we have $((y x) y)(y(y x))=(y x) y$. Hence $y\left({ }^{2} y x\right)=y$. Thus $y x=y$, a contradiction. Now assume that $(x y)(y x)=y x$. Then $(x(y x))((y x) x)=$ $(y x) x$. Hence $x(y x)=y x$. Thus $x=y x$, a contradiction. Finally suppose that $(x y)(y x)$ is symmetric. Then, using Lemma 8.1, we have $y=(y x) y=$ $(y(y x))((y x) y)=((y x) y)(y(y x))=y(y x)=y x$, a contradiction.
(ii) By (i).
(iii) Assume that (8.2) holds in \boldsymbol{G}. Then $x y=x(x(y x))$. Hence, by Lemma 8.1 and (8.2), $x y=x(y x)=y$, a contradiction. Assume that (8.3) holds in \boldsymbol{G}. Then putting $x y$ for y in (8.3) we get $x=x y$, a contradiction. Now assume that (8.5) holds in \boldsymbol{G}. Putting $x y$ for y in (8.5) and using (7.1) and Lemma 8.1 we get $x=x y$, a contradiction.
(iv) (8.4) gives $y=(y(x y)) y=(x y) y$.
(v) Assume that $p_{2}(\boldsymbol{G}) \leq 3$. If $(x y)(y x)=x$ then $\boldsymbol{G} \in \mathcal{G}_{2}^{2}$. Assume that $(x y)(y x)=y$. Then putting $y x$ for x we have $((y x) y)(y(y x))=y$. Hence $y(y(y x))=y$ and by Lemma 8.1, $x y=y$, a contradiction. Now suppose that $(x y)(y x)=x y$. Hence $((x y)(y x))(y x)=(x y)(y x)=x y$. By (iv) we obtain $y x=x y$, which means that \boldsymbol{G} is commutative. Hence using (7.1) and (8.4) we deduce that $\operatorname{card}(G)=1$, a contradiction. If $(x y)(y x)=y x$ then $\boldsymbol{G} \in \mathcal{G}_{3}^{2}$.

Now assume that $(x y)(y x)=(y x)(x y)$. Putting $x y$ for x and using (iv) we get $((x y) y)(y(x y))=(y(x y))((x y) y)$ and so $y(y(x y))=(y(x y)) y$. Therefore $y(x y)=(x y) y$ and so $x y=y$, a contradiction.
(vi) $\mathrm{By}(\mathrm{v})$.

As a consequence of Lemma 8.2 we have the following proposition:
Proposition 8.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.1)}$. Then one of the following conditions holds (recall that $\operatorname{card}(G)>1$):
(i) $p_{2}(\boldsymbol{G})=2$ and $\boldsymbol{G} \in \mathcal{G}_{2}^{2} \cup \mathcal{G}_{3}^{2} \cup \mathcal{G}_{5}^{2}$ or
(ii) $p_{2}(\boldsymbol{G}) \geq 4$.
9. Groupoids with $(x y) x=y$. In this section we deal with groupoids \boldsymbol{G} satisfying (7.2) and such that $p_{2}(\boldsymbol{G})=3$. At least one of the following identities holds in G :

$$
\begin{align*}
& x y^{2}=x, \tag{9.1}\\
& x y^{2}=y, \tag{9.2}\\
& x y^{2}=x y, \tag{9.3}\\
& x y^{2}=y x, \tag{9.4}\\
& x y^{2}=y x^{2} . \tag{9.5}
\end{align*}
$$

We start with the following obvious, but useful lemma (cf. Lemma 5.2 of [7]):
Lemma 9.1. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}}$. Then:
(i) The following conditions are equivalent:
(a) \boldsymbol{G} satisfies the identity (7.2): $(x y) x=y$.
(b) \boldsymbol{G} satisfies the identity $(7.2)^{\prime}: x(y x)=y$.
(ii) If \boldsymbol{G} satisfies (7.2) or (7.2)' then \boldsymbol{G} is a quasigroup.

Lemma 9.2. Let $\boldsymbol{G} \in \mathcal{G}_{I(7.2)}$. Then:
(i) If (9.1) holds in \boldsymbol{G}, then \boldsymbol{G} is a Steiner quasigroup and $p_{2}(\boldsymbol{G})=1$ (cf. Lemma 3.1 of [8]).
(ii) (9.2) does not hold in \boldsymbol{G}.

Proof. (i) (9.1) yields $y((x y) y)=y x$. By Lemma 9.1(i) we get $x y=y x$. So \boldsymbol{G} is commutative.
(ii) (9.2) implies $(x y) y=y y$. By Lemma 9.1(ii), $x y=y$, a contradiction.

Proposition 9.3. Let $\boldsymbol{G} \in \mathcal{G}_{\text {I (7.2) }}$. Then one of the following conditions holds:
(i) $p_{2}(\boldsymbol{G})=1$ and \boldsymbol{G} is a Steiner quasigroup or
(ii) $p_{2}(\boldsymbol{G})=2$ and $\boldsymbol{G} \in \mathcal{G}_{7}^{2}$ or
(iii) $p_{2}(\boldsymbol{G}) \geq 4$.

Proof. (i) If $x y^{2}$ is not essentially binary then \boldsymbol{G} is a Steiner quasigroup (by Lemma 9.2).
(ii) Suppose that (9.3) holds in \boldsymbol{G}. As \boldsymbol{G} is a quasigroup (Lemma 9.1) it follows that $x y=x$, a contradiction.

Assume that (9.4) holds in \boldsymbol{G}. Then $y=((x y) y)(x y)=(y x)(x y)$. Therefore $y(y x)=((y x)(x y))(y x)=x y$. So $p_{2}(\boldsymbol{G}) \leq 2$, more exactly \boldsymbol{G} is a member of \mathcal{G}_{7}^{2}.
(iii) Now assume that \boldsymbol{G} satisfies (9.5). By Lemmas 9.1 and 9.2 we have $y(y x) \notin\{x, y, y x\}$. Suppose that $y(y x)=x y$. Then $(x y)(y x)=(y(y x))(y x)$. Hence by (9.5) we get $(x y)(y x)=((y x) y) y$. By $(7.2),(x y)(y x)=x y$. Hence $((x y)(y x))(x y)=x y$. Thus $y x=x y=y(y x)$. By Lemma 9.1(ii) we get $y x=y$, a contradiction with the assumption that \boldsymbol{G} is proper. Assume that $y(y x)=x y^{2}=y x^{2}$. Then $y=(y x)(y(y x))=(y x)((y x) x)=(x(y x))(y x)=$ $y(y x)$, a contradiction. Therefore $y(y x) \notin\{x, y, x y, y x,(y x) y\}$ and $p_{2}(\boldsymbol{G})$ ≥ 4.

Proposition 9.4. Let \boldsymbol{G} be an idempotent groupoid such that $p_{2}(\boldsymbol{G})=3$. Then the term operations ($x y$)x and $x(y x)$ are both essentially binary.

Proof. By Propositions 8.3, 9.3 and their dual versions.
10. Groupoids with $(x y) x=x y$. Assume that \boldsymbol{G} satisfies (7.3). If $p_{2}(\boldsymbol{G}) \leq 3$ then at least one of (8.1)-(8.5) holds in \boldsymbol{G}. Note that (8.5) is a dual case of (7.5).

Lemma 10.1. If \boldsymbol{G} satisfies (8.3) then the identity $x y^{2}=(x y)(y x)$ holds in \boldsymbol{G}.

Proof. By (8.3) we have $(x y)(y x)=(x y)(y(x y))=(x y) y$.
Lemma 10.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.3)}$. Then:
(i) If $p_{2}(\boldsymbol{G})=3$ then $x(y x)$ is essentially binary.
(ii) If \boldsymbol{G} satisfies (8.4) then $x y^{2}=x y$ in \boldsymbol{G}.

Proof. (i) By Proposition 9.4.
(ii) By (7.3) and (8.4) we have $(x y) y=(y(x y)) y=y(x y)=x y$.

Lemma 10.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.3)(8.3)}$. Then:
(i) If $p_{2}(\boldsymbol{G}) \leq 2$ then $p_{2}(\boldsymbol{G})=1$ and \boldsymbol{G} is a near-semilattice or $p_{2}(\boldsymbol{G})$ $=2$ and $\boldsymbol{G} \in \mathcal{G}_{1}^{2} \cup \mathcal{G}_{4}^{2 d}$.
(ii) If $p_{2}(\boldsymbol{G})=3$ then:
(a) The term operation $x y^{2}$ is symmetric and $x(x y)=x y$ in \boldsymbol{G}.
(b) The clone $\{x, y, x \circ y\}$, where $x \circ y=x y^{2}$, is a proper subclone of $\left\{x, y, x y, y x, x y^{2}\right\}$.
(iii) If $x y^{2}$ is symmetric and ${ }^{2} x y=x y$ in \boldsymbol{G} then $p_{2}(\boldsymbol{G}) \leq 3$.

Proof. (i) Since $p_{2}(\boldsymbol{G}) \leq 3$, at least one of (9.1)-(9.5) holds. Assume that (9.1) holds. By Lemma 10.1, $(x y)(y x)=x$. Then $x(y x)=$ $((x y)(y x))(y x)$. Hence $x(y x)=x y$. Moreover $x(x y)=((x y)(y x))(x y)$. So $x(x y)=x$. Thus $\boldsymbol{G} \in \mathcal{G}_{1}^{2}$. Suppose that \boldsymbol{G} satisfies (9.2). Then $((y x) y) y=y$. Therefore $y x=y$, a contradiction. Now suppose that (9.3) holds. Assume that $x(x y)=x$. By Proposition 9.4 the term operation $x(y x)$ is essentially binary. If $x(y x)=x y$ then $\boldsymbol{G} \in \mathcal{G}_{4}^{2 \mathrm{~d}}$, and $p_{2}(\boldsymbol{G}) \leq 2$. If $x(y x)=y x$ then $x(x(y x))=x(y x)$ and $x=x y$, a contradiction. If $x(y x)=y(x y)$ then putting $x y$ for y we obtain $x((x y) x)=(x y)(x(x y))$. Hence $x=(x y) x=x y$, a contradiction. Suppose that \boldsymbol{G} satisfies (9.4). Then $((x y) y)(x y)=(y x)(x y)$. By (7.3) and Lemma 10.1 we have $x y^{2}=x y$. Hence $y x=x y$. So \boldsymbol{G} is a near-semilattice and $p_{2}(\boldsymbol{G})=1$.
(ii) (a) By (i) the term operation $x y^{2}$ is symmetric in \boldsymbol{G}. As $p_{2}(\boldsymbol{G})=3$, at least one of the following identities holds:

$$
\begin{align*}
{ }^{2} x y & =x, \tag{10.1}\\
{ }^{2} x y & =y, \tag{10.2}\\
{ }^{2} x y & =x y, \tag{10.3}\\
{ }^{2} x y & =y x, \tag{10.4}\\
{ }^{2} x y & ={ }^{2} y x . \tag{10.5}
\end{align*}
$$

Suppose that (10.1) holds. Then $x=(x(x y))(x y)=((x y) x) x$. Hence $x=$ $(x y) x=x y$, a contradiction. Suppose that (10.2) holds. Then $(x(x y)) x=y x$. Hence $y=x(x y)=y x$, a contradiction. Suppose that (10.4) holds. Then $(x(x y)) x=(y x) x$. Hence $(y x) x=x(x y)=y x$, so \boldsymbol{G} is commutative, a contradiction. Suppose that $x(x y)$ is symmetric. As $p_{2}(\boldsymbol{G})=3$ we have $x(x y)=$ $(x y) y$. Hence $x y=(x y) x=((x y) x) x=(x(x y))(x y)=((x y) y)(x y)=(x y) y$. Hence \boldsymbol{G} is commutative, a contradiction. Therefore \boldsymbol{G} satisfies $x(x y)=x y$.
(b) Obvious (by (7.3), (8.3) and Lemma 10.1).
(iii) $A^{(2)}(\boldsymbol{G})=\{x, y, x y, y x,(x y) y\}$. Indeed, observe that $A_{3}^{(2)}(\boldsymbol{G})=$ $A_{2}^{(2)}(\boldsymbol{G})=\{x, y, x y, y x,(x y) y\}$. For example $((x y) y) y=(y(x y))(x y)=$ $(y x)(x y)=y x^{2}=x y^{2}$.

Lemma 10.4. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.3)(8.4)}$. Then:
(i) If $p_{2}(\boldsymbol{G}) \leq 2$ then $p_{2}(\boldsymbol{G})=1$ and \boldsymbol{G} is a near-semilattice.
(ii) If $p_{2}(\boldsymbol{G})=3$ then:
(a) The term operation $(x y)(y x)$ is symmetric and $x(x y)=x y$, $x((x y)(y x))=((x y)(y x)) x=(x y)(y x)$ in \boldsymbol{G}.
(b) The clone $\{x, y, x \circ y\}$, where $x \circ y=(x y)(y x)$, is a proper subclone of $\{x, y, x y, y x,(x y)(y x)\}$.
(iii) If $(x y)(y x)$ is symmetric and $x(x y)=x y,(x y)(y x)=x((x y)(y x))=$ $((x y)(y x)) x$ in \boldsymbol{G} then $p_{2}(\boldsymbol{G}) \leq 3$.

Proof. (i) Assume that $p_{2}(\boldsymbol{G}) \leq 3$. Then at least one of (10.1)-(10.5) holds in \boldsymbol{G}. Suppose that $x(x y)=x$. Then by (7.3) and (8.4) we have $(x y) x=y(x y)$. Putting $x y$ for y we get $(x(x y)) x=(x y)((x(x y))$. Hence $x=(x y) x=x y$. Thus $\operatorname{card}(G)=1$, a contradiction. Now assume that $x(x y)=y$. Hence $(x(x y)) x=y x$. By (7.3) we get $x(x y)=y x$. Hence $y=y x$, a contradiction. Now suppose that $x(x y)=y x$. Lemma 10.2 shows that $y x=(y x)(x y)=(x y)((x y)(y x))=x y$. Thus \boldsymbol{G} is a near-semilattice. Assume $x(x y)=y(y x)$. Hence, by (7.3) and (8.4) we get $y(y x)=y((y x) y)=(y x) y$. By (7.3), $y(y x)=y x$. So \boldsymbol{G} is commutative and hence a near-semilattice. So if $p_{2}(\boldsymbol{G}) \leq 3$ then $x(x y)=x y$ in \boldsymbol{G}.

Now at least one of the following identities holds:

$$
\begin{align*}
& (x y)(y x)=x, \tag{10.6}\\
& (x y)(y x)=y, \tag{10.7}\\
& (x y)(y x)=x y, \tag{10.8}\\
& (x y)(y x)=y x, \tag{10.9}\\
& (x y)(y x)={ }^{2} y x . \tag{10.10}
\end{align*}
$$

Suppose that (10.6) holds. Then $((x y)(y x))(x y)=x(x y)$. Hence, by (7.3), $x=(x y)(y x)=x y$, a contradiction. Assume that (10.7) holds. So $((x y)(y x))(x y)=y(x y)=x y$ and by (7.3), $y=(x y)(y x)=x y$, a contradiction. Now assume (10.8). Hence $(y x)((x y)(y x))=(y x)(x y)=y x$. By (8.4) we get $x y=y x$, so \boldsymbol{G} is a near-semilattice. Now assume (10.9). Then $((x y)(y x))(x y)=(y x)(x y)=x y$. By (7.3), $y x=(x y)(y x)=x y$. So \boldsymbol{G} is a near-semilattice again. Thus if $p_{2}(\boldsymbol{G}) \leq 3$ then either \boldsymbol{G} is a near-semilattice and $p_{2}(\boldsymbol{G})=1$, or $(x y)(y x)$ is symmetric and $p_{2}(\boldsymbol{G})=3$.
(ii) (a) Assume that $p_{2}(\boldsymbol{G})=3$. By what was proved above, $x(x y)=x y$ and $(x y)(y x)$ is symmetric in \boldsymbol{G}. Now, $x((x y)(y x)) \in\{x, y, x y, y x\}$ or $x((x y)(y x))=y((y x)(x y))=(x y)(y x)$. Suppose that $x((x y)(y x))=x$. Then $x=x((x(x y))((x y) x))$. Hence $x=x((x y)(x y))=x(x y)=x y$, a contradiction. Now, suppose that $x((x y)(y x))=y$. Then $y=(x y)(((x y) y)(y(x y)))$. Hence $y=(x y)(((x y) y)(x y))=(x y)((x y) y)=(x y) y$, a contradiction. Assume $x((x y)(y x))=x y$. Then $((x y)(y x))(x((x y)(y x)))=((x y)(y x))(x y)$. Hence, by (8.4) and (7.3), we have $x y=x((x y)(y x))=(x y)(y x)$, so \boldsymbol{G} is commutative, a contradiction. Assume that $x((x y)(y x))=y x$. Then $((x y)(y x))(x((x y)(y x)))=((x y)(y x))(y x)=((y x)(x y))(y x)$. Hence $y x=$ $(y x)(x y)$, a contradiction. Therefore we have $x((x y)(y x))=y((y x)(x y))=$ $(x y)(y x)$.
(b) Obvious.
(iii) By formula (1).
11. Groupoids with $(x y) x=y x$. Assume that \boldsymbol{G} satisfies (7.4). If $p_{2}(\boldsymbol{G}) \leq 3$ then at least one of (8.1)-(8.5) holds in \boldsymbol{G}. Note that (8.5) is a dual case of (7.5).

Lemma 11.1. Assume that \boldsymbol{G} satisfies (7.4). Then:
(i) The term operation $x(y x)$ is essentially binary.
(ii) If (8.3) holds in \boldsymbol{G} then \boldsymbol{G} is a near-semilattice.
(iii) If \boldsymbol{G} satisfies (8.4) then ${ }^{2} y x=(x y)(y x)$ in \boldsymbol{G}.

Proof. (i) Assume that $x(y x)=x$. Then $x y=(x y)(y(x y))$. So $x y=$ $(x y) y$. Hence $x y=((x y) y)(x y)=y(x y)=y$, a contradiction.

Now suppose that $x(y x)=y$. By Lemma 9.1(ii), \boldsymbol{G} is a quasigroup. Hence, (7.4) yields $x y=y$, a contradiction.
(ii) Suppose that (8.3) is satisfied in \boldsymbol{G}. Putting $x y$ for x in (8.3) we get $(x y)(y(x y))=(x y) y$. Hence $(x y)(y x)=(x y) y$. Then $((x y)(y x))(x y)=$ $((x y) y)(x y)$. Hence $(y x)(x y)=y(x y)=y x$. Therefore $y x=(y x)(y x)=$ $((y x)(x y))(y x)=(x y)(y x)=x y$. So \boldsymbol{G} is commutative.
(iii) By (7.4) we have $((y x) y)(y x)=y(y x)$. Hence $(x y)(y x)=y(y x)$.

Lemma 11.2. Assume that \boldsymbol{G} satisfies (7.4) and (8.4). Then:
(i) If $p_{2}(\boldsymbol{G}) \leq 2$ then either $p_{2}(\boldsymbol{G})=1$ and \boldsymbol{G} is a near-semilattice, or $p_{2}(\boldsymbol{G})=2$ and $\boldsymbol{G} \in \mathcal{G}_{1}^{2 \mathrm{~d}} \cup \mathcal{G}_{4}^{2} \cup \mathcal{G}_{6}^{2 \mathrm{~d}}$.
(ii) If $p_{2}(\boldsymbol{G})=3$ then:
(a) $x y^{2}=x y$ and the term operation ${ }^{2} x y$ is symmetric in \boldsymbol{G}.
(b) The clone $\{x, y, x \circ y\}$, where $x \circ y={ }^{2} x y$, is a proper subclone of the clone $\left\{x, y, x y, y x,{ }^{2} x y\right\}$.
(iii) If $x y^{2}=x y$ and ${ }^{2} x y$ is symmetric in \boldsymbol{G} then $p_{2}(\boldsymbol{G}) \leq 3$.

Proof. (i) and (ii). Since $p_{2}(\boldsymbol{G}) \leq 3$, at least one of (9.1)-(9.5) holds in \boldsymbol{G}. Suppose that (9.1) holds. Then $(x(x y))(x y)=x$. By Lemma 11.1(iii) we get $((y x)(x y))(x y)=x$. So $y x=x$, a contradiction.

Now suppose that (9.2) holds. We have ${ }^{2} y x \in\left\{x, y, x y, y x,{ }^{2} x y\right\}$. If $y(y x)=x$ then evidently $\boldsymbol{G} \in \mathcal{G}_{1}^{2 \mathrm{~d}}$. Assume that $y(y x)=y$. Then (by Lemma 11.1(iii)), $y=y(y x)=(x y)(y x)$. Hence, by (7.4), $y=(x y)((x y) x)=$ $x y$, a contradiction. Now assume that $y(y x)=x y$. Then $(y(y x))(y x)=$ $(x y)(y x)$. Hence $y x=(x y)(y x)=y(y x)=x y$, a contradiction. Now suppose that $y(y x)=y x$. Then $y(y x)=(x y)(y x)=y x$ and consequently $\boldsymbol{G} \in \mathcal{G}_{4}^{2}$. Suppose that $y(y x)=x(x y)$. Then by (8.4) we have $x(x(y x))=x(y x)=y x$. Hence, as $x(x y)$ is commutative, we get $(y x)((y x) x)=y x$. Therefore $y x=$ $(y x)\left(y x^{2}\right)=(y x) x=x$, a contradiction.

Now assume that (9.3) holds and consider the same cases as above. If $y(y x)=x$, then $(y x)((y x) x)=y$ and $y x=x$, a contradiction. Suppose that $y(y x)=y$. Then $y(y(x y))=y$. By (8.4) we get $x y=y$, a contradiction.

Now suppose that $y(y x)=x y$. Lemma 11.1(iii) gives $x y=(x y)(y x)$. Hence $x y=((x y)(y x))(x y)$. Thus by (7.4), $x y=(y x)(x y)=y x$. So \boldsymbol{G} is a nearsemilattice. Suppose that $y(y x)=y x$. Then $\boldsymbol{G} \in \mathcal{G}_{5}^{2 d}$. Evidently if $y(y x)=$ $x(x y)$ and $y(y x)$ is essentially binary and different from $x y$ then $p_{2}(\boldsymbol{G})=3$.

Assume that (9.4) holds. Then $((x y) y)(x y)=(y x)(x y)$. By (7.4) and (8.4), $((x y) y)(x y)=y(x y)=x y$. Hence $x y=((y x)(x y))(x y)=(y x)(x y)$. So $x y$ is commutative and consequently \boldsymbol{G} is a near-semilattice.

Now assume that (9.5) holds. If $y(y x)=x$ then, by (8.4), $(y(y x))(y x)=$ $x(y x)=y x$. Therefore, by (7.4), we get $y x=((y x) y) y=(x y) y$, a contradiction. Now assume that $y(y x)=y$. Hence $y=y(y x)=(y(y x))(y x)$. Then, as $x y^{2}=y x^{2}$, we have $\left.y=((y x) y) y\right)=(x y) y$, a contradiction. Suppose now that $y(y x)=x y$. Then, by Lemma 11.1(iii), we have $x y=$ $y(y x)=(x y)(y x)=(y(y x))(y x)$. Hence, by (7.4), $x y=((y x) y) y=(x y) y$. So \boldsymbol{G} is a near-semilattice. Suppose that $y(y x)=y x$. Then $(y(y x))(y x)=$ $y x$. Hence $y x=((y x) y) y=(x y) y$ and \boldsymbol{G} is a near-semilattice. Assume that $y(y x)=x(x y)$. Then, since $x y^{2}=y x^{2}$ and $p_{2}(\boldsymbol{G}) \leq 3$, we have $(y(y x))(y x)=((y x) x)(y x)$. By (8.4) and (7.4), $y x=x(y x)=((y x) x)(y x)$. Then, as $x y^{2}=y x^{2}, y x=((y x) y) y=(x y) y$. So \boldsymbol{G} is a near-semilattice again.
(iii) By Lemma 11.1(iii) and using formula (1).
12. Groupoids with $(x y) x=(y x) y$. In this section we deal with proper, noncommutative groupoids \boldsymbol{G} such that ($x y$) x is symmetric in \boldsymbol{G} and $(x y) x \notin\{x y, y x\}$. As in the whole paper, we assume that $p_{2}(\boldsymbol{G}) \leq 3$ so at least one of (8.1)-(8.5) holds in \boldsymbol{G}.

Lemma 12.1. Assume that $\boldsymbol{G} \in \mathcal{G}_{\text {I }}^{(7.5)}$ and $(x y) x \notin\{x y, y x\}$. Then:
(i) The term operation $x(y x)$ is essentially binary.
(ii) (8.3) does not hold in \boldsymbol{G}.

Proof. (i) Assume that (8.1) holds in \boldsymbol{G}. Then $x=(x(y x)) x$. Henceby (7.5) and using the dual version of Lemma 8.1-we get $x=((y x) x)(y x)=$ $y x$, a contradiction. Suppose that (8.2) holds in \boldsymbol{G}. So, by Lemma 9.1(ii), \boldsymbol{G} is a quasigroup. Then $(x(y x)) x=y x,((y x) x)(y x)=y x,(y x) x=y x$, $y x=y$, a contradiction.
(ii) Assume that \boldsymbol{G} satisfies (7.5) and (8.3). Consider identities (9.1)(9.5). Assume that (9.1) holds. Then $((x y) y)(x y)=x(x y)$ and $x(x y)=$ $(y(x y)) y$. By (8.3) and (7.5), $x(x y)=(y x) y=(x y) x=y(y x)$. Hence $((x y) x)(x y)=(x(x y))(x y)$. By $(9.1),((x y) x)(x y)=x$. By $(7.5),(x(x y)) x=$ x. Hence $x=(((x(x y)) x) x$. By (9.1), $x=x(x y)$, a contradiction. Now suppose that (9.2) holds. By (8.3), $((x y) y)(x y)=y(x y)=y x$. By $(7.5), y x=$ $((x y) y)(x y)=(y(x y)) y$. By (8.3), $y x=(y x) y$ and consequently $y x$ is commutative. By (9.2), $y=(x y) y=(y x) y=y x$, a contradiction. Assume that
(9.3) holds. Then, by (7.5), $x y=((x y) y)(x y)=(y(x y)) y$. By (8.3), $x y=$ ($y x) y$, a contradiction. Suppose that (9.4) holds. By Lemma 10.1 we get $x y=(y x) x=(y x)(x y)=((x y) y)(x y)$. By (7.5) and (8.3), $x y=(y(x y)) y=$ $(y x) y$, a contradiction. Now, assume that (9.5) holds, $x y^{2} \notin\{x, y, x y, y x\}$ and $p_{2}(\boldsymbol{G})=3$. Then $(x y) y=(y x) y$. Hence $y((x y) y)=y((y x) y)$. Therefore, by (8.3), $y x=y(x y)=y(y x)$. Then $y x=(y x)(y x)=(y x)(y(y x))=(y x) y$, a contradiction.

Lemma 12.2. Let $\boldsymbol{G} \in \mathcal{G}_{\mathcal{I}_{(7.5)(8.4)}}$. Then:
(i) If $p_{2}(\boldsymbol{G})=3$ then:
(a) \boldsymbol{G} satisfies the following identities:

$$
\begin{align*}
& x y^{2}=x y, \tag{12.1}\\
& (x y)(y x)=(y x)(x y), \tag{12.2}\\
& (x y) x=(y x) y=(x y)(y x)=(y x)(x y) . \tag{12.3}
\end{align*}
$$

(b) \boldsymbol{G} satisfies one of the following identities:

$$
\begin{align*}
& { }^{2} x y=x y, \tag{12.4}\\
& { }^{2} x y={ }^{2} y x . \tag{12.5}
\end{align*}
$$

(c) The clone $\{x, y, x \circ y\}$, where $x \circ y=(x y)(y x)$, is a proper subclone of $\{x, y, x y, y x,(x y) x\}$. Moreover (G, \circ) is a near-semilattice.
(ii) If \boldsymbol{G} satisfies (7.5), (8.4) and (12.3) then $p_{2}(\boldsymbol{G}) \leq 3$.

Proof. (i) (a) $p_{2}(\boldsymbol{G})=3$ so one of (9.1)-(9.5) holds in \boldsymbol{G}. Suppose that (9.1) holds. Then, by (8.4), we have $x y=x((y x) x)=(y x) x=y$, a contradiction. Now suppose that (9.2) holds. Then, by (8.4), $x=(y x) x=$ $(x(y x)) x$. By (7.5), $x=((y x) x)(y x)=x(y x)$. By (8.4), $x=y x$, a contradiction. Assume that (9.4) is satisfied. Then $y x=(y x)(y x)=(x(y x))(y x)$. By (9.4), $y x=(y x) x=y$, a contradiction. Now assume that (9.5) holds and $x y^{2} \notin\{x, y, x y, y x\}$. Then (recall that $p_{2}(\boldsymbol{G})=3$)

$$
\begin{equation*}
(x y) x=(y x) y=(x y) y=(y x) x . \tag{12.6}
\end{equation*}
$$

Consider identities (10.1)-(10.5). Suppose that (10.1) holds. Then $x=$ $x(x y)=(x(x y))(x y)$. Hence $x=((x y) x) x=((y x) x) x$. Thus $x=(x(y x)) x=$ $(y x) x$, a contradiction. Suppose that (10.2) holds. Hence $(x y)(x(x y))=$ $(x y) y$. By (8.4), (xy) $y=(x y)(x(x y))=x(x y)=y$, a contradiction. Assume that (10.3) holds. By (8.4) and (9.5) we have $x y=(x y)(x y)=(x(x y))(x y)=$ $((x y) x) x$. By (12.6) we obtain $x y=((x y) x) x=((y x) x) x$. By (9.5), $x y=$ $((y x) x) x=(x(y x))(y x)=y x$, a contradiction. Suppose that (10.4) holds. Hence - putting $y x$ for y-we have $x(x(y x))=(y x) x$. So by (8.4), $(y x) x=$ $x(x(y x))=x(y x)=y x$. By (9.5), \boldsymbol{G} is commutative, a contradiction. Now
suppose that (10.5) holds and ${ }^{2} x y$ is essentially binary. Thus

$$
\begin{equation*}
x(x y)=y(y x)=(x y) x=(y x) y=(x y) y=(y x) x . \tag{12.7}
\end{equation*}
$$

Putting $y x$ for y in (10.5) we obtain $x(x(y x))=(y x)((y x) x)$. By (8.4) and (12.7) we get $y x=x(x(y x))=(y x)((y x) x)=(y x)(y(y x))=y(y x)$. So \boldsymbol{G} is commutative, a contradiction. Thus (12.1) holds in \boldsymbol{G}. So in the sequel we can assume that (7.5), (8.4) and (12.1) are satisfied in \boldsymbol{G}.

As $p_{2}(\boldsymbol{G}) \leq 3$ at least one of identities (10.6)-(10.9) and (12.2) holds in \boldsymbol{G}. Assume that (10.6) holds. Then $(x(y x))((y x) x)=x$. Hence $y x=x$, a contradiction. Suppose that (10.7) holds. Then $((x y) y)(y(x y))=y$. By $(12.1),(x y)(y(x y))=y$. Hence $x y=y$, a contradiction. Now suppose that (10.8) holds. Then $((x y)(y x))(x y)=x y$. By (7.5) we obtain $x y=$ $((y x)(x y))(y x)=y x$, a contradiction. Assume that (10.9) holds. Then, by (7.5), $x y=(y x)(x y)=((x y)(y x))(x y)=((y x)(x y))(y x)=y x$, a contradiction. So $(x y)(y x)$ is symmetric (i.e. (12.2) holds). The assumption $p_{2}(\boldsymbol{G}) \leq 3$ yields

$$
(x y) x=(y x) y=(x y)(y x)=(y x)(x y) .
$$

(b) At least one of (10.1)-(10.5) holds in \boldsymbol{G}. Suppose that (10.1) holds. Then $x=x(x(y x))$. By (8.4) we have $x=x(y x)=y x$, a contradiction. Assume that (10.2) holds. By (12.1), $y=(x y)((x y) y)=x y$, a contradiction. Assume now that (10.4) holds. Then by (12.1) we have $y x=(y x) x=$ $(x(x y)) x$. By (12.3), $y x=((x y) x)(x y)=((x y)(y x))(x y)=((y x)(x y))(y x)$ $=x y$, a contradiction.
(c) Obvious.
(ii) By formula (1).

Lemma 12.3. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}_{(7.5)(8.5)}}$. If $p_{2}(\boldsymbol{G})=3$ then:
(i) The following identities hold:

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=y(x y) . \tag{12.8}
\end{equation*}
$$

(ii) \boldsymbol{G} satisfies exactly one of the following identities:

$$
\begin{align*}
& x y^{2}=x, \tag{12.9}\\
& x y^{2}=y x^{2} . \tag{12.10}
\end{align*}
$$

Proof. (i) By the assumption $p_{2}(\boldsymbol{G})=3$.
(ii) Consider identities (9.1)-(9.5). Suppose that (9.2) holds or equivalently $(y x) x=x$. Putting $x y$ for y and using (12.8) we obtain $x=((x y) x) x=$ $(x(y x)) x=((y x) x)(y x)$. By (9.2) we get $x=x(y x)$, a contradiction. Assume that (9.3) holds. Hence - using (9.3) and (12.8)—we have $x=(x y)(x y)=$ $((x y) y)(x y)=(y(x y)) y$. So $x=((y x) y) y=(y x) y$, a contradiction. Suppose now that (9.4) holds. By (12.8) we have $x(x y)=x((y x) x)=(y x)(x(y x))$.

Hence $x(x y)=((y x) x)(y x)=(x y)(y x)$. So we have

$$
\begin{equation*}
x(x y)=(x y)(y x) . \tag{12.11}
\end{equation*}
$$

Consider identities (10.1)-(10.5). Suppose that (10.1) holds. By (12.11) and (9.4) we have $y=(y x)(x y)=((x y) y)(x y)$. By (12.8) we get $y=$ $(x y)(y(x y))=(x y)((x y) x)$. Then by (10.1), $y=x y$, a contradiction. The term operation ${ }^{2} x y$ is dual to $x y^{2}$. So ${ }^{2} x y \neq y$, i.e. (10.2) does not hold in \boldsymbol{G}. Assume that (10.3) holds. By (10.3) we get $x y=(x y)(x y)=(x y)(x(x y))$. Hence-using (12.8)-we have $x y=x((x y) x)=x(x(y x))$. Thus $x y=x(y x)$, a contradiction. Now suppose that (10.4) holds. Then by (12.11) we have $y x=(x y)(y x)$. So $y x=((x y)(y x))(y x)$. By (9.4), (12.11) and (10.4) we have $y x=(y x)(x y)=y(y x)=x y$, a contradiction. Now assume that (10.5) holds. So evidently the term operation ${ }^{2} x y$ is essentially binary. As $p_{2}(\boldsymbol{G})=3$ we have

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=y(x y)=x(x y)=y(y x) . \tag{12.12}
\end{equation*}
$$

Putting $y x$ for y in (9.4) we get $(x(y x))(y x)=(y x) x=x y$. Hence by (12.12) we obtain $x y=(x(y x))(y x)=(y(y x))(y x)=(y x) y$. So $x y$ is commutative, a contradiction.

Lemma 12.4. Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}(7.5)(8.5)}$. Then:
(i) If $p_{2}(\boldsymbol{G})=3$ then $\boldsymbol{G} \in \mathcal{G}_{10}^{3} \cup \mathcal{G}_{11}^{3}$ where $\mathcal{G}_{10}^{3}=\mathcal{G}_{\mathrm{I}_{(12.8)(12.9)}, \mathcal{G}_{11}^{3}=}$ $\mathcal{G}_{\mathrm{I}_{(12.13)}}$ and

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)={ }^{2} x y=(x y)(y x)=x y^{2}=x y^{3} . \tag{12.13}
\end{equation*}
$$

(ii) If $\boldsymbol{G} \in \mathcal{G}_{10}^{3} \cup \mathcal{G}_{11}^{3}$ then $p_{2}(\boldsymbol{G}) \leq 3$.
(iii) If $\boldsymbol{G} \in \mathcal{G}_{10}^{3}$ then the clone $\{x, y, x \circ y\}$, where $x \circ y=(x y) x$, is minimal, and \boldsymbol{G} is polynomially equivalent to an affine space over $\operatorname{GF}(5)$.
(iv) If $\boldsymbol{G} \in \mathcal{G}_{11}^{3}$ then the clone in (iii) is a proper subclone of $\{x, y, x y$, $y x,(x y) x\}$.

Proof. (i) By Lemma 12.3 it is enough to prove (12.13). Identity (12.8) was proved, so we must prove that if $\boldsymbol{G} \in \mathcal{G}_{I(12.8)(12.10)}$ and $p_{2}(\boldsymbol{G})=3$ then

$$
\begin{align*}
& { }^{2} x y={ }^{2} y x, \tag{12.14}\\
& (x y)(y x)=(y x)(x y), \tag{12.15}\\
& x y^{2}=x y^{3} . \tag{12.16}
\end{align*}
$$

From $p_{2}(\boldsymbol{G})=3$ we infer that

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=y(x y)=x y^{2}=y x^{2} . \tag{12.17}
\end{equation*}
$$

As in the proof of Lemma 12.3 consider identities (10.1)-(10.5). Suppose that (10.1) holds. Putting $x y$ for x in this identity we obtain $(x y)((x y) y)=$ $x y$. Hence - using (12.17) -we have $x y=(x y)((x y) y)=(x y)(y(x y))$. Using (12.17) again we obtain $x y=(x y)(y(x y))=y((x y) y)=y(y(x y))=y$, a
contradiction. Now suppose that (10.2) holds. Putting $y x$ for y in (10.2) and using (12.17) we get $y x=x((x y) x)=(x y)(x(x y))=(x y) y$. Thus \boldsymbol{G} is commutative, a contradiction. Assume that (10.3) holds. So $x y=$ $(x y)(x y)=(x(x y))(x y)$. By (12.17) we have $x y=((x y) x) x=((y x) x) x=$ $((y x) x)(y x)$. Hence $x y=((y x) y)(y x)=(y(y x))(y x)$. By (10.3) we obtain $x y=(y x)(y x)=y x$. So G is commutative, a contradiction. Suppose that (10.4) holds. Then $x y=y(y x)=(y x)((y x) y)$. By (12.17) we have $x y=(y x)((y x) x)=x(y x)$, a contradiction. By the assumption $p_{2}(\boldsymbol{G})=3$ we find that (10.5) holds. More exactly,

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=y(x y)=x y^{2}=y x^{2}={ }^{2} x y={ }^{2} y x . \tag{12.18}
\end{equation*}
$$

Now consider identities (10.6)-(10.9) and (12.2). Suppose that (9.2) holds in \boldsymbol{G}. Putting $x y$ for y we have $(x(x y))((x y) x)=x$. By (12.18) the term operation $(x(x y))((x y) x)$ is commutative. So we have a contradiction. Now suppose that (10.7) holds. Putting $x y$ for x we get $((x y) y)(y(x y))=y$, a contradiction. Assume that (10.8) is satisfied. Then $x y=((x y)(y x))(x y)$. By (7.5) we have $x y=((y x)(x y))(y x)=y x$, a contradiction. Now assume that (10.9) holds. Then $((x y)(y x))(y x)=y x$. By (12.10) we have $y x=$ $((y x)(x y))(x y)=x y$, a contradiction. Thus $(x y)(y x)$ is commutative and consequently

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=x y^{2}={ }^{2} x y=(x y)(y x) . \tag{12.19}
\end{equation*}
$$

Now consider the identities

$$
\begin{align*}
& x y^{3}=x, \tag{12.20}\\
& x y^{3}=y, \tag{12.21}\\
& x y^{3}=x y, \tag{12.22}\\
& x y^{3}=y x, \tag{12.23}\\
& x y^{3}=y x^{3} . \tag{12.24}
\end{align*}
$$

Assume that (12.20) is satisfied. Then $x=((x(x y))(x y))(x y)$. By (12.19) we obtain $x=(((x y) x) x)(x y)=(((y x) x) x)(x y)$. By (12.20) we have $x=x(x y)$, a contradiction. Suppose that (12.21) holds. Then-using (12.19)-we get $y=((x y) y) y=(y(y x)) y=((y x) y)(y x)$. Hence $y=(y(y x))(y x)$. Therefore $y(y x)=((y(y x))(y x))(y x)=y x$, a contradiction. Now assume that (12.22) holds. By (12.10) we have $x y=(y(x y))(x y)$. Hence $x y=(x y)(x y)=$ $((y(x y))(x y))(x y)=y(x y)$, a contradiction. Suppose that (12.23) holds. By (12.19), $y x=((y x) y) y=(y(y x))(y x)$. Hence $y x=((y(y x))(y x))(y x)=$ ($y x) y$, a contradiction. Thus \boldsymbol{G} satisfies (12.24) and from the assumption $p_{2}(\boldsymbol{G})=3$ we get

$$
\begin{equation*}
(x y) x=(y x) y=x(y x)=x y^{2}={ }^{2} x y=(x y)(y x)=x y^{3} . \tag{12.25}
\end{equation*}
$$

(ii) Assume that $\boldsymbol{G} \in \mathcal{G}_{10}^{3}$. Observe that

$$
\begin{align*}
& x(x y)=y x, \tag{12.26}\\
& (x y)(y x)=y . \tag{12.27}
\end{align*}
$$

Indeed, putting $y x$ for x in (12.9) we obtain $y x=((y x) y) y$. By (12.8) we have $y x=(y(x y)) y=((x y) y)(x y)=x(x y)$. So we have (12.26). To prove (12.27) observe that $y=(y(y x))(y x)$. By (12.26) we have $y=(x y)(y x)$. By (1) we have $p_{2}(\boldsymbol{G}) \leq 3$.

Assume that $\boldsymbol{G} \in \mathcal{G}_{11}^{3}$. By (1)-using (12.25)-we have $p_{2}(\boldsymbol{G}) \leq 3$.
(iii) Assume that $\boldsymbol{G} \in \mathcal{G}_{10}^{3}$. Consider the binary operation $x \circ y=(x y) x$. Evidently this operation is commutative. It is easy to prove that $(x \circ y) \circ y=$ $x y$. So \boldsymbol{G} is polynomially equivalent to an affine space over $\mathrm{GF}(5)$ and its clone is minimal.
(iv) Assume that $\boldsymbol{G} \in \mathcal{G}_{11}^{3}$. As above $x \circ y=(x y) x$ is commutative. By (12.13) we have $(x \circ y) \circ y=x \circ y$. So (G, \circ) is a near-semilattice and the clone of \boldsymbol{G} is not minimal.

13. The proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. Let $\boldsymbol{G}=(G, \cdot)$ be a groupoid such that $p_{2}(\boldsymbol{G})=3$.
Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}\left(p_{2}=3\right)}$. Using Lemma 3.2 we infer that $x y, x y^{2}, x y^{3}$ are essentially binary. If $x y^{2}=y x^{2}$, then Lemma 3.3 shows that $\boldsymbol{G} \in \mathcal{G}_{1}^{3}$. If $x y^{2}$ is essentially binary and noncommutative, then by Lemma 3.4, \boldsymbol{G} satisfies either (3.1), (3.2) or (3.3). If \boldsymbol{G} satisfies (3.1), then the statement follows from Proposition 4.4. If \boldsymbol{G} satisfies (3.2), then Proposition 5.5 shows that $\boldsymbol{G} \in \mathcal{G}_{2}^{3}$. If \boldsymbol{G} satisfies (3.3), then Proposition 6.4 yields $\boldsymbol{G} \in \mathcal{G}_{3}^{3}$.

Let $\boldsymbol{G} \in \mathcal{G}_{\mathrm{IC}\left(p_{2}=3\right)}$. By Proposition 9.4, \boldsymbol{G} satisfies (7.3), (7.4) or (7.5). If \boldsymbol{G} satisfies (7.3), then Lemma 10.2 shows that \boldsymbol{G} satisfies (8.3), (8.4) or (8.5). If $\boldsymbol{G} \in \mathcal{G}_{\text {IČ }\left(p_{2} \leq 3\right)(7.3)(8.3)}$ then by Lemma 10.3, $\boldsymbol{G} \in \mathcal{G}_{5}^{3}$. If $\boldsymbol{G} \in$ $\mathcal{G}_{\text {IČ }\left(p_{2} \leq 3\right)(7.3)(8.4)}$ then by Lemma 10.4, $\boldsymbol{G} \in \mathcal{G}_{6}^{3}$. If $\boldsymbol{G} \in \mathcal{G}_{\text {IČ }\left(p_{2} \leq 3\right)(7.3)(8.5)}$ then by the dual version of Lemma 12.2 we infer that $\boldsymbol{G} \in \mathcal{G}_{8}^{3 \mathrm{~d}} \cup \mathcal{G}_{9}^{3 \mathrm{~d}}$. If $\boldsymbol{G} \in \mathcal{G}_{\text {IČ }\left(p_{2} \leq 3\right)(7.4)}$ then using Lemma 11.2 we see that $\boldsymbol{G} \in \mathcal{G}_{7}^{3}$. If $\boldsymbol{G} \in$ $\mathcal{G}_{\text {IC }\left(p_{2} \leq 3\right)(7.5)}$ then Lemmas 12.2 and 12.4 give $\boldsymbol{G} \in \mathcal{G}_{8}^{3} \cup \mathcal{G}_{9}^{3} \cup \mathcal{G}_{10}^{3} \cup \mathcal{G}_{11}^{3}$.

Thus we have proved that if $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}}$ and $p_{2}(\boldsymbol{G})=3$, then $\boldsymbol{G} \in \mathcal{G}_{\mathrm{I}_{\left(p_{2} \leq 3\right)}}=$ $\mathcal{G}_{1}^{3} \cup \ldots \cup \mathcal{G}_{11}^{3} \cup \mathcal{G}_{1}^{3 \mathrm{~d}} \cup \ldots \cup \mathcal{G}_{11}^{3 \mathrm{~d}}$.

To prove the converse we use the identities of the varieties \mathcal{G}_{i}^{3} and $\mathcal{G}_{i}^{3 \mathrm{~d}}$ $(i=1, \ldots, 11)$ and also the formula for $A^{(2)}(\boldsymbol{G})$.

Proof of Theorem 2.4. By Theorem 2.3 and Lemma 4.3, Proposition 5.5 and Lemmas 6.2, 10.3, 10.4, 11.2, 12.2, and 12.4 .
14. Examples. In this section we prove that the classes described in Theorem 2.3 are all nonempty. Below we give the tables of eleven groupoids $\boldsymbol{G}_{1}, \ldots, \boldsymbol{G}_{11}$:

\boldsymbol{G}_{1}	01234	\boldsymbol{G}_{2}	01234	G_{3}	01234
,	02344	,	02432	,	02424
1	21344	1	21324	1	21332
2	332	2	43243	2	43234
3	44434	3	32432	3	23332
4	44	4	2	4	
\boldsymbol{G}_{4}	01234	\boldsymbol{G}_{5}	01234	G_{6}	01234
0	02413	0	02222	0	02234
1	21340	1	31333	1	31234
2	43201	2	24244	2	22244
3	14032	3	43434	3	33434
4	30124	4		4	
\boldsymbol{G}_{7}	01234	\boldsymbol{G}_{8}	01234	G_{9}	01234
0	02434	0	02234	0	02434
1	31244	1	31234	1	31244
2	32244	2	42244	2	42244
3	32434	3	34434	3	34434
4	32444	4	44444	4	44444

G_{10}	01234	G_{11}	012
0	02341	0	02444
1	31420	1	3144
2	40213	2	4424
3	14032	3	4443
4	23104	4	444

We leave it to the reader to check that $\boldsymbol{G}_{i} \in \mathcal{G}_{i}^{3}$ for $i=1, \ldots, 11$. The author has checked it using a program written by Marek Żabka.

REFERENCES

[1] J. Berman, Free spectra of 3-element algebras, in: Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer, Berlin, 1983, 10-53.
[2] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227-238.
[3] -, On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33-36.
[4] J. Dudek, Another unique minimal clone, to appear.
[5] -, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191.
[6] -, On minimal extension of sequences, Algebra Universalis 23 (1986), 308-312.
[7] -, On varieties of groupoid modes, Demonstratio Math. 27 (1994), 815-828.
[8] -, Small idempotent clones I, Czechoslovak Math. J. 48 (1998), 105-118.
[9] -, The minimal extension of the sequence ($0,0,3$), Algebra Universalis 29 (1992), 419-436.
[10] J. Dudek, The unique minimal clone with three essentially binary operation, ibid. 27 (1990), 261-269.
[11] -, Varieties of idempotent commutative groupoids, Fund. Math. 120 (1984), 193204.
[12] G. Grätzer, Composition of functions, in: Proc. Conf. on Universal Algebra (Kingston, Ont., 1969), Queen's University, Kingston, Ont., 1970, 1-106.
[13] -, Universal Algebra, Springer, Berlin, 1979.
[14] G. Grätzer and A. Kisielewicz, A survey of some open problems on p_{n}-sequences and free spectra of algebras and varieties, in: Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Heldermann, Berlin, 1992, 57-88.
[15] G. Grätzer and R. Padmanabhan, On idempotent, commutative and nonassociative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-80.
[16] A. Kisielewicz, On idempotent algebra with $p_{n}=2 n$, Algebra Universalis 23 (1981), 313-323.
[17] -, Characterization of p_{n}-sequences for nonidempotent algebras, J. Algebra 108 (1987), 102-115.
[18] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), 45-61.
[19] P. P. Pálfy, Minimal clones, Preprint No. 27/1984, Math. Inst. Hungar. Acad. Sci.
[20] J. Płonka, On algebras with at most n distinct n-ary operations, Algebra Universalis 1 (1971), 80-85.
[21] - , On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.
[22] W. Sierpiński, Sur les fonctions de plusieurs variables, ibid. 33 (1945), 169-173.

Institute of Mathematics
Silesian Technical University
44-100 Gliwice, Poland
E-mail: jagalusz@zeus.polsl.gliwice.pl

[^0]: 1991 Mathematics Subject Classification: 20N, 08A.

