FANS ARE NOT C-DETERMINED

BY
ALEJANDRO ILLANES (MÉXICO)

Abstract

A continuum is a compact connected metric space. For a continuum X, let $C(X)$ denote the hyperspace of subcontinua of X. In this paper we construct two nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that $C(X)$ and $C(Y)$ are homeomorphic. This answers a question by Sam B. Nadler, Jr.

1. Introduction. A continuum is a compact connected metric space. For a continuum X, let $C(X)$ denote the space of all the subcontinua of X, with the Hausdorff metric H. A Whitney map for $C(X)$ is a continuous function $\mu: C(X) \rightarrow[0,1]$ such that $\mu(X)=1, \mu(\{x\})=0$ for each $x \in X$ and if $A \subsetneq B$, then $\mu(A)<\mu(B)$. For the existence of Whitney maps see $[9,0.50 .1]$. A dendroid is an arcwise connected hereditarily unicoherent continuum. Given points p and q in a dendroid $X, p q$ denotes the unique arc joining p and q if $p \neq q$, and $p q=\{p\}$ if $p=q$. A fan is a dendroid with only one ramification point. Let X be a fan with ramification point v; it is said to be a smooth fan provided that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in X converging to a point $x \in X$, then $v x_{n} \rightarrow v x$.

A class Λ of continua is said to be C-determined ([9, Definition 0.61)]) provided that if $X, Y \in \Lambda$ and $C(X) \cong C(Y)(C(X)$ is homeomorphic to $C(Y)$), then $X \cong Y$. The following classes of continua are known to be C-determined:
(a) finite graphs different from an arc $([3,9.1])$,
(b) hereditarily indecomposable continua ($[9,0.60]$),
(c) smooth fans ([4, Corollary 3.3]),
(d) indecomposable continua such that all their proper nondegenerate subcontinua are arcs ([7]), and
(e) metric compactifications of the half-ray $[0, \infty)([1])$.

Recently, answering a question by Nadler, the author showed that the class of chainable continua is not C-determined ([5]). In [9, Questions 0.62]

[^0]Nadler asked if the class of fans is C-determined. Here, we answer this question in the negative.

Description of the examples. Given two points p, q in the Euclidean plane $\mathbb{R}^{2}, p q$ denotes the convex segment which joins them. Given points p_{1}, \ldots, p_{n} in \mathbb{R}^{2}, let $\left\langle p_{1}, \ldots, p_{n}\right\rangle=p_{1} p_{2} \cup p_{2} p_{3} \cup \ldots \cup p_{n-1} p_{n}$. Given a point $p \in \mathbb{R}^{2}$ and a subset A of \mathbb{R}^{2}, let $p+A=\{p+a: a \in A\}$. The set of positive integers is denoted by \mathbb{N}. Let $\theta=(0,0) \in \mathbb{R}^{2}, B_{0}=\theta(2,0)$ and $C_{0}=(2,0)(3,0)$.

Let

$$
Z=\langle\theta,(2,1),(1,2),(3,3)\rangle
$$

Notice that $Z \subset\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq 2 x\right\}$.
For each $n \in \mathbb{N}$, let

$$
P_{n}=\left(1-\frac{1}{2^{n-1}}, 1-\frac{1}{2^{n-1}}\right)+\left\{\frac{1}{3 \cdot 2^{n}} p: p \in Z\right\}
$$

Let

$$
P=\left[\bigcup\left\{P_{n}: n \in \mathbb{N}\right\}\right] \cup\{(1,1)\}
$$

Notice that $P \subset\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq 2 x\right\}$.

Given $m \in \mathbb{N}$, let

$$
\begin{aligned}
& B_{m}=\theta\left(1, \frac{1}{2^{m-1}}\right) \cup\left\{\left(1+x, \frac{1}{2^{m-1}}+\frac{y}{2^{m+1}}\right):(x, y) \in P\right\}, \\
& C_{m}=\left(2, \frac{1}{2^{m-1}}+\frac{1}{2^{m+1}}\right)\left(3, \frac{1}{2^{m-1}}+\frac{1}{2^{m+1}}\right) .
\end{aligned}
$$

Notice that $B_{m} \subset\left\{(x, y) \in \mathbb{R}^{2}: y \leq x / 2^{m-1}\right.$ and $\left.y \leq 1 / 2^{m-1}+1 / 2^{m+1}\right\}$.
Finally, let

$$
X=\bigcup\left\{B_{m}: m=0,1, \ldots\right\}, \quad Y=\bigcup\left\{B_{m} \cup C_{m}: m=0,1, \ldots\right\} .
$$

Clearly, X and Y are fans and X is not homeomorphic to Y.
$C(X)$ is homeomorphic to $C(Y)$. Fix a Whitney map $\mu: C(X) \rightarrow$ $[0,1]$. By the main result of [10], we may assume that $\mu\left(B_{m}\right)=1 / 2$ for every $m=0,1, \ldots$ Let $\pi_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be the projection on the i th coordinate, $i=1,2$.

We denote the Hilbert cube by \mathbb{Q}. Let $C(\{\theta\}, X)=\{A \in C(X): \theta \in A\}$ and $C(\{\theta\}, Y)=\{A \in C(Y): \theta \in A\}$. In [4], Eberhart and Nadler constructed geometric models for the hyperspace of subcontinua of a smooth fan. We will use some of the ideas and results from that paper.

As a consequence of Theorem 2.3 of [4], we know that $C(\{\theta\}, X)$ and $C(\{\theta\}, Y)$ are homeomorphic to \mathbb{Q}.

Let $N(X)=\{\theta p \in C(X): p \in X\}, N(Y)=\{\theta p \in C(Y): p \in Y\}$, $T(X)=\bigcup\left\{C\left(B_{m}\right): m=0,1, \ldots\right\}$, and $T(Y)=\bigcup\left\{C\left(B_{m} \cup C_{m}\right): m=\right.$ $0,1, \ldots\}$. Clearly, $T(X)$ and $T(Y)$ are compact, $C(\{\theta\}, X) \cap T(X)=$ $N(X), C(\{\theta\}, Y) \cap T(Y)=N(Y), C(X)=C(\{\theta\}, X) \cup T(X)$ and $C(Y)=$ $C(\{\theta\}, Y) \cup T(Y)$.

Claim 1. $N(X)$ (respectively, $N(Y)$) is a Z-set in $C(\{\theta\}, X)$ (respectively, $C(\{\theta\}, Y))$.

Recall that, by definition, $N(X)$ is a Z-set in $C(\{\theta\}, X)$ if and only for each $\varepsilon>0$, there exists a continuous function

$$
g_{\varepsilon}: C(\{\theta\}, X) \rightarrow C(\{\theta\}, X)-N(X)
$$

such that $H\left(g_{\varepsilon}(A), A\right)<\varepsilon$ for every $A \in C(\{\theta\}, X)$.
In order to prove Claim 1, let $\varepsilon>0$. Suppose that $\varepsilon<1$. Let $D_{\varepsilon}=\{p \in$ $X:\|p-\theta\| \leq \varepsilon / 2\}$. Then define $g_{\varepsilon}: C(\{\theta\}, X) \rightarrow C(\{\theta\}, X)-N(X)$ by

$$
g_{\varepsilon}(A)=A \cup D_{\varepsilon} .
$$

Clearly, g_{ε} has the required properties. Therefore, $N(X)$ is a Z-set in $C(\{\theta\}, X)$. Similarly, $N(Y)$ is a Z-set in $C(\{\theta\}, Y)$.

Notice that, for each $m \in \mathbb{N}, \pi_{2} \mid B_{m}: B_{m} \rightarrow\left[0,1 / 2^{m-1}+1 / 2^{m+1}\right]$ is one-to-one. Let $\mathcal{B}=\left\{A \in C(X): \pi_{1}(A) \subset[1,2]\right\}$.

For $i=1,2$, let $M_{i}, m_{i}: C(X) \rightarrow \mathbb{R}$ be the maps defined by $M_{i}(A)=$ $\max \pi_{i}(A)$ and $m_{i}(A)=\min \pi_{i}(A)$. Let $\omega: N(X) \cup \mathcal{B} \rightarrow[0,1]$ be given by

$$
\omega(A)=\left\{\begin{array}{l}
\frac{M_{1}(A)+M_{2}(A)}{2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right)} \\
\quad \text { if } A \in C\left(B_{m}\right) \cap N(X) \text { for some } m \in \mathbb{N}, \\
M_{1}(A) / 4 \quad \text { if } A \subset B_{0} \text { and } A \in N(X), \\
\left(M_{1}(A)-m_{1}(A)+M_{2}(A)-m_{2}(A)\right) / 4 \quad \text { if } A \in \mathcal{B} .
\end{array}\right.
$$

Claim 2. The set \mathcal{B} and the function ω have the following properties:
(a) \mathcal{B} is closed in $C(X), \mathcal{B} \cap N(X)=\emptyset$,
(b) ω is continuous,
(c) if $A \subsetneq B$, then $\omega(A)<\omega(B)$,
(d) $\omega(\{p\})=0$ for each $\{p\} \in N(X) \cup \mathcal{B}$ and $\omega\left(B_{m}\right)=1 / 2$ for each $m=0,1, \ldots$

Statements (a), (b) and (d) are easy to prove. In order to prove (c), let $A, B \in N(X)$ be such that $A \subsetneq B \subset B_{m}$ for some $m \in \mathbb{N}$. Since A and B are $\operatorname{arcs}, \theta$ is an end point of A and of B and $\pi_{2} \mid B_{m}$ is one-to-one, we conclude that $M_{2}(A)<M_{2}(B)$. Notice that $M_{1}(A) \leq M_{1}(B)$. Thus $\omega(A)<\omega(B)$. The case $A, B \subset B_{0}$ is easier. The case $A, B \in \mathcal{B}$ follows from the fact that $\pi_{2} \mid B_{m}$ is one-to-one for every $m \in \mathbb{N}$. Finally, the case $A \in \mathcal{B}$ and $B \in N(X)$ is easy to check. This completes the proof of Claim 2.

Clearly, $N(X) \cup \mathcal{B}$ is a compact subset of $C(X)$. Thus we may apply the main result of [10]. In this way we may assume that the Whitney map μ also satisfies $\mu \mid(N(X) \cup \mathcal{B})=\omega$.

Let $g: T(X) \rightarrow \mathbb{R}^{3}$ be given by

$$
g(A)= \begin{cases}\left(\frac{M_{1}(A)+M_{2}(A)}{2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right)}, M_{2}(A), \mu(A)\right) \\ & \text { if } A \subset B_{m} \text { for some } m \in \mathbb{N}, \\ \left(M_{1}(A) / 4,0, \mu(A)\right) & \text { if } A \subset B_{0},\end{cases}
$$

Clearly, g is a continuous function.
Claim 3. g is one-to-one.
In order to prove Claim 3, suppose that $A, B \in T(X)$ and $g(A)=g(B)$.
If $A \subset B_{0}$, then $0=M_{2}(A)=M_{2}(B)$. Thus $B \subset B_{0}$. Since $M_{1}(A)=$ $M_{1}(B)$, it follows that A and B are (possibly degenerate) subarcs of B_{0} with the same right end point. Thus, $A \subset B$ or $B \subset A$. But $\mu(A)=\mu(B)$. Therefore, $A=B$.

Therefore we may assume that $A \nsubseteq B_{0}$ and $B \nsubseteq B_{0}$. Thus $M_{2}(A)=$ $M_{2}(B)>0$.

If $A, B \subset B_{m}$ for some $m \in \mathbb{N}$, then since $\pi_{2} \mid B_{m}$ is one-to-one and $M_{2}(A)=M_{2}(B)$, we conclude that A and B are (possibly degenerate) subarcs of B_{m} with a common end point. Then $A \subset B$ or $B \subset A$. Since $\mu(A)=\mu(B)$, we conclude that $A=B$.

Finally, we consider the case when $A \subset B_{n}$ and $B \subset B_{m}$ with $0<n<$ m. We know that $B_{m} \subset\left\{(x, y) \in \mathbb{R}^{2}: y \leq x / 2^{m-1}\right.$ and $y \leq 1 / 2^{m-1}+$ $\left.1 / 2^{m+1}\right\}$. This implies $M_{2}(B) \leq M_{1}(B) / 2^{m-1}$ and $M_{2}(B)=M_{2}(A) \leq$ $1 / 2^{m-1}+1 / 2^{m+1}$. The way that B_{n} and B_{m} were constructed implies $A \subset$ $\theta\left(1,1 / 2^{n-1}\right)$ and $M_{2}(A)=M_{1}(A) / 2^{n-1}$.

Since

$$
\frac{M_{1}(A)+M_{2}(A)}{2\left(2+1 / 2^{n-1}+1 / 2^{n+1}\right)}=\frac{M_{1}(B)+M_{2}(B)}{2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right)}
$$

and $n<m$, we obtain

$$
2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right) M_{1}(A)>2\left(2+1 / 2^{n-1}+1 / 2^{n+1}\right) M_{1}(B)
$$

Then
$2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right) 2^{n-1} M_{2}(A)>2\left(2+1 / 2^{n-1}+1 / 2^{n+1}\right) 2^{m-1} M_{2}(B)$.
Thus

$$
\frac{1}{2^{m-1}}\left(2+\frac{1}{2^{m-1}}+\frac{1}{2^{m+1}}\right)>\frac{1}{2^{n-1}}\left(2+\frac{1}{2^{n-1}}+\frac{1}{2^{n+1}}\right)
$$

This is a contradiction since $n<m$. Thus the proof of Claim 3 is complete, i.e. g is one-to-one.

By Claim 3, the map g is a homeomorphism from $T(X)$ onto $g(T(X)) \subset$ \mathbb{R}^{3}. Thus we have obtained a model for $T(X)$.

Let $S=\left\{(x, z) \in \mathbb{R}^{2}: 0 \leq x \leq 1 / 2, z \geq 2-4 x\right.$ and $\left.0 \leq z \leq x\right\}$ and $R=(2 / 5,2 / 5)(1 / 2,1 / 2)$. Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the projection defined as $\pi(x, y, z)=(x, z)$.

Claim 4. For each $m=0,1, \ldots$, let $\mathcal{A}_{m}=(\pi \circ g)^{-1}(S) \cap C\left(B_{m}\right), \mathcal{C}_{m}=$ $N(X) \cap C\left(B_{m}\right)=\left\{A \in C\left(B_{m}\right): \theta \in A\right\}, e_{m}=\left(2,1 / 2^{m-1}+1 / 2^{m+1}\right)$ for $m \geq 1, e_{0}=(2,0)$ and $\mathcal{D}_{m}=\left\{A \in C\left(B_{m}\right): e_{m} \in A\right\}$. Then:
(i) $\pi \circ g\left|\mathcal{C}_{m}: \mathcal{C}_{m} \rightarrow \theta(1 / 2,1 / 2), \pi \circ g\right| \mathcal{D}_{m}: \mathcal{D}_{m} \rightarrow(1 / 2,0)(1 / 2,1 / 2)$ and $\pi \circ g \mid \mathcal{A}_{m}: \mathcal{A}_{m} \rightarrow S$ are homeomorphisms,
(ii) $\pi\left(g\left(\mathcal{A}_{m} \cap \mathcal{C}_{m}\right)\right)=R$,
(iii) $\mathrm{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right)=\left(\pi \circ g \mid C\left(B_{m}\right)\right)^{-1}((1 / 2,0)(2 / 5,2 / 5))$, and
(iv) $\operatorname{Bd}_{T(X)}\left(\bigcup\left\{\mathcal{A}_{m}: m=0,1, \ldots\right\}\right)=(\pi \circ g)^{-1}((1 / 2,0)(2 / 5,2 / 5))$.

Since B_{m} is an arc with end points θ and e_{m}, there is a homeomorphism from $C\left(B_{m}\right)$ into a triangle such that the following sets are sent to the respective sides of the triangle: the set of singletons of B_{m}, \mathcal{C}_{m} and \mathcal{D}_{m}. In particular, \mathcal{C}_{m} and \mathcal{D}_{m} are arcs. The end points of \mathcal{C}_{m} are $\{\theta\}$ and B_{m} and the end points of \mathcal{D}_{m} are $\left\{e_{m}\right\}$ and B_{m}. Given $A \neq B$ in \mathcal{C}_{m} (respectively,
\mathcal{D}_{m}), we have $A \subsetneq B$ or $B \subsetneq A$. This implies that $\mu(A)<\mu(B)$ or vice versa. Thus, $\mu \mid \mathcal{C}_{m}$ (respectively, $\mu \mid \mathcal{D}_{m}$) is one-to-one.

Let $A \in \mathcal{C}_{m}$. Then $A \subset B_{m}$. Thus $\mu(A) \leq \mu\left(B_{m}\right)=1 / 2$ and $\pi(g(A))=$ $(\omega(A), \mu(A)) \in \theta(1 / 2,1 / 2)$. Since $\pi(g(\{\theta\}))=\theta$ and $\pi\left(g\left(B_{m}\right)\right)=(1 / 2,1 / 2)$, we conclude that $\pi \circ g \mid \mathcal{C}_{m}: \mathcal{C}_{m} \rightarrow \theta(1 / 2,1 / 2)$ is a homeomorphism.

Given $A \in \mathcal{D}_{m}$, we have $e_{m} \in A \subset B_{m}$. Then $M_{1}(A)=2$ and $M_{2}(A)=$ $1 / 2^{m-1}+1 / 2^{m+1}$ if $m \geq 1$, and $M_{1}(A)=2$ if $m=0$. Thus $\pi(g(A))=$ $(1 / 2, \mu(A)) \in(1 / 2,0)(1 / 2,1 / 2)$. Since $\mu\left(\left\{e_{m}\right\}\right)=0$ and $\mu\left(B_{m}\right)=1 / 2$, we conclude that $\pi \circ g \mid \mathcal{D}_{m}: \mathcal{D}_{m} \rightarrow(1 / 2,0)(1 / 2,1 / 2)$ is a homeomorphism.

Now we show that $\pi \circ g \mid \mathcal{A}_{m}$ is one-to-one.
Let $D_{1}=\bigcup\left\{\alpha: \alpha\right.$ is a straight line segment contained in B_{1} and the slope of α is negative $\}$. Let $D_{0}=\pi_{1}\left(D_{1}\right)$.

Let $m \geq 0$. Let $A \in C\left(B_{m}\right)$ be such that $A \subset \pi_{1}^{-1}\left(D_{0}\right)$. Let $g(A)=$ $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. We prove that $z^{\prime}<2-4 x^{\prime}$ (and then $A \notin \mathcal{A}_{m}$). We only consider the case $m \geq 1$, the case $m=0$ is easier. Notice that $\pi_{1}(A) \subset[1,2]$. Then $A \in \mathcal{B}$ and $\mu(A)=\left(M_{1}(A)-m_{1}(A)+M_{2}(A)-m_{2}(A)\right) / 4$. Notice that, from the way B_{m} was constructed, $M_{1}(A)-m_{1}(A) \leq\left(2-M_{1}(A)\right) / 4$ and $M_{2}(A)-m_{2}(A) \leq\left(2-M_{1}(A)\right) / 8$. Thus $\mu(A)<\left(2-M_{1}(A)\right) / 2$.

Notice that

$$
x^{\prime}=\frac{M_{1}(A)+M_{2}(A)}{2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right)}<\frac{M_{1}(A)+1 / 2^{m-1}+1 / 2^{m+1}}{2\left(2+1 / 2^{m-1}+1 / 2^{m+1}\right)}
$$

Then

$$
1-2 x^{\prime}>\frac{2-M_{1}(A)}{2+1 / 2^{m-1}+1 / 2^{m+1}} \geq \frac{2-M_{1}(A)}{4} \geq \frac{\mu(A)}{2}
$$

Thus $z^{\prime}=\mu(A)<2-4 x^{\prime}$.
Now, we are ready to prove that $\pi \circ g \mid \mathcal{A}_{m}$ is one-to-one. It is easy to show that $\pi \circ g \mid C\left(B_{0}\right)$ is one-to-one. So, we only consider the case of $m \geq 1$. Suppose that $A, B \in \mathcal{A}_{m}$ and $\pi(g(A))=\pi(g(B))$. If $M_{2}(A)=M_{2}(B)$, then since $\pi_{2} \mid B_{m}$ is one-to-one, A and B are (possibly degenerate) arcs with a common end point. Thus $A \subset B$ or $B \subset A$. Since $\mu(A)=\mu(B)$, we conclude that $A=B$. Hence, we may assume that $M_{2}(A)<M_{2}(B)$. Since $\pi(g(A))=$ $\pi(g(B)), M_{1}(A)>M_{1}(B)$. From the way B_{m} was constructed, it follows that $B \subset \pi_{1}^{-1}\left(D_{0}\right)$. By the paragraph above $B \notin \mathcal{A}_{m}$. This contradiction proves that $\pi \circ g \mid \mathcal{A}_{m}$ is one-to-one.

Now, we show that $\pi \circ g \mid \mathcal{A}_{m}: \mathcal{A}_{m} \rightarrow S$ is onto. Let $(x, z) \in S$. Then $0 \leq x \leq 1 / 2, z \geq 2-4 x$ and $0 \leq z \leq x$. Since $0 \leq z \leq 1 / 2$, we have $(z, z) \in$ $\theta(1 / 2,1 / 2)$ and $(1 / 2, z) \in(1 / 2,0)(1 / 2,1 / 2)$. Thus there exist $C \in \mathcal{C}_{m}$ and $D \in \mathcal{D}_{m}$ such that $(\mu(C), \mu(C))=\pi(g(C))=(z, z)$ and $(1 / 2, \mu(D))=$ $\pi(g(D))=(1 / 2, z)$. Let $\mathcal{E}=\left(\mu \mid C\left(B_{m}\right)\right)^{-1}(z)$. Since B_{m} is an arc, by $[6$, $6.4(\mathrm{a})], \mathcal{E}$ is an arc with end points C and D. Notice that for every $E \in \mathcal{E}$, $\pi(g(E)) \in \mathbb{R} \times\{z\}$. Since $z \leq x \leq 1 / 2$, the Intermediate Value Theorem
implies that there exists $E_{0} \in \mathcal{E}$ such that $\pi\left(g\left(E_{0}\right)\right)=(x, z)$. Notice that $E_{0} \in \mathcal{A}_{m}$. Therefore, $\pi \circ g \mid \mathcal{A}_{m}: \mathcal{A}_{m} \rightarrow S$ is bijective.

Clearly, \mathcal{A}_{m} is compact. Hence, $\pi \circ g \mid \mathcal{A}_{m}: \mathcal{A}_{m} \rightarrow S$ is a homeomorphism.
The equality $\pi\left(g\left(\mathcal{A}_{m} \cap \mathcal{C}_{m}\right)\right)=R$ is easy to prove. Now, we check that $\operatorname{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right)=\left(\pi \circ g \mid C\left(B_{m}\right)\right)^{-1}((1 / 2,0)(2 / 5,2 / 5))$. Let $A \in C\left(B_{m}\right)$ and let $\pi(g(A))=\left(x^{\prime}, z^{\prime}\right)$. We analyze two possibilities for A.

If $A \subset \pi_{1}^{-1}\left(D_{0}\right)$, then as we saw before, $z^{\prime}<2-4 x^{\prime}$. Thus $A \notin \mathcal{A}_{m}$ and $A \notin(\pi \circ g)^{-1}((1 / 2,0)(2 / 5,2 / 5))$.

If $A \nsubseteq \pi_{1}^{-1}\left(D_{0}\right)$, let $p, q \in A$ be such that $M_{1}(A)=\pi_{1}(p)$ and $M_{2}(A)=$ $\pi_{2}(q)$ (if $m=0$, we can take $q=p$; then $M_{1}(A)=\pi_{1}(q)$). Let J (respectively, K and L) be the (possibly degenerate) subarc of B_{m} which joins θ and q (respectively, p and q and θ and p). Notice that $K \subset A$, and K is a onepoint set or $K \subset \pi_{1}^{-1}\left(D_{0}\right)$. Then $M_{1}(K)=M_{1}(A), M_{2}(K)=M_{2}(A)$ and $\pi(g(K))=\left(x^{\prime}, \mu(K)\right)$. Thus $\mu(K)=0$ or $\mu(K)<2-4 x^{\prime}$.

Since $A \nsubseteq \pi_{1}^{-1}\left(D_{0}\right)$, it is easy to prove that $M_{1}(A)=M_{1}(J)$ and $M_{2}(A)=M_{2}(J)$. Let $\alpha:[0,1] \rightarrow J$ be a continuous function such that $\alpha(0)=q$ and $\alpha(1)=\theta$. Let $\beta:[0,1] \rightarrow C\left(B_{m}\right)$ be given by $\beta(t)=$ $K \cup \alpha([0, t])$. Then β is continuous, $\beta(0)=K, \beta(1)=J$, there exists $t_{0} \in[0,1]$ such that $\beta\left(t_{0}\right)=A, M_{1}(\beta(t))=M_{1}(A), M_{2}(\beta(t))=M_{2}(A)$ for every $t \in[0,1]$ and if $s \leq t$, then $\mu(\beta(s)) \leq \mu(\beta(t))$. Thus $\pi(g(\beta(t)))=$ $\left(x^{\prime}, \mu(\beta(t))\right)$ for each $t \in[0,1]$.

Since $J=\beta(1) \in \mathcal{C}_{m}$, we have $x^{\prime}=\mu(J)=\mu(\beta(1)) \geq \mu\left(\beta\left(t_{0}\right)\right)=\mu(A)$. Moreover, since $x^{\prime} \leq 1 / 2, \pi(g(A))$ is in the triangle in \mathbb{R}^{2} which has vertices $\theta,(1 / 2,1 / 2)$ and $(1 / 2,0)$.

Combining the conclusions of the two cases $A \subset \pi_{1}^{-1}\left(D_{0}\right)$ and $A \nsubseteq$ $\pi_{1}^{-1}\left(D_{0}\right)$, we find that $\mathcal{A}_{m}=(\pi \circ g)^{-1}(S) \cap C\left(B_{m}\right)=(\pi \circ g)^{-1}(\{(x, z) \in$ $\mathbb{R}^{2}: 2-4 x \leq z$ and $\left.\left.0 \leq z\right\}\right) \cap C\left(B_{m}\right)$. Thus

$$
\operatorname{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right) \subset\left(\pi \circ g \mid C\left(B_{m}\right)\right)^{-1}((1 / 2,0)(2 / 5,2 / 5))
$$

Now, take $A \in\left(\pi \circ g \mid C\left(B_{m}\right)\right)^{-1}((1 / 2,0)(2 / 5,2 / 5)-\{(1 / 2,0)\})$. Then $A \nsubseteq \pi_{1}^{-1}\left(D_{0}\right)$. Let β and t_{0} be as before. Since $\mu(A)>0$, we have $A \neq K$ and β can be chosen to be one-to-one. Thus $0<t_{0}$ and for each $t \in\left[0, t_{0}\right)$, $\mu(\beta(t))<\mu\left(\beta\left(t_{0}\right)\right)$. This implies that $\beta(t) \notin \mathcal{A}_{m}$ for every $t<t_{0}$. Hence, $A \in \operatorname{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right)$. Since $\operatorname{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right)$ is closed, we conclude that

$$
\operatorname{Bd}_{C\left(B_{m}\right)}\left(\mathcal{A}_{m}\right)=\left(\pi \circ g \mid C\left(B_{m}\right)\right)^{-1}((1 / 2,0)(2 / 5,2 / 5))
$$

Finally, the equality

$$
\operatorname{Bd}_{T(X)}\left(\bigcup\left\{\mathcal{A}_{m}: m=0,1, \ldots\right\}\right)=(\pi \circ g)^{-1}((1 / 2,0)(2 / 5,2 / 5))
$$

easily follows. This completes the proof of Claim 4.
Claim 5. There is a homeomorphism $F: T(Y) \rightarrow T(X)$ such that $F(N(Y))=N(X)$.

For each $m=1,2, \ldots$, let $t_{m}=1 / 2^{m-1}+1 / 2^{m+1}$ and $E_{m}=\left(2, t_{m}\right)\left(3, t_{m}\right)$ $=e_{m}\left(3, t_{m}\right)$. Let $t_{0}=0, E_{0}=\left(2, t_{0}\right)\left(3, t_{0}\right)=e_{0}(3,0)$ and $\mathcal{A}=\bigcup\left\{\mathcal{A}_{m}: m=\right.$ $0,1, \ldots\}$.

Let $G: T(Y) \rightarrow \mathbb{R}^{3}$ be given by

$$
G(A)=\left\{\begin{array}{l}
g(A) \quad \text { if } A \in T(X), \\
\left(1 / 2+M_{1}(A)-2, t_{m}, \mu\left(A \cap B_{m}\right)\right) \\
\text { if } e_{m} \in A \subset B_{m} \cup E_{m} \text { for some } m \geq 0, \\
\left(1 / 2+M_{1}(A)-2, t_{m}, 2-m_{1}(A)\right) \\
\text { if } A \subset E_{m} \text { for some } m=0,1, \ldots
\end{array}\right.
$$

If $A \in T(X) \cap C\left(B_{m} \cup E_{m}\right)$ and $e_{m} \in A$, then $A \subset B_{m}$. So $\mu\left(A \cap B_{m}\right)=$ $\mu(A), M_{1}(A)=2$ and $M_{2}(A)=1 / 2^{m-1}+1 / 2^{m+1}=t_{m}$. It follows that $\left(1 / 2+M_{1}(A)-2, t_{m}, \mu\left(A \cap B_{m}\right)\right)=\left(1 / 2, t_{m}, \mu(A)\right)=g(A)$.

If $A \subset E_{m}$ and $e_{m} \in A$, then $m_{1}(A)=2$. Thus, $\mu\left(A \cap B_{m}\right)=\mu\left(\left\{e_{m}\right\}\right)=$ $0=2-m_{1}(A)$.

This proves that G is well defined. It is easy to show that G is continuous and one-to-one. Therefore, $G: T(Y) \rightarrow G(T(Y))$ is a homeomorphism.

Let $S_{1}=S \cup([1 / 2,3 / 2] \times[0,1 / 2]) \cup\left\{(x, z) \in \mathbb{R}^{2}: 1 / 2 \leq x \leq 3 / 2\right.$ and $1 / 2-x \leq z \leq 0\}, R_{1}=R \cup([1 / 2,3 / 2] \times\{1 / 2\})$ and R_{2} be the triangle with vertices $\theta,(1 / 2,0)$ and $(2 / 5,2 / 5)$.

Clearly, there is a homeomorphism $h: S_{1} \rightarrow S$ such that $h\left(R_{1}\right)=R$ and $h \mid R_{2}$ is the identity on R_{2}. Suppose that $h=\left(h_{1}, h_{3}\right)$.

For each $m=0,1, \ldots$, let $\mathcal{F}_{m}=\mathcal{A}_{m} \cup\left\{A \in C\left(B_{m} \cup E_{m}\right): e_{m} \in A\right\} \cup$ $C\left(E_{m}\right)$. It is easy to check that $\pi \circ G \mid \mathcal{F}_{m}: \mathcal{F}_{m} \rightarrow S_{1}$ is a homeomorphism. Let $\mathcal{F}=\bigcup\left\{\mathcal{F}_{m}: m=0,1, \ldots\right\}$. Notice that $\operatorname{Bd}_{T(Y)}(\mathcal{F})=\operatorname{Bd}_{T(X)}(\mathcal{A})=$ $(\pi \circ g)^{-1}((1 / 2,0),(2 / 5,2 / 5))$.

Define $F: T(Y) \rightarrow T(X)$ by
$F(A)= \begin{cases}\left((\pi \circ g) \mid \mathcal{A}_{m}\right)^{-1}(h(\pi(G(A)))) & \text { if } A \in \mathcal{F}_{m} . \text { for some } m=0,1, \ldots, \\ A & \text { if } A \notin \mathcal{F} .\end{cases}$
If $A \in \mathcal{F}_{m}$ for some $m=0,1, \ldots$ and $A \in \mathrm{Cl}_{T(Y)}(T(Y)-\mathcal{F})$, then $A \in$ $\mathrm{Bd}_{T(Y)}(\mathcal{F})$. This implies that $A \in T(X)$ and $\pi(g(A)) \in(1 / 2,0)(2 / 5,2 / 5) \subset$ R_{2}. Thus $\left((\pi \circ g) \mid \mathcal{A}_{m}\right)^{-1}(h(\pi(G(A))))=\left((\pi \circ g) \mid \mathcal{A}_{m}\right)^{-1}(\pi(g(A)))=A$.

It is easy to show that F is a homeomorphism.
If $A \in N(Y), A \in \mathcal{F}_{m}$ and $A \subset B_{m}$, then $A \in \mathcal{A}_{m} \cap \mathcal{C}_{m}$ and $\pi(G(A)) \in R$. Thus $h(\pi(G(A))) \in R$. Hence, $F(A) \in\left((\pi \circ g) \mid \mathcal{A}_{m}\right)^{-1}(h(\pi(G(A)))) \subset \mathcal{C}_{m} \subset$ $N(X)$.

If $A \in N(Y), A \in \mathcal{F}_{m}$ and $A \notin C\left(B_{m}\right)$, then $\mu\left(A \cap B_{m}\right)=\mu\left(B_{m}\right)=1 / 2$ and $2 \leq M_{1}(A) \leq 3$. Thus $\pi(G(A)) \in R_{1}$. Therefore, $F(A) \in N(X) \cap \mathcal{C}_{m} \subset$ $N(X)$.

This implies that $F(N(Y)) \subset N(X)$.

Now, let $B \in N(X)$ be such that $B \in \mathcal{A}_{m}$. Then $B \in \mathcal{C}_{m}$ and $\pi(g(B)) \in$ R. Thus $h^{-1}(\pi(g(B))) \in R_{1}=R \cup([1 / 2,3 / 2] \times\{1 / 2\})$.

If $h^{-1}\left(\pi(g(B)) \in R\right.$, then by Claim 4 , there exists $A \in \mathcal{A}_{m} \cap \mathcal{C}_{m} \subset N(X)$ such that $\pi(g(A))=h^{-1}(\pi(g(B)))$. Hence $B=F(A)$.

If $h^{-1}\left(\pi(g(B)) \in[1 / 2,3 / 2] \times\{1 / 2\}\right.$, then $h^{-1}(\pi(g(B)))=(1 / 2+t-$ $2,1 / 2)$ for some $t \in[2,3]$. Let $A=B_{m} \cup\left([2, t] \times\left\{t_{m}\right\}\right)$. Then $\pi(G(A))=$ $h^{-1}(\pi(g(B)))$ and $A \in N(Y)$.

This completes the proof that $F(N(Y))=N(X)$.
Claim 6. $C(X)$ is homeomorphic to $C(Y)$.
Since $N(X)$ (respectively, $N(Y)$) is a Z-set in $C(\{\theta\}, X)$ (respectively, $C(\{\theta\}, Y))$ and $C(\{\theta\}, X)$ and $C(\{\theta\}, Y)$ are homeomorphic to Hilbert cubes (see Theorem 2.3 of [4]), by [2] (see also 1.3 of [4]), there exists a homeomorphism $F_{1}: C(\{\theta\}, Y) \rightarrow C(\{\theta\}, X)$ such that $F_{1}|N(Y)=F| N(Y)$. Define $F_{2}: C(Y) \rightarrow C(X)$ by

$$
F_{2}(A)= \begin{cases}F(A) & \text { if } A \in T(Y), \\ F_{1}(A) & \text { if } A \in C(\{\theta\}, Y)\end{cases}
$$

Then F_{2} is a homeomorphism.

Final remarks. Recently, Acosta ([1]) has introduced the following notion: A continuum X is said to have unique hyperspace $C(X)$ provided that if Y is a continuum such that $C(X) \cong C(Y)$, then $X \cong Y$. He has showed that if X is a continuum in one of the following classes, then X has unique hyperspace $C(X)$:
(a) finite graphs different from an arc and from a circle,
(b) hereditarily indecomposable continua,
(c) indecomposable continua such that all their proper nondegenerate subcontinua are arcs, and
(d) metric compactifications of the half-ray $[0, \infty)$.

Macías in [8] has defined the corresponding notion with 2^{X} in place of $C(X)$; namely, X is said to have unique hyperspace 2^{X} provided that if Y is a continuum such that $2^{X} \cong 2^{Y}$, then $X \cong Y$. He has showed that the hereditarily indecomposable continua have unique hyperspace 2^{X}.

The following question remains open.
Question [9, Questions 0.62]. Is the class of circle-like continua Cdetermined?

Acknowledgments. The author wishes to thank Margareta Boege for all the useful conversations they had.

REFERENCES

[1] G. Acosta, Hyperspaces with unique hyperspace, preprint.
[2] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
[3] R. Duda, On the hyperspace of subcontinua of a finite graph, I, Fund. Math. 69 (1968), 265-286.
[4] C. Eberhart and S. B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), 279-288.
[5] A. Illanes, Chainable continua are not C-determined, Topology Appl., to appear.
[6] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), 155-164.
[7] S. Macías, On C-determined continua, Glas. Mat., to appear.
[8] -, Hereditarily indecomposable continua have unique hyperspace 2^{X}, preprint.
[9] S. B. Nadler, Jr., Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, New York, 1978.
[10] L. E. Ward, Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.

Instituto de Matemáticas
Circuito Exterior
Cd. Universitaria

México, 04510, México
E-mail: illanes@gauss.matem.unam.mx

[^0]: 1991 Mathematics Subject Classification: Primary 54B20.
 Key words and phrases: C-determined, continuum, fan, hyperspaces.

