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WOLD DECOMPOSITION OF THE HARDY SPACE

AND BLASCHKE PRODUCTS SIMILAR TO A CONTRACTION

BY

M. I. STESS IN (ALBANY, NY)

Abstract. The classical Wold decomposition theorem applied to the multiplication
by an inner function leads to a special decomposition of the Hardy space. In this paper we
obtain norm estimates for componentwise projections associated with this decomposition.
An application to operators similar to a contraction is given.

1. Introduction. Let V : X → X be an isometry of a Hilbert space X.
The well-known Wold decomposition theorem [9] states that

(1) X = X0 ⊕
∞⊕

n=0

V nX1,

where X1 = X ⊖V X is a wandering subspace and X0 =
⋂∞

n=0 V
nX. In the

special case when X = H2 and V is the operator of multiplication by an
inner function g, we have

⋂∞
n=0 g

nH2 = {0}, and (1) implies

(2) H2 =
∞⊕

n=1

snH
2[g],

where H2[g] stands for the H2-closure of the algebra of polynomials in g,
H2[g] = {f ◦ g : f ∈ H2} = ClosureH2(span{gk : k = 0, 1, . . .}) and sn,
n = 1, 2, . . . , is an orthonormal basis of the ∗-invariant subspace H2 ⊖ gH2.
We call (2) the Wold decomposition of H2 associated with g.

The Wold decomposition of the Hardy space was investigated in [10] in
connection with the description of the lattice of subspaces invariant under
multiplication by g. In the case of a finite Blaschke product a similar question
was considered by P. Lax [11].

In the case when the inner function g is a Blaschke product (in what
follows we call it B) with zeros {ak : k = 1, 2, . . .}, the following special
choice of the basis sn, n = 1, 2, . . . , was considered in [10]:
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(3) sk(z) =
ak
|ak|

·

√
1− |ak|2

1− akz

k−1∏

m=1

am
|am|

·
am − z

1− amz
, k = 1, 2, . . .

It follows from (2) that every H2-function f is of the form

(4) f =

∞∑

k=1

skfk ◦B,

where fk ◦B ∈ H2[B]. This decomposition gives rise to the following com-
ponent operators Qk, k = 1, 2, . . . :

(5) Qk : H2 → H2, Qk(f) = fk.

It was shown in [10] that these operators map bounded functions into
bounded functions. Moreover, they can be extended from bounded functions
to Hp, 1 ≤ p ≤ ∞, as bounded operators acting on Hp. This fact plays
an important role in establishing a Beurling type theorem for B-invariant
subspaces.

In this paper we give norm estimates of Qk as an operator acting on Hp,
p ≥ 2. In Section 3 we prove the following result.

Theorem 1. The following upper estimate holds for the norm of Qk as

an operator on Hp for 2 ≤ p ≤ ∞:

‖Qk‖p→p ≤

(
1 + |B(0)|

1− |B(0)|

)5/2

.

In the case when each level set of B|T (where T stands for the unit circle)
is either countable or its closure has Lebesgue measure zero we establish a
lower bound for the norm of Qk as an operator on H∞. More precisely, let
D be a subset of the unit circle where B has nontangential boundary limits.
Then D is a subset of full Lebesgue measure. We denote this limit function
on D by the same letter B. For w ∈ T write

Ew = {z ∈ D : B(z) = w}.

Theorem 2. If for almost all w ∈ T either Ew has Lebesgue measure

zero, or Ew is countable, then there is a constant C independent of k and

B such that the norm of Qk as an operator on H∞ satisfies

‖Qk‖∞→∞ ≥ C(1− |ak|
2)1/2 log

1

1− |ak|2
, k = 1, 2, . . .

As a corollary we prove that if B(0) = 0 and almost all level sets Ew are
countable, then there is a Blaschke product F such that

‖QkF‖∞ = ‖Qk‖∞→∞, k = 1, 2, . . .

We apply the above results to the following problem related to operators
similar to a contraction.
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Let X be a Hilbert space. Recall that an operator A : X → X is called a
contraction if ‖A‖ ≤ 1, and it is similar to a contraction if there is a linear
isomorphism C : X → X such that ‖C−1AC‖ ≤ 1.

Let B be a Blaschke product such that the closure of the set of poles
of B lies off the spectrum of A. If A is similar to a contraction, then also
B(A) is similar to a contraction. This follows directly from the celebrated
inequality of von Neumann [13].

The question is when the converse statement is true. That is, given
that B(A) is similar to a contraction, does this imply that A is similar to a
contraction? If B(z) = zn for some n, the affirmative answer to this question
was obtained by Halmos and others (see [8]). In [12] V. Mascioni proved
that the result holds for any finite Blaschke product (in fact, [12] deals
with the more general case of operators on Banach spaces). An alternative
proof of the Hilbert version of Mascioni’s result was given in [10] by using
estimates related to the Wold decomposition of the Hardy spaceH2. Neither
of these proofs worked for the case of an infinite Blaschke product. It was
R. G. Douglas who suggested that the Wold decomposition should be used
in the above problem and made a conjecture that the answer is affirmative
for all or, at least, some wide class of infinite Blaschke products.

The following result partially confirms Douglas’s conjecture.

Theorem 3. Let B be a Blaschke product whose zeros satisfy the condi-

tion

(6)
∞∑

k=1

(1− |ak|
2)1/2 <∞.

If B(A) is similar to a contraction, then also A is similar to a contraction.

The paper is organized as follows. Section 2 contains necessary back-
ground results about singular measures generated by inner functions. It
was proved by Clark [6] that these measures are spectral measures of one-
dimensional perturbations of the shift operator on ∗-invariant subspaces
of H2. They were further investigated by Aleksandrov [2, 3] and Poltoratski
[15, 16]. We also state the theorem of Arveson [4] which generalizes the
inequality of von Neumann and Paulsen’s criteria for an operator to be sim-
ilar to a contraction [14]. Section 3 is devoted to norm estimates of the
component operators Qk as operators on Hp. We also show how Theorem
3 above follows from these estimates. Section 4 contains some concluding
remarks.

Acknowledgements. The author would like to thank R. G. Douglas
and J. A. Cima for useful discussions, and the referee for very helpful sug-
gestions about both the content of the paper and the presentation style. In
particular, the referee’s observation sharpened the estimate in Theorem 1.
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2. Background results

2.1. Measures σw. If w ∈ T , then the harmonic function

ϕ(z) = Re
w +B(z)

w −B(z)

is positive in the unit disk. By Herglotz’s theorem there is a nonnegative
measure σw on T such that

Re
w +B(z)

w −B(z)
=
\
T

Re
ζ + z

ζ − z
dσw(ζ).

The measures σw, w ∈ T , were introduced by Clark [6] in connection with
his investigation of one-dimensional pertubations of the shift operator on
∗-invariant subspaces. They are singular measures supported on the level
set of B, i.e. Ew. That is,

(7) σw(T \Ew) = 0

(cf. [2]). The following result is due to Aleksandrov.

Theorem A (Aleksandrov [2]). Any function f ∈ L1(T , dm) belongs to

L1(T , dσw) for almost all w ∈ T and

(8)
\
T

f(z) dm(z) =
\
T

(\
T

f(z) dσw(z)
)
dm(w).

2.2. Completely polynomially bounded operators. Let D(z) be a holo-
morphic polynomial (n×n)-matrix function in the unit disk ∆. Its ∞-norm
is defined by

(9) ‖D‖∞ = sup
|z|<1

( sup
|ζ|≤1

|D(z)ζ|)

where ζ = (ζ1, . . . , ζn) ∈ C
n and, as usual, |(b1, . . . , bn)| = (

∑
|bi|

2)1/2.
If A : X → X is a bounded operator on a Hilbert space X, then for

any polynomial matrix D(z) the operator D(A) : Xn → Xn is bounded
(Xn is equipped with the standard norm ‖(x1, . . . , xn)‖

2 =
∑

‖xi‖
2). The

following generalization of von Neumann’s inequality is due to Arveson.

Theorem B (Arveson [4]). If A is a contraction, then ‖D(A)‖ ≤ ‖D‖∞
for any polynomial matrix D.

An operator A is called completely polynomially bounded if there is a
constant C such that for any polynomial matrix D,

‖D(A)‖ ≤ C‖D‖∞.

It immediately follows from Arveson’s result that if A is similar to a con-
traction, then A is completely polynomially bounded. The following result
by Paulsen states that the converse is also true.
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Theorem C (Paulsen [14]). If A is completely polynomially bounded ,
then A is similar to a contraction.

3. Norm estimates for operators Qk. Given a Blaschke product B
we introduce L2[B] in a similar way as H2[B] was introduced in the previous
section:

L2[B] = ClosureL2(T )(span{B
k|T : k = 0,±1, . . .}).

Let PL2[B] and PH2[B] stand for the orthogonal projections

PL2[B] : L
2(T ) → L2[B], PH2[B] : L

2(T ) → H2[B].

If B denotes the σ-subalgebra generated by B in the σ-algebra of Lebesgue
measurable subsets of T , then it is easily seen that PL2[B] coincides with the
conditional expectation operator associated with B (cf. [7, p. 183]). It was
proved in [10] that this leads to the following result: if f ∈ Hp, p ≥ 2, then
fk ∈ Hp for all k ≥ 1. Here we give a norm estimate for this inclusion.

Obviously, the restrictions of PL2[B] and PH2[B] to H
2 coincide. Since

PL2[B] is a conditional expectation, this implies (cf. [7, p. 184]) that for
any 1 ≤ p ≤ ∞ the restriction of PH2[B] to H

∞ can be extended to a norm

one operator PHp[B] that maps Hp onto Hp[B] = ClosureHp(span{Bk : k =
0, 1, . . .}).

Theorem 1. Let p ≥ 2. The following estimate for the norm of Qk as

an operator on Hp holds:

(10) ‖Qk‖p→p ≤
(1 + |B(0)|

1− |B(0)|

)5/2

, k = 1, 2, . . .

To prove this theorem we will need some auxiliary results.
Along with the functions sk, k = 1, 2, . . . , given by (3) we introduce the

following functions tk:

tk(z) =
ak
|ak|

·
z
√

1− |ak|2

1− akz

∞∏

j=k+1

aj
|aj |

·
aj − z

1− ajz
.

Note that both sk and tk belong to the ∗-invariant subspace H2⊖BH2 and
their restrictions to the unit circle T satisfy the relation

(11) tk|T = −Bsk|T .

Lemma 1. Let f ∈ L2(T ) and f0 ◦ B = PL2[B]f . Then for almost all

w ∈ T we have

1− |B(0)|2

|1−B(0)w|2
f0(w) =

\
T

f(z) dσw(z).

P r o o f. This follows from the fact that PL2[B] coincides with conditional
expectation. The direct proof of the statement above is as follows. Let ϕ∈
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L2(T )⊖ L2[B]. Write

ψ(w) =
\
T

ϕ(z) dσw(z), w ∈ T .

By the result of Aleksandrov (Theorem A in this paper) ψ ∈ L1(T ) and for
all k = 0,±1,±2, . . . we have

0 =
\
T

ϕ(z)B(z)k dm(z) =
\
T

wk
(\
T

ϕ(z) dσw(z)
)
dm(w) =

\
T

wkψ(w) dm(w).

By the uniqueness theorem this implies ψ = 0. If f = f0 ◦ B + f1 where
f1 ∈ L2(T )⊖ L2[B], this and (7) yield\

T

f(z) dσw(z) =
\
T

(f0 ◦B)(z) dσw(z)

= f0(w)
\
T

dσw(z) =
1− |B(0)|2

|1−B(0)w|2
f0(w).

Since the restrictions of PL2[B] and PH2[B] to H
2 coincide, we obtain the

following result.

Corollary. If f ∈ H2 and f0 ◦B = PH2[B]f , then

1− |B(0)|2

|1−B(0)w|2
f0(w) =

\
T

f(z) dσw(z) a.e. on T .

For a ∈ ∆ denote by Ra : H1 → H1 the following operator:

Raf(z) = (1− |a|2)

f(z)

1− az
−

f(a)

1− |a|2

z − a
.

It is obvious that Ra maps Hp into Hp for all 1 ≤ p ≤ ∞. If f(0) = 0, then
the following estimate holds:

(12) ‖Raf‖p ≤
(1 + |a|)2−1/p

(1− |a|)1+1/p
‖f‖p.

Indeed, write h(z) = f(z)/(1 − az). Since h(0) = 0, the standard Hp-point
evaluation implies

|h(a)| ≤
|a|

(1− |a|2)1/p
‖h‖p.

Now we have

‖Raf‖p ≤ (1− |a|2)
‖h(·) − h(a)‖p

1− |a|
≤ (1 + |a|)

(
1 +

|a|

(1− |a|2)1/p

)
‖h‖p

≤
(1 + |a|)2−1/p

(1− |a|)1/p
‖h‖p ≤

(1 + |a|)2−1/p

(1− |a|)1+1/p
‖f‖p.
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Lemma 2. Let f ∈ H2, f =
∑∞

k=1 skfk ◦B. Write f̂k ◦B = PH2[B](ftk).
Then

fk = −RB(0)f̂k.

P r o o f. Write B(0) = β. It follows from (2) that for all w ∈ ∆,

fk(w) =

∞∑

j=1

(\
T

f(z)sk(z)B(z)
j
dm(z)

)
wj =

\
T

f(z)sk(z)

1− wB(z)
dm(z).

Now, if w 6= β, then (11), the theorem of Aleksandrov and the Corollary to
Lemma 1 yield

fk(w) = −
\
T

τ

1− wτ

(\
T

f(z)tk(z) dστ (z)
)
dm(τ)

= −(1− |β|2)
\
T

τ f̂k(τ)

(1− wτ )|1− βτ |2
dm(τ)

= −
1− |β|2

w − β

\
T

( 1

1− wτ
−

1

1− βτ

) f̂k(τ)

1− βτ
dm(τ) = −Rβ f̂k(w).

The case w = β follows by continuity.

Proof of Theorem 1. We use the same notation as in Lemma 2. Let
f ∈ Hp and |w| = 1. If 2 ≤ p <∞, we have by the Corollary to Lemma 1,

|f̂k(w)|
p =

(
|1− βw|2

1− |β|2

)p∣∣∣
\
T

f(z)tk(z) dσw(z)
∣∣∣
p

≤

(
|1− βw|2

1− |β|2

)p(\
T

|f(z)|p dσw(z)
)(\
T

|tk(z)|
p′

dσw(z)
)p/p′

≤

(
|1− βw|2

1− |β|2

)p(\
T

|f(z)|p dσw(z)
)

×
(\
T

|tk(z)|
2 dσw(z)

)p/2(\
T

dσw(z)
)(p−2)/2

=

(
|1− βw|2

1− |β|2

)1+p/2 \
T

|f(z)|p dσw(z)

≤

(
1 + |β|

1− |β|

)1+p/2 \
T

|f(z)|p dσw(z).

In the last inequality we used the facts that\
T

dσw(z) = Re
w + β

w − β
=

1− |β|2

|1− βw|2
≤

1 + |β|

1− |β|
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and \
T

|tk(z)|
2 dσw(z) = Re

w +B(ak)

w −B(ak)
= 1.

After integration with respect to dm(w) over the unit circle, application of
the theorem of Aleksandrov and raising to the power 1/p we obtain

‖f̂k‖p ≤

(
1 + |β|

1− |β|

)1/2+1/p

‖f‖p.

Since tk(0) = 0, we obviously have f̂(0) = 0. Now, since p ≥ 2, by (12) and
Lemma 2 we get

‖Qkf‖p = ‖fk‖p = ‖Rβ f̂k‖p ≤
(1 + |β|)5/2

(1− |β|)3/2+2/p
‖f‖p ≤

(
1 + |β|

1− |β|

)5/2

‖f‖p.

Since for any bounded analytic function its H∞-norm is the supremum
of Hp-norms, the case p = ∞ follows from the above by passing to the limit
as p→ ∞.

Remark. In fact, we proved that

(13) ‖Qk‖p→p ≤
(1 + |β|)3−1/p

(1− |β|)2+1/p
sup
w∈T

‖tk‖Lp′ (T ,dσw),

where, as usual, 1/p + 1/p′ = 1.

Corollary. If f is a disk-algebra function, then Qkf are disk-algebra

functions for all k = 1, 2, . . .

P r o o f. First we note that if q is a polynomial and

q =

∞∑

k=1

skqk ◦B

is the Wold decomposition (4), then for all k ≥ 1, qk are functions analytic
in the closed unit disk (if B(0) = 0, all qk are polynomials of the same
degree as q or lower). Indeed, it is enough to prove this for monomials. Let
q(z) = zn. For |w| < 1 we have

(zn)k(w) =

∞∑

l=0

(\
T

znsk(z)B(z)
l
dm(z)

)
wl =

\
T

zn
sk(z)

1− wB(z)
dm(z)

=
1

n!
·
dn

dzn
·

sk(z)

1− wB(z)

∣∣∣∣
z=0

=
γ(w)

(1 −B(0)w)n+1
,

where γ(w) is a polynomial of degree n in w. Obviously, this function is
analytic in the disk {|w| < 1/|B(0)|}.

Since any disk-algebra function f is the uniform limit of a sequence
of polynomials, Theorem 1 and the above computation show that Qkf is
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the limit of a sequence of rational functions analytic in the disk of radius
1/|B(0)| which converges uniformly in the closed unit disk.

Theorem 2. If for almost all w ∈ T the set Ew is either countable, or
satisfies the condition mes{Ew} = 0, then there is a constant C independent

of k and of the Blaschke product B such that the norm of Qk as an operator

on H∞ satisfies the following lower estimate:

‖Qk‖∞→∞ ≥ C
√
1− |ak|2 log

1

1− |ak|2
.

P r o o f. Write

(14) kϕ(z) = z

√
1− akz

1− az

k∏

j=1

aj
|aj |

·
aj − z

1− ajz
.

Note that the restriction of kϕ to the unit circle is continuous and unimod-
ular. Let w ∈ T . If mes{Ew} = 0, then by the theorem of Rudin [17] there
is a disk-algebra function kψ(z) of ∞-norm one whose restriction to Ew is
equal to kϕ|Ew

.
Now we have

|(kψ̂)k(w)| =
|1− βw|2

1− |β|2

∣∣∣
\
T

tk(z)kψ(z) dσw(z)
∣∣∣

=
|1− βw|2

1− |β|2

\
T

√
1− |ak|2

|1− akz|
dσw(z) =

|1− βw|2

1− |β|2
‖tk‖L1(T ,dσw).

Let hn = kψB
n. Then

(ĥn)k ◦B = PH2[B](kψB
ntk) = Bn(kψ̂)k ◦B.

This implies

(ĥn)k(τ) = τn(kψ̂)k(τ), τ ∈ ∆.

Therefore,

(ĥn)k(β) → 0 as n→ ∞.

Since ‖hn‖∞ = 1 for all n = 1, 2, . . . , we obtain

‖Qk‖∞→∞ ≥ sup
n

{‖Qkhn‖∞} ≥ lim
n→∞

|Qkhn(w)|

=
|1− βw|2

1− |β|2
(1− |β|2)

‖tk‖L1(T ,dσw)

|w − β| · |1− βw|

=

∣∣∣∣
1− βw

w − β

∣∣∣∣‖tk‖L1(T ,dσw) = ‖tk‖L1(T ,dσw).

Thus,

(15) ‖Qk‖∞→∞ ≥ ‖tk‖L1(T ,dσw).
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If Ew is countable, but its closure has positive Lebesgue measure, instead
of Rudin’s theorem we use the theorem of Belna, Colwell and Piranian [5].
Applied to this case it claims the existence of a Blaschke product which has
nontangential limits at every point in Ew and such that these limits coincide
with the restriction of ϕk to Ew. Then the above argument shows that (15)
holds in this case as well.

Since almost all Ew are either countable or their closures have Lebesgue
measure zero, we conclude

‖Qk‖∞→∞ ≥ sup
w∈T

‖tk‖L1(T ,dσw).

It is well known that ‖1/(1− az)‖L1(T ,dm) has the order of log(1/(1− |a|2))
for a in the unit disk (cf. [18], p. 18). Therefore, for some constant C we
have

C
√
1− |ak|2 log

1

1− |ak|2
≤ ‖tk‖L1(T ,dm) =

\
T

|tk(z)| dm(z)

=
\
T

(\
T

|tk(z)| dσw(z)
)
dm(w)

=
\
T

‖tk‖L1(T ,dσw) dm(w)

≤ sup
w∈T

‖tk‖L1(T ,dσw).

Remark. It immediately follows from (13) and Theorem 2 that if B(0)
= 0, then

(16) ‖Qk‖∞→∞ = sup
w∈T

‖tk‖L1(T ,dσw).

In this case Lemma 2 claims that for almost all w ∈ T ,

(17) Qkf(w) = fk(w) = −w
\
T

f(z)tk(z) dσw(z).

Corollary 1. If a Blaschke product B is such that B(0) = 0 and almost

all level sets Ew, w ∈ T , are countable, then there is an H∞-function ϕ,
‖ϕ‖ = 1, such that

‖Qkϕ‖∞ = ‖Qk‖∞→∞ for all k = 1, 2, . . .

P r o o f. Fix {wk,n}
∞
k,n=1, |wk,n| = 1, k, n = 1, 2, . . . , such that Ewk,n

is
countable for all k, n and

sup
n

‖tk‖L1(T ,dσwk,n
) = sup

w∈T
‖tk‖L1(T ,dσw).

Define a function ϕ on E =
⋃∞

k,n=1Ewk,n
by

ϕ|Ewk,n
= (kϕ)|Ewk,n
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where kϕ are the functions (14). Since E is countable, the result of Belna,
Colwell and Piranian [5] mentioned above implies that there is a Blaschke
product F whose nontangential limits coincide with ϕ everywhere on E.
Now, the argument of Theorem 2, (16) and (17) yield the claimed equality.

Corollary 2. If B(0) = 0 and either the zeros of the Blaschke product

B satisfy the condition

(18)

∞∑

k=1

(1− |ak|)
1/2 <∞,

or the set of accumulation points of zeros of B has linear Lebesgue measure

0 in the unit circle, then there is a Blaschke product F such that for all

k = 1, 2, . . . ,

(19) ‖QkF‖∞ = ‖Qk‖∞→∞‖F‖∞ ≥ C
√

1− |ak|2 log
1

1− |ak|2
.

P r o o f. In both cases the level sets Ew are countable. If (18) holds,
this follows from the result of Ahern and Clark [1]. In the second case,
B has angular derivatives at every point of an open set complement to the
points of accumulation of zeros of B, which has full measure. By the result
of Aleksandrov [2, Proposition 4] this implies that all level sets of B are
countable. Now the required statement follows from Corollary 1.

Finally, we notice that the following vector form of Theorem 1 holds.

Let D(z) be a polynomial matrix function,

D(z) = ‖dij(z)‖
n
i,j=1.

Any polynomial dij has a representation (4),

dij =

∞∑

k=1

skdijk ◦B.

This leads to the following decomposition, which we call the Wold decom-

position of D associated with B:

(20) D =
∞∑

k=1

skDk ◦B

where

Dk ◦B = ‖dijk ◦B‖ni,j=1.

If we denote by Mn the space of (n × n)-matrix functions in the unit disk
whose entries are in H∞ equipped with the ∞-norm given by (9), then we
can introduce operators

Qn,k : Mn → Mn, Qn,k(D) = Dk.
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The following result is the extension of Theorem 1 to the vector case.
Its proof goes along the same lines as the proof of Theorem 1 and, thus, we
omit it.

Theorem 1′. For all n = 1, 2, . . . and k = 1, 2, . . . the norm of Qn,k

satisfies the estimate

‖Qn,k‖Mn→Mn
≤

(
1 + |B(0)|

1− |B(0)|

)5/2

.

As a direct corollary to this theorem we obtain the following result about
operators similar to a contraction.

Let A : X → X be a bounded operator in a Hilbert space X. Following
the standard notation we let Sp(A) stand for the spectrum of A. Let B be
a Blaschke product,

B(z) = zl
∞∏

k=1

ak
|ak|

·
ak − z

1− akz
,

and

(21) {1/ak}∞k=1 ∩ Sp(A) = ∅.

It is easy to show that in this case the following infinite product converges
and defines a bounded operator on X:

(22) B(A) = Al
∞∏

k=1

ak
|ak|

(ak −A)(1 − akA)
−1.

Theorem 3. Let B be a Blaschke product whose zeros satisfy the condi-

tion
∞∑

k=1

(1− |ak|
2)1/2 <∞

and A : X → X be a bounded operator in a Hilbert space X such that

({1/ak}∞k=1) ∩ Sp(A) = ∅.

If B(A) is similar to a contraction, then also A is similar to a contraction.

P r o o f. Let B(A) = C−1SC where C : X → X is a linear isomorphism
of X and S : X → X is a contraction. We will show that A is completely
polynomially bounded.

Let D be a polynomial matrix. The decomposition (20) yields

(23) D(A) =

∞∑

k=1

sk(A)Dk(B(A)).
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Since the spectrum of A is off the poles of B, (3) implies that there is a
constant M such that

(24) ‖sk(A)‖ ≤M
√

1− |ak|2, k = 1, 2, . . .

The Corollary to Theorem 1 implies that Arveson’s theorem (Theorem B)
can be applied to Dk(S), k = 1, 2, . . . Now, Theorem 1′, (24), (25) and
Arveson’s theorem yield

‖D(A)‖ ≤
∞∑

k=1

‖sk(A)‖ · ‖C‖ · ‖C−1‖ · ‖Dk(S)‖

≤M · ‖C‖ · ‖C−1‖

(
1 + |B(0)|

1− |B(0)|

)5/2( ∞∑

k=1

(1− |ak|
2)1/2

)
‖D‖∞.

Thus, A is completely polynomially bounded and, therefore, by Paulsen’s
theorem (Theorem C) it is similar to a contraction.

4. Concluding remarks. It would be very interesting to find sharp
upper and lower estimates of norms of component operators Qk since these
estimates are crucial for the description of the lattice of multiplication in-
variant subspaces in Hardy spaces (cf. [10]). It was already mentioned in
the Remark after the proof of Theorem 1 that the upper estimate in that
theorem was not the best possible: for p > 2 the relation (13) gives a better
one. Still, (13) is based on the estimate (12) which is rather rough.

In the case when the Blaschke product vanishes at the origin and has
countable multiplicity on the boundary, and p = ∞, the norm of Qk is given
by (16). It would be interesting to know if the same result holds without the
assumption of countable boundary multiplicity.

Further, our method of getting lower estimates (Theorem 2) requires
countable boundary multiplicity since it is based on the application of the
result by Belna, Colwell and Piranian [5]. The author is unaware of a result
similar to [5] for uncountable sets of zero Lebesgue measure.

Finally, lower estimates in the case p <∞ would be of considerable inter-
est as well. The difficulty here obviously lies in the problem of interpolation
(or rather interpolation and approximation) on a set of positive Lebesgue
measure.
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