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POLYNOMIAL ALGEBRA OF CONSTANTS
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Abstract. Let k be a field of characteristic zero. We describe the kernel of any
quadratic homogeneous derivation d : k[x, y, z]→ k[x, y, z] of the form d = x(Cy+z) ∂∂x +
y(Az + x) ∂∂y + z(Bx+ y) ∂∂z , called the Lotka–Volterra derivation, where A,B,C ∈ k.

1. Introduction. Let k[x, y, z] be the algebra of polynomials in three
variables x, y, z over a field k of characteristic zero. By a derivation of
k[x, y, z] we mean a k-linear mapping d : k[x, y, z]→ k[x, y, z] of the form

d = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z
,

where f, g, h ∈ k[x, y, z]. If the polynomials f, g, h are homogeneous of the
same degree s, then we say that d is homogeneous of degree s.

For a given derivation d of k[x, y, z] we denote by k[x, y, z]d the kernel
of d, that is,

k[x, y, z]d = {w ∈ k[x, y, z] : d(w) = 0}.
The set k[x, y, z]d is a k-subalgebra of k[x, y, z] containing k, called the k-
algebra of constants of d. The set k[x, y, z]d \ k coincides with the set of
polynomial first integrals of the corresponding system

ẋ = f(x, y, z), ẏ = g(x, y, z), ż = h(x, y, z),

of ordinary differential equations in three variables (see [4], [5] or [6] for
details).

It is well known ([7], [5]), that the algebra k[x, y, z]d is finitely generated
over k. This means that either

k[x, y, z]d = k

or there exist polynomials f1, . . . , fr ∈ k[x, y, z] \ k (where r ≥ 1) such that

k[x, y, z]d = k[f1, . . . , fr],
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where k[f1, . . . , fr] means the smallest k-subalgebra of k[x, y, z] containing
k and f1, . . . , fr.

The minimal number of generators of k[x, y, z]d is not bounded when d
runs over the set of all derivations of k[x, y, z], and even if d runs over the
set of all homogeneous derivations of degree 1 (see [8]). If k[x, y, z]d = k
then we say that the algebra of constants is trivial.

Assume now that A,B,C are elements of k. Following [1], by a Lotka–
Volterra derivation defined by the triple (A,B,C) we mean the derivation
d : k[x, y, z]→ k[x, y, z] given by the formula

(1.1) d = x(Cy + z)
∂

∂x
+ y(Az + x)

∂

∂y
+ z(Bx+ y)

∂

∂z
.

Note that d is a quadratic homogeneous derivation such that

d(x) = x(Cy + z), d(y) = y(Az + x), d(z) = z(Bx+ y).

The autonomous system of differential equations, corresponding to the
polynomials x(Cy + z), y(Az + x), z(Bx + y), is called the Lotka–Volterra
system. This system has been studied for a long time; see for example [1], [2],
[3], where many references on this subject can be found. We are interested
in an algebraic description of the k-algebra k[x, y, z]d.

In [1; pp. 687–689] a list of polynomials belonging to k[x, y, z]d is pre-
sented. In [2] the first named author characterizes all Lotka–Volterra deriva-
tions d such that k[x, y, z]d 6= k, as follows.

Theorem 1.2 ([3]). Let d : k[x, y, z] → k[x, y, z] be the Lotka–Volterra
derivation (1.1) with respect to(A,B,C). The algebrak[x, y, z]d, of constants
of d, is non-trivial if and only if one of the following cases holds:

(1) ABC = −1.

(2) C = −1− 1/A, A = −1− 1/B and B = −1− 1/C.

(3) C = −k2 − 1/A, A = −k3 − 1/B, B = −k1 − 1/C, where, up to a
permutation, (k1, k2, k3) is one of the triples: (1, 2, 2), (1, 2, 3), (1, 2, 4).

The polynomials x − Cy + ACz and A2B2x2 + y2 + A2z2 − 2ABxy −
2A2Bxz−2Ayz belong to k[x, y, z]d in the cases (1) and (2), respectively. In
each of the cases of (3), there exists a homogeneous polynomial in k[x, y, z]d

of degree 3, 4 or 6 respectively.

The main result of the present paper is the following theorem, giving
a complete description of the algebra k[x, y, z]d of constants in each of the
cases (1), (2), (3) in Theorem 1.2.

Theorem 1.3. Let k[x, y, z] be the algebra of polynomials in three varia-
bles over a field k of characteristic zero. Let d : k[x, y, z] → k[x, y, z] be a
Lotka–Volterra derivation (1.1) such that k[x, y, z]d 6= k.
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(1) Assume that ABC = −1 and let Q− ⊆ k be the set of negative
rational numbers.
(1a) If A,B,C ∈ Q− then there exist positive integers p, q, r such

that gcd(p, q, r) = 1, A = −pq , B = − qr , C = − rp , and k[x, y, z]d

= k[t, w], where {
t = pqx+ rqy + rpz,
w = xpyqzr.

(1b) If some of the scalars A,B,C belongs to k\Q− then k[x, y, z]d =
k[x− Cy +ACz].

(2) If C = −1 − 1/A, A = −1 − 1/B and B = −1 − 1/C, then
k[x, y, z]d = k[g], where g = A2B2x2+y2+A2z2−2ABxy−2A2Bxz−
2Ayz.

(3) Let C = −k2 − 1/A, A = −k3 − 1/B, B = −k1 − 1/C, where, up
to a permutation, (k1, k2, k3) is one of the triples: (1, 2, 2), (1, 2, 3),
(1, 2, 4). In every case there exists a homogeneous irreducible poly-
nomial g in k[x, y, z] (of degree 3, 4 or 6, respectively) such that
k[x, y, z]d = k[g].

The proof of Theorem 1.3 is presented in Section 5 and is based on a
sequence of preparatory results given in Sections 2–4.

2. Darboux polynomials and strict polynomial constants. As-
sume that d : k[x, y, z] → k[x, y, z] is the Lotka–Volterra derivation with
respect to (A,B,C).

We say that a nonzero polynomial f ∈ k[x, y, z] is a Darboux polynomial
of d if d(f) = hf for some h ∈ k[x, y, z]. In this case the polynomial h is
unique and it is called the eigenvalue of f .

It is easy to show that the product of Darboux polynomials is a Darboux
polynomial. Moreover, if f ∈ k[x, y, z] is a Darboux polynomial then so is
each factor of f . Nonzero polynomials which belong to k[x, y, z]d are simply
Darboux polynomials with the zero eigenvalue.

The variables x, y, z are Darboux polynomials with the eigenvalues Cy+
z, Az + x, Bx + y, respectively. Every monomial xαyβzγ is a Darboux
polynomial with the eigenvalue equal to

α(Cy + z) + β(Az + x) + γ(Bx+ y).

We say that a polynomial g ∈ k[x, y, z] is strict if g is nonzero, homoge-
neous and not divisible by x, y or z. Every nonzero homogeneous polynomial
f ∈ k[x, y, z] has a unique representation

f = xαyβzγg,

where α, β, γ are nonnegative integers and g ∈ k[x, y, z] is strict.
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Let us recall the following result.

Proposition 2.1 ([2], [3]). If g is a strict Darboux polynomial of d then
its eigenvalue is a linear form

λx+ µy + νz,

where λ, µ, ν are nonnegative integers.

Using Proposition 2.1 we get an important consequence.

Proposition 2.2. Let g ∈ k[x, y, z] be a strict polynomial and let g =
g1g2, for some g1, g2 ∈ k[x, y, z]. If d(g) = 0 then d(g1) = d(g2) = 0.

P r o o f. Let d(g) = 0. Then g1, g2 are strict Darboux polynomials of d,
and hence (by Proposition 2.1) d(g1) = h1g1, d(g2) = h2g2, where h1 =
λ1x + µ1y + ν1z, h2 = λ2x + µ2y + ν2z, for some nonnegative integers λ1,
µ1, ν1, λ2, µ2 and ν2. The equalities 0 = d(g) = d(g1g2) = (h1 +h2)g imply
that h1 + h2 = 0, and hence λ1 + λ2 = 0, µ1 + µ2 = 0 and ν1 + ν2 = 0,
that is, λ1 = µ1 = ν1z = λ2 = µ2 = ν2 = 0. Therefore d(g1) = 0g1 = 0,
d(g2) = 0g2 = 0.

Corollary 2.3. If the set k[x, y, z]d\k contains a strict polynomial then
it contains a strict irreducible polynomial.

Now we recall some facts from [2].

Proposition 2.4 ([2]). If k[x, y, z]d 6= k, then A 6= 0, B 6= 0 and
C 6= 0.

Proposition 2.5 ([2]). If g is a strict polynomial of degree m, belonging
to k[x, y, z]d, then

g(0, y, z) = a(y−Az)m, g(x, 0, z) = b(z−Bx)m, g(x, y, 0) = c(x−Cy)m,

for some nonzero elements a, b, c ∈ k. Moreover , a = c(−C)m, b = a(−A)m

and c = b(−B)m.

Proposition 2.6 ([2]). The ring k[x, y, z]d contains a nonzero homoge-
neous polynomial of degree 1 if and only if ABC = −1.

3. Monomial constants. In this section we characterize all the Lotka–
Volterra derivations d such that the algebra k[x, y, z]d contains a nontrivial
monomial.

Assume again that d : k[x, y, z]→ k[x, y, z] is the Lotka–Volterra deriva-
tion with respect to (A,B,C).

Proposition 3.1. The following two conditions are equivalent :

(1) The set k[x, y, z]d \ k contains a monomial.
(2) The parameters A,B,C are negative rational numbers and ABC

= −1.
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P r o o f. (1)⇒(2). Let d(xαyβzγ) = 0, where α, β, γ are nonnegative
integers with α+ β + γ > 0. Then α(Cy + z) + β(Az + x) + γ(Bx+ y) = 0
and so

αC = −γ, βA = −α, γB = −β.
If α = 0, then γ = −0C = 0, β = −0B = 0, and we have a contradiction
because α + β + γ > 0. Hence α > 0 and analogously β > 0, γ > 0.
This implies that A = −α/β, B = −β/γ, C = −γ/α are negative rational
numbers and ABC = (−α/β)(−β/γ)(−γ/α) = −1.

(2)⇒(1). If A,B,C are negative rational numbers and ABC = −1, then
there exist integers α > 0, β > 0 and γ > 0 such that A = −α/β, B = −β/γ,
C = −γ/α. Then d(xαyβzγ) = 0.

Let us note the following corollary from the above proof.

Corollary 3.2. Let α, β, γ be nonnegative integers with α+ β + γ > 0.
If d(xαyβzγ) = 0, then α > 0, β > 0, γ > 0 and A = −α/β, B = −β/γ,
C = −γ/α.

We say that a monomial xpyqzr is primitive if p > 0, q > 0, r > 0 and
gcd(p, q, r) = 1. As a consequence of the above facts we obtain

Corollary 3.3. Assume that the set k[x, y, z]d \k contains a monomial.
Then there exists a unique primitive monomial w belonging to k[x, y, z]d.
Every monomial belonging to k[x, y, z]d is, up to a nonzero coefficient , a
power of w.

Let us also note a fact from [2].

Proposition 3.4 ([2]). Let f = xαyβzγg, where α, β, γ are nonnegative
integers and g ∈ k[x, y, z] is strict. If d(f) = 0, then d(xαyβzγ) = 0 and
d(g) = 0.

4. The algebra of constants. The following theorem describes the
algebra k[x, y, z]d in the case when a monomial belongs to k[x, y, z]d \ k.
This proves the statement (1a) of Theorem 1.3.

Theorem 4.1. Let d be a Lotka–Volterra derivation with respect to
(−p/q,−q/r,−r/p), where p, q, r are positive integers and gcd(p, q, r) = 1.
Then k[x, y, z]d = k[t, w], where

t = pqx+ rqy + rpz, w = xpyqzr.

P r o o f. It is clear that k[t, w] ⊆ k[x, y, z]d. Since d is homogeneous, it
is sufficient to prove that if f ∈ k[x, y, z] is a homogeneous polynomial such
that d(f) = 0, then f ∈ k[t, w]. Assume therefore that 0 6= f ∈ k[x, y, z]d

and f is homogeneous.
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Let f = xαyβzγg, where α ≥ 0, β ≥ 0, γ ≥ 0 and g ∈ k[x, y, z] is strict.
Then d(xαyβzγ) = 0 and d(g) = 0 (see Proposition 3.4).

The equality d(xαyβzγ) = 0 implies (by Corollary 3.3) that xαyβzγ is,
up to a nonzero coefficient, a power of w (because w is a unique primi-
tive monomial belonging to k[x, y, z]d). This means that xαyβzγ belongs to
k[t, w].

Therefore it is sufficient to prove that if g is a strict polynomial belonging
to k[x, y, z]d, then g ∈ k[t, w]. We will prove it by induction on the degree
of g. If deg g = 1 then it is obvious. Assume now that deg g = m > 1.

Since g is strict, there exists (by Proposition 2.5) a nonzero element c ∈ k
such that

g(x, y, 0) = c

(
x+

r

p
y

)m
.

Consider now the polynomial

h = g − c

pmqm
tm.

It is a homogeneous polynomial belonging to k[x, y, z]d. Observe that

h(x, y, 0) = c

(
x+

r

p
y

)m
− c

pmqm
(pqx+ rqy)m = 0.

This implies that h is divisible by z.
If h = 0, then

g =
c

pmqm
tm ∈ k[t, w].

Suppose now that h 6= 0. Then h = xαyβzγg1, where g1 ∈ k[x, y, z] is strict
and α ≥ 0, β ≥ 0, γ ≥ 0, α+ β + γ ≥ 1. The equality d(h) = 0 implies (by
Proposition 3.4) that d

(
xαyβzγ

)
= 0 and d(g1) = 0. But deg g1 < deg g so,

by induction, g1 ∈ k[t, w]. Moreover, the monomial xαyβzγ also belongs to
k[t, w], because it is (by Corollary 3.3), up to a nonzero coefficient, a power
of w. Therefore g ∈ k[t, w].

Example 4.2. Let d be the derivation of k[x, y, z] such that

d(x) = x(z − y), d(y) = y(x− z), d(z) = z(y − x).

Then (by Theorem 4.1) k[x, y, z]d = k[x + y + z, xyz]. It is easy to
check that d coincides with the jacobian derivation Jac(xyz, x+ y+ z, ).

The next theorem decribes the algebra of constants in the case when the
set k[x, y, z]d \ k has no monomials.

Theorem 4.3. Let d be a Lotka–Volterra derivation. Assume that
k[x, y, z]d 6= k and the set k[x, y, z]d \ k has no monomials. Then there ex-
ists an irreducible homogeneous polynomial g ∈ k[x, y, z] such that k[x, y, z]d

= k[g].
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P r o o f. The idea of the proof is similar to that in Theorem 4.1. It follows
from the assumptions and Proposition 3.4 that there exists a strict polyno-
mial g belonging to k[x, y, z]d. We may assume (by Corollary 2.3) that g is
irreducible. Let m = deg g.

It is sufficient to prove that every nonzero homogeneous polynomial be-
longing to k[x, y, z]d is, up to a nonzero coefficient, a power of g.

Assume that f is a nonzero homogeneous polynomial, of degree n ≥ 1,
belonging to k[x, y, z]d. Then f is strict (by the assumptions and Proposi-
tion 3.4) and hence, by Proposition 2.5,

f(0, y, z) = p(y −Az)n,

for some 0 6= p ∈ k. Moreover, also by Proposition 2.5,

g(0, y, z) = a(y −Az)m,

for some 0 6= a ∈ k. Consider now the polynomial

h = anfm − pmgn.

It is a homogeneous polynomial belonging to k[x, y, z]d. Observe that

h(0, y, z) = anpm(y −Az)nm − anpm(y −Az)nm = 0.

This implies that h is divisible by x.

Suppose that h 6= 0. Then h = xαyβzγh1, where h1 ∈ k[x, y, z] is strict
and α ≥ 0, β ≥ 0, γ ≥ 0, α + β + γ ≥ 1. Since d(h) = 0, Proposition 3.4
implies that d(xαyβzγ) = 0, which is a contradiction with our assumptions.

Therefore h = 0, that is, anfm = pmgn and we see that f is, up to a
nonzero coefficient, a power of g (since g is irreducible).

5. Conclusion. Now it is easy to prove our main result.

Proof of Theorem 1.3. The statement (1a) is a consequence of Theo-
rem 4.1.

Let ABC = −1 and assume that some of the scalars A,B,C belong to
k \ Q−. Then k[x, y, z]d 6= k (by Theorem 1.2) and the set k[x, y, z]d \ k
has no monomials (Proposition 3.1). Hence, by Theorem 4.3, there exists
an irreducible homogeneous polynomial g ∈ k[x, y, z] such that k[x, y, z]d =
k[g]. Since ABC = −1, Proposition 2.6 implies that deg g = 1. It is easy to
check that g = x− Cy +ACz. This completes the proof of (1b).

The statements (2) and (3) are simple consequences of Theorems 1.2,
4.3 and Proposition 3.1.

Corollary 5.1. Let d be a Lotka–Volterra derivation. If the ring of
constants of d is nontrivial , then it is a polynomial ring in one or two
variables.
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