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ON A GAP SERIES OF MARK KAC
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KATUSI FUKUYAMA (KOBE)

Abstract. Mark Kac gave an example of a function f on the unit interval such that
f cannot be written as f(t) = g(2t) — g(¢) with an integrable function g, but the limiting

variance of n~1/2 ZZ;OI f(2kt) vanishes. It is proved that there is no measurable g such
that f(t) = g(2t) — g(¢). It is also proved that there is a non-measurable g which satisfies
this equality.

1. Introduction. Let us recall the following result of Kac [3], which
yields the central limit theorem for dyadic transformations.

THEOREM A. Let f be a real-valued function with period 1 satisfying

(1.1) {fydt=0 and |f2(t)dt=1.
0 0

(1) If f is of bounded variation or a-Hdélder continuous for some a > 0,
then

(1.2) m{t €10,1] ‘ % gf(zkt) < x} S B (),

where m denotes the Lebesque measure and P,z denotes the distribution
function of the normal distribution with mean 0 and variance o2, i.e. ®y2(x)

= Sioo e~/ (20%) du/V2mo?. Here, the limiting variance o is given by

co 1
(1.3) o2 =1+2) [ f(t)f(2")dt < co.
k=10
(2) If f is of bounded variation or a-Hélder continuous for some o > 1/2,
then o = 0 if and only if f is of the form
(1.4) f(t) =g(2t) —g(t)  a.e.

for some g which has period 1 and is square integrable on [0,1].
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Earlier, Fortet [1] announced this result, but the proof was not complete.
Kac succeeded in giving a rigorous proof, but he failed to prove part (2) for
all & > 0. Instead of completing the proof, he gave the example below to
show that part (2) does not hold without assuming any condition on f.

EXAMPLE B. Put ¢; =1 and ¢; = 1/y/j—1/4/j — 1 for j > 2. Then the
function f(t) = 3772, ¢;j cos 2/nt satisfies (1.2) with ¢® = 0, but there is no
integrable g satisfying (1.4).

Having given the above example, Kac [3; p. 43] stated: “The question
whether the representation (1.4) can be achieved in this case by means of a
g which is not integrable remains open”.

In this paper, we give an answer to this question by showing the following
theorem, which implies that there is no measurable g satisfying (1.4) for the
function of Example B.

~

THEOREM 1. Suppose that the Fourier coefficients f(n) of f are abso-
lutely summable in n and that f(n) = 0 if n # £2* (k. =0, 1, ...). If
there is no square integrable g satisfying (1.4), then there is no measurable
g satisfying (1.4).

On the other hand, for any given function f, it is always possible to

construct g satisfying (1.4), by using the Axiom of Choice. Of course this g
is not measurable in our case.

2. Proof of Theorem 1. First we prove a lemma and a proposition.

Set S,(t) = Sr2h F(25t) and [kl = (§, ()2 dt) />,

LEMMA 1. Let f be a square integrable function. Then there exists a
square integrable g satisfying (1.4) if and only if

(2.1) liminf ||.Sy,[|2 < 0.
n— o0

Proof. If we assume (1.4), then (2.1) is trivial. We prove the converse.
By (2.1) we can take a sequence {n;} of integers such that sup;cy [|Sn;[[2 <
00. Let g be the weak limit of —5,,; as j—o0c. We see that g(2t) —g(t) is the
weak limit of f(t) — f(2"it) as j — oco. By the Riemann-Lebesgue lemma,
f(2™it) converges weakly to 0 as j — oco. Since the weak limit is unique, we

have f(t) = g(2t) — g(t). =
The following proposition plays the key role in the proof of the theorem.

PROPOSITION 1. Assume the same conditions on f as in Theorem 1. If
there is no square integrable g satisfying (1.4), then

(2.2) ISnll2 = 00 and m{t € [0,1] | Sp(t)/||Snll2 < x} — P1(z).
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Proof. Since there is no square integrableg satisfying (1.4), the first part
of (2.2) follows from Lemma 1. The second part follows from the following
theorem by Salem—Zygmund [4].

THEOREM C. Suppose that a sequence {v;} of positive integers satisfies
the Hadamard gap condition:

vit1/v; >q>1  forall j €N,

and that arrays {an j}i<j, nen and {by ;}i<;, nen of real numbers satisfy

1 Jn ) ) 1/2
Ay = (5 Z}am +bn,j>> — oo and  max(|an,sl, bn.]) = o(An).
]:
Then
m{t € [0,1] ' T Z(am cos 2wt + by, jsin 2mv;t) < x} — D1 ().

Let a,, j and —b,, ; be the real and imaginary parts of 2(f((j —n+1)V0)

o~

+ ...+ f(j)) respectively. It is clear that

o
Sp(t) = Z(G“J cos 2m27t + by, ; sin 2727¢)
j=0
and [|S,|l2 = (% Z;‘;O(afw + bfhj))l/2 — 00. Clearly, |a, ;| and |b, ;| are

bounded by Y |f(n)| < co. Take {j,} satisfying Y77 (a2 ; + b2 ;)/[1Snll3
— 1, and divide S,, into two parts:

Sp(t) = < Z + Z )(an,j cos 2127t + by, ; sin 2727 ¢).
J<jn J>Jn
If we normalize by dividing by [|S,,||2, thanks to Theorem C, the first part

converges in law to the normal distribution. The second part converges to 0
in L?-sense. Combining these, we have the conclusion. m

Proof of Theorem 1. By Proposition 1, we have ||S,|l2 — co. Suppose
that f is represented by a measurable ¢ in the form (1.4). Then S, (¢) =
g(2"t) — g(t) and therefore, for € > 0, we have

m{[Sn|/[[Snllz > e} < m{lg(2"t)[ > e[Sull2/2} + m{lg(t)] > el Snll2/2}
= 2m{lg()| > &[Snll2/2} =0,

which contradicts the second formula of (2.2). =

3. Construction of g. Let us first introduce an equivalence relation ~
on [0,1) by s ~ t if and only if there exist n,m > 0 such that 2"s = 2™¢
(mod 1). It is clear that each equivalence class E satisfies E C Q or E C Q°.
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If we regard each element of E as a vertex, and if we consider that we have
an edge connecting ¢ and s if 2¢ = s (mod 1), then E has the structure of a
graph. Since ¢t € Q implies 2"t Z ¢ (mod 1), if £ C Q° then E has no cycle
and is a binary graph.

Now we are in a position to construct g. Take a representative ty € E
and put g(tg) arbitrary. Set

9l8) = {g(to) — Sp(t) if 2"t =ty (mod 1),
where n € N. Since E has no cycle, the function g is well defined on E and
it satisfies f(t) = g(2t) — g(t) for any ¢t € E. Thus we can define g such that
f(t) =g(2t) — g(t) for any t € Q°. If we define g(¢) = 0 for t € Q, we have
g satisfying (1.4).
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