COLLOQUIUM MATHEMATICUM

VOL. 81

1999

NO. 2

FANS ARE NOT C-DETERMINED

BY

A LEJANDRO ILLANES (MÉXICO)

Abstract. A continuum is a compact connected metric space. For a continuum X, let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that C(X) and C(Y) are homeomorphic. This answers a question by Sam B. Nadler, Jr.

1. Introduction. A continuum is a compact connected metric space. For a continuum X, let C(X) denote the space of all the subcontinua of X, with the Hausdorff metric H. A Whitney map for C(X) is a continuous function $\mu : C(X) \to [0,1]$ such that $\mu(X) = 1$, $\mu(\{x\}) = 0$ for each $x \in X$ and if $A \subsetneq B$, then $\mu(A) < \mu(B)$. For the existence of Whitney maps see [9, 0.50.1]. A dendroid is an arcwise connected hereditarily unicoherent continuum. Given points p and q in a dendroid X, pq denotes the unique arc joining p and q if $p \neq q$, and $pq = \{p\}$ if p = q. A fan is a dendroid with only one ramification point. Let X be a fan with ramification point v; it is said to be a smooth fan provided that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in X converging to a point $x \in X$, then $vx_n \to vx$.

A class Λ of continua is said to be *C*-determined ([9, Definition 0.61)]) provided that if $X, Y \in \Lambda$ and $C(X) \cong C(Y)$ (C(X) is homeomorphic to C(Y)), then $X \cong Y$. The following classes of continua are known to be C-determined:

- (a) finite graphs different from an arc ([3, 9.1]),
- (b) hereditarily indecomposable continua ([9, 0.60]),
- (c) smooth fans ([4, Corollary 3.3]),

(d) indecomposable continua such that all their proper nondegenerate subcontinua are arcs ([7]), and

(e) metric compactifications of the half-ray $[0, \infty)$ ([1]).

Recently, answering a question by Nadler, the author showed that the class of chainable continua is not C-determined ([5]). In [9, Questions 0.62]

¹⁹⁹¹ Mathematics Subject Classification: Primary 54B20.

Key words and phrases: C-determined, continuum, fan, hyperspaces.

^[299]

Nadler asked if the class of fans is C-determined. Here, we answer this question in the negative.

Description of the examples. Given two points p, q in the Euclidean plane \mathbb{R}^2 , pq denotes the convex segment which joins them. Given points p_1, \ldots, p_n in \mathbb{R}^2 , let $\langle p_1, \ldots, p_n \rangle = p_1 p_2 \cup p_2 p_3 \cup \ldots \cup p_{n-1} p_n$. Given a point $p \in \mathbb{R}^2$ and a subset A of \mathbb{R}^2 , let $p + A = \{p + a : a \in A\}$. The set of positive integers is denoted by N. Let $\theta = (0,0) \in \mathbb{R}^2$, $B_0 = \theta(2,0)$ and $C_0 = (2,0)(3,0).$

Let

$$Z = \langle \theta, (2,1), (1,2), (3,3) \rangle.$$

Notice that $Z \subset \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 2x\}.$ For each $n \in \mathbb{N}$, let

$$P_n = \left(1 - \frac{1}{2^{n-1}}, 1 - \frac{1}{2^{n-1}}\right) + \left\{\frac{1}{3 \cdot 2^n}p : p \in Z\right\}$$

Let

$$P = \left[\bigcup\{P_n : n \in \mathbb{N}\}\right] \cup \{(1,1)\}.$$

Notice that $P \subset \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 2x\}.$

Given $m \in \mathbb{N}$, let

$$B_m = \theta\left(1, \frac{1}{2^{m-1}}\right) \cup \left\{ \left(1 + x, \frac{1}{2^{m-1}} + \frac{y}{2^{m+1}}\right) : (x, y) \in P \right\},\$$
$$C_m = \left(2, \frac{1}{2^{m-1}} + \frac{1}{2^{m+1}}\right) \left(3, \frac{1}{2^{m-1}} + \frac{1}{2^{m+1}}\right).$$

Notice that $B_m \subset \{(x, y) \in \mathbb{R}^2 : y \leq x/2^{m-1} \text{ and } y \leq 1/2^{m-1} + 1/2^{m+1}\}$. Finally, let

$$X = \bigcup \{ B_m : m = 0, 1, \ldots \}, \quad Y = \bigcup \{ B_m \cup C_m : m = 0, 1, \ldots \}.$$

Clearly, X and Y are fans and X is not homeomorphic to Y.

C(X) is homeomorphic to C(Y). Fix a Whitney map $\mu : C(X) \to [0,1]$. By the main result of [10], we may assume that $\mu(B_m) = 1/2$ for every $m = 0, 1, \ldots$ Let $\pi_i : \mathbb{R}^2 \to \mathbb{R}^1$ be the projection on the *i*th coordinate, i = 1, 2.

We denote the Hilbert cube by \mathbb{Q} . Let $C(\{\theta\}, X) = \{A \in C(X) : \theta \in A\}$ and $C(\{\theta\}, Y) = \{A \in C(Y) : \theta \in A\}$. In [4], Eberhart and Nadler constructed geometric models for the hyperspace of subcontinua of a smooth fan. We will use some of the ideas and results from that paper.

As a consequence of Theorem 2.3 of [4], we know that $C(\{\theta\}, X)$ and $C(\{\theta\}, Y)$ are homeomorphic to \mathbb{Q} .

Let $N(X) = \{\theta p \in C(X) : p \in X\}, N(Y) = \{\theta p \in C(Y) : p \in Y\},$ $T(X) = \bigcup \{C(B_m) : m = 0, 1, ...\}, \text{ and } T(Y) = \bigcup \{C(B_m \cup C_m) : m = 0, 1, ...\}.$ Clearly, T(X) and T(Y) are compact, $C(\{\theta\}, X) \cap T(X) = N(X), C(\{\theta\}, Y) \cap T(Y) = N(Y), C(X) = C(\{\theta\}, X) \cup T(X) \text{ and } C(Y) = C(\{\theta\}, Y) \cup T(Y).$

CLAIM 1. N(X) (respectively, N(Y)) is a Z-set in $C(\{\theta\}, X)$ (respectively, $C(\{\theta\}, Y)$).

Recall that, by definition, N(X) is a Z-set in $C(\{\theta\}, X)$ if and only for each $\varepsilon > 0$, there exists a continuous function

$$g_{\varepsilon}: C(\{\theta\}, X) \to C(\{\theta\}, X) - N(X)$$

such that $H(g_{\varepsilon}(A), A) < \varepsilon$ for every $A \in C(\{\theta\}, X)$.

In order to prove Claim 1, let $\varepsilon > 0$. Suppose that $\varepsilon < 1$. Let $D_{\varepsilon} = \{p \in X : \|p - \theta\| \le \varepsilon/2\}$. Then define $g_{\varepsilon} : C(\{\theta\}, X) \to C(\{\theta\}, X) - N(X)$ by

$$g_{\varepsilon}(A) = A \cup D_{\varepsilon}.$$

Clearly, g_{ε} has the required properties. Therefore, N(X) is a Z-set in $C(\{\theta\}, X)$. Similarly, N(Y) is a Z-set in $C(\{\theta\}, Y)$.

Notice that, for each $m \in \mathbb{N}$, $\pi_2 | B_m : B_m \to [0, 1/2^{m-1} + 1/2^{m+1}]$ is one-to-one. Let $\mathcal{B} = \{A \in C(X) : \pi_1(A) \subset [1, 2]\}.$

For i = 1, 2, let $M_i, m_i : C(X) \to \mathbb{R}$ be the maps defined by $M_i(A) = \max \pi_i(A)$ and $m_i(A) = \min \pi_i(A)$. Let $\omega : N(X) \cup \mathcal{B} \to [0, 1]$ be given by

$$\omega(A) = \begin{cases} \frac{M_1(A) + M_2(A)}{2(2+1/2^{m-1}+1/2^{m+1})} \\ \text{if } A \in C(B_m) \cap N(X) \text{ for some } m \in \mathbb{N}, \\ M_1(A)/4 \quad \text{if } A \subset B_0 \text{ and } A \in N(X), \\ (M_1(A) - m_1(A) + M_2(A) - m_2(A))/4 \quad \text{if } A \in \mathcal{B}. \end{cases}$$

CLAIM 2. The set \mathcal{B} and the function ω have the following properties:

(a) \mathcal{B} is closed in C(X), $\mathcal{B} \cap N(X) = \emptyset$,

(b) ω is continuous,

(c) if
$$A \subsetneq B$$
, then $\omega(A) < \omega(B)$,

(d) $\omega(\{p\}) = 0$ for each $\{p\} \in N(X) \cup \mathcal{B}$ and $\omega(B_m) = 1/2$ for each $m = 0, 1, \ldots$

Statements (a), (b) and (d) are easy to prove. In order to prove (c), let $A, B \in N(X)$ be such that $A \subsetneq B \subset B_m$ for some $m \in \mathbb{N}$. Since A and B are arcs, θ is an end point of A and of B and $\pi_2|B_m$ is one-to-one, we conclude that $M_2(A) < M_2(B)$. Notice that $M_1(A) \leq M_1(B)$. Thus $\omega(A) < \omega(B)$. The case $A, B \subset B_0$ is easier. The case $A, B \in \mathcal{B}$ follows from the fact that $\pi_2|B_m$ is one-to-one for every $m \in \mathbb{N}$. Finally, the case $A \in \mathcal{B}$ and $B \in N(X)$ is easy to check. This completes the proof of Claim 2.

Clearly, $N(X) \cup \mathcal{B}$ is a compact subset of C(X). Thus we may apply the main result of [10]. In this way we may assume that the Whitney map μ also satisfies $\mu|(N(X) \cup \mathcal{B}) = \omega$.

Let $g: T(X) \to \mathbb{R}^3$ be given by

$$g(A) = \begin{cases} \left(\frac{M_1(A) + M_2(A)}{2(2+1/2^{m-1}+1/2^{m+1})}, M_2(A), \mu(A)\right) \\ & \text{if } A \subset B_m \text{ for some } m \in \mathbb{N}, \\ (M_1(A)/4, 0, \mu(A)) & \text{if } A \subset B_0, \end{cases}$$

Clearly, g is a continuous function.

CLAIM 3. g is one-to-one.

In order to prove Claim 3, suppose that $A, B \in T(X)$ and g(A) = g(B). If $A \subset B_0$, then $0 = M_2(A) = M_2(B)$. Thus $B \subset B_0$. Since $M_1(A) = M_1(B)$, it follows that A and B are (possibly degenerate) subarcs of B_0 with the same right end point. Thus, $A \subset B$ or $B \subset A$. But $\mu(A) = \mu(B)$. Therefore, A = B.

Therefore we may assume that $A \nsubseteq B_0$ and $B \nsubseteq B_0$. Thus $M_2(A) = M_2(B) > 0$.

If $A, B \subset B_m$ for some $m \in \mathbb{N}$, then since $\pi_2|B_m$ is one-to-one and $M_2(A) = M_2(B)$, we conclude that A and B are (possibly degenerate) subarcs of B_m with a common end point. Then $A \subset B$ or $B \subset A$. Since $\mu(A) = \mu(B)$, we conclude that A = B.

Finally, we consider the case when $A \subset B_n$ and $B \subset B_m$ with 0 < n < m. We know that $B_m \subset \{(x,y) \in \mathbb{R}^2 : y \leq x/2^{m-1} \text{ and } y \leq 1/2^{m-1} + 1/2^{m+1}\}$. This implies $M_2(B) \leq M_1(B)/2^{m-1}$ and $M_2(B) = M_2(A) \leq 1/2^{m-1} + 1/2^{m+1}$. The way that B_n and B_m were constructed implies $A \subset \theta(1, 1/2^{n-1})$ and $M_2(A) = M_1(A)/2^{n-1}$.

Since

$$\frac{M_1(A) + M_2(A)}{2(2+1/2^{n-1}+1/2^{n+1})} = \frac{M_1(B) + M_2(B)}{2(2+1/2^{m-1}+1/2^{m+1})}$$

and n < m, we obtain

$$2(2+1/2^{m-1}+1/2^{m+1})M_1(A) > 2(2+1/2^{n-1}+1/2^{n+1})M_1(B).$$

Then

 $2(2+1/2^{m-1}+1/2^{m+1})2^{n-1}M_2(A) > 2(2+1/2^{n-1}+1/2^{n+1})2^{m-1}M_2(B).$ Thus

$$\frac{1}{2^{m-1}} \left(2 + \frac{1}{2^{m-1}} + \frac{1}{2^{m+1}} \right) > \frac{1}{2^{n-1}} \left(2 + \frac{1}{2^{n-1}} + \frac{1}{2^{n+1}} \right).$$

This is a contradiction since n < m. Thus the proof of Claim 3 is complete, i.e. g is one-to-one.

By Claim 3, the map g is a homeomorphism from T(X) onto $g(T(X)) \subset \mathbb{R}^3$. Thus we have obtained a model for T(X).

Let $S = \{(x, z) \in \mathbb{R}^2 : 0 \le x \le 1/2, z \ge 2 - 4x \text{ and } 0 \le z \le x\}$ and R = (2/5, 2/5)(1/2, 1/2). Let $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the projection defined as $\pi(x, y, z) = (x, z)$.

CLAIM 4. For each $m = 0, 1, ..., let \mathcal{A}_m = (\pi \circ g)^{-1}(S) \cap C(B_m), \mathcal{C}_m = N(X) \cap C(B_m) = \{A \in C(B_m) : \theta \in A\}, e_m = (2, 1/2^{m-1} + 1/2^{m+1}) \text{ for } m \ge 1, e_0 = (2, 0) \text{ and } \mathcal{D}_m = \{A \in C(B_m) : e_m \in A\}.$ Then:

(i) $\pi \circ g | \mathcal{C}_m : \mathcal{C}_m \to \theta(1/2, 1/2), \ \pi \circ g | \mathcal{D}_m : \mathcal{D}_m \to (1/2, 0)(1/2, 1/2) \ and \ \pi \circ g | \mathcal{A}_m : \mathcal{A}_m \to S \ are \ homeomorphisms,$

(ii) $\pi(g(\mathcal{A}_m \cap \mathcal{C}_m)) = R$,

(ii)
$$\operatorname{R}(g(\mathcal{A}_m^+ + \mathcal{C}_m^-)) = \mathcal{H},$$

(iii) $\operatorname{Bd}_{C(B_m)}(\mathcal{A}_m) = (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5)), and$
(iv) $\operatorname{Rd}_{C(B_m)}(\mathcal{A}_m^+ + \mathcal{C}_m^-) = (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5)), and$

(iv)
$$\operatorname{Bd}_{T(X)}(\bigcup \{\mathcal{A}_m : m = 0, 1, \ldots\}) = (\pi \circ g)^{-1}((1/2, 0)(2/5, 2/5)).$$

Since B_m is an arc with end points θ and e_m , there is a homeomorphism from $C(B_m)$ into a triangle such that the following sets are sent to the respective sides of the triangle: the set of singletons of B_m , C_m and \mathcal{D}_m . In particular, C_m and \mathcal{D}_m are arcs. The end points of C_m are $\{\theta\}$ and B_m and the end points of \mathcal{D}_m are $\{e_m\}$ and B_m . Given $A \neq B$ in \mathcal{C}_m (respectively, \mathcal{D}_m), we have $A \subsetneq B$ or $B \subsetneq A$. This implies that $\mu(A) < \mu(B)$ or vice versa. Thus, $\mu|\mathcal{C}_m$ (respectively, $\mu|\mathcal{D}_m$) is one-to-one.

Let $A \in \mathcal{C}_m$. Then $A \subset B_m$. Thus $\mu(A) \leq \mu(B_m) = 1/2$ and $\pi(g(A)) = (\omega(A), \mu(A)) \in \theta(1/2, 1/2)$. Since $\pi(g(\{\theta\})) = \theta$ and $\pi(g(B_m)) = (1/2, 1/2)$, we conclude that $\pi \circ g | \mathcal{C}_m : \mathcal{C}_m \to \theta(1/2, 1/2)$ is a homeomorphism.

Given $A \in \mathcal{D}_m$, we have $e_m \in A \subset B_m$. Then $M_1(A) = 2$ and $M_2(A) = 1/2^{m-1} + 1/2^{m+1}$ if $m \ge 1$, and $M_1(A) = 2$ if m = 0. Thus $\pi(g(A)) = (1/2, \mu(A)) \in (1/2, 0)(1/2, 1/2)$. Since $\mu(\{e_m\}) = 0$ and $\mu(B_m) = 1/2$, we conclude that $\pi \circ g | \mathcal{D}_m : \mathcal{D}_m \to (1/2, 0)(1/2, 1/2)$ is a homeomorphism.

Now we show that $\pi \circ g | \mathcal{A}_m$ is one-to-one.

Let $D_1 = \bigcup \{ \alpha : \alpha \text{ is a straight line segment contained in } B_1 \text{ and the slope of } \alpha \text{ is negative} \}$. Let $D_0 = \pi_1(D_1)$.

Let $m \ge 0$. Let $A \in C(B_m)$ be such that $A \subset \pi_1^{-1}(D_0)$. Let g(A) = (x', y', z'). We prove that z' < 2-4x' (and then $A \notin \mathcal{A}_m$). We only consider the case $m \ge 1$, the case m = 0 is easier. Notice that $\pi_1(A) \subset [1, 2]$. Then $A \in \mathcal{B}$ and $\mu(A) = (M_1(A) - m_1(A) + M_2(A) - m_2(A))/4$. Notice that, from the way B_m was constructed, $M_1(A) - m_1(A) \le (2 - M_1(A))/4$ and $M_2(A) - m_2(A) \le (2 - M_1(A))/8$. Thus $\mu(A) < (2 - M_1(A))/2$.

Notice that

$$x' = \frac{M_1(A) + M_2(A)}{2(2+1/2^{m-1}+1/2^{m+1})} < \frac{M_1(A) + 1/2^{m-1} + 1/2^{m+1}}{2(2+1/2^{m-1}+1/2^{m+1})}.$$

Then

$$1 - 2x' > \frac{2 - M_1(A)}{2 + 1/2^{m-1} + 1/2^{m+1}} \ge \frac{2 - M_1(A)}{4} \ge \frac{\mu(A)}{2}$$

Thus $z' = \mu(A) < 2 - 4x'$.

Now, we are ready to prove that $\pi \circ g | \mathcal{A}_m$ is one-to-one. It is easy to show that $\pi \circ g | C(B_0)$ is one-to-one. So, we only consider the case of $m \geq 1$. Suppose that $A, B \in \mathcal{A}_m$ and $\pi(g(A)) = \pi(g(B))$. If $M_2(A) = M_2(B)$, then since $\pi_2 | B_m$ is one-to-one, A and B are (possibly degenerate) arcs with a common end point. Thus $A \subset B$ or $B \subset A$. Since $\mu(A) = \mu(B)$, we conclude that A = B. Hence, we may assume that $M_2(A) < M_2(B)$. Since $\pi(g(A)) =$ $\pi(g(B)), M_1(A) > M_1(B)$. From the way B_m was constructed, it follows that $B \subset \pi_1^{-1}(D_0)$. By the paragraph above $B \notin \mathcal{A}_m$. This contradiction proves that $\pi \circ g | \mathcal{A}_m$ is one-to-one.

Now, we show that $\pi \circ g | \mathcal{A}_m : \mathcal{A}_m \to S$ is onto. Let $(x, z) \in S$. Then $0 \leq x \leq 1/2, z \geq 2-4x$ and $0 \leq z \leq x$. Since $0 \leq z \leq 1/2$, we have $(z, z) \in \theta(1/2, 1/2)$ and $(1/2, z) \in (1/2, 0)(1/2, 1/2)$. Thus there exist $C \in \mathcal{C}_m$ and $D \in \mathcal{D}_m$ such that $(\mu(C), \mu(C)) = \pi(g(C)) = (z, z)$ and $(1/2, \mu(D)) = \pi(g(D)) = (1/2, z)$. Let $\mathcal{E} = (\mu | C(B_m))^{-1}(z)$. Since B_m is an arc, by [6, 6.4(a)], \mathcal{E} is an arc with end points C and D. Notice that for every $E \in \mathcal{E}$, $\pi(g(E)) \in \mathbb{R} \times \{z\}$. Since $z \leq x \leq 1/2$, the Intermediate Value Theorem

implies that there exists $E_0 \in \mathcal{E}$ such that $\pi(g(E_0)) = (x, z)$. Notice that $E_0 \in \mathcal{A}_m$. Therefore, $\pi \circ g | \mathcal{A}_m : \mathcal{A}_m \to S$ is bijective.

Clearly, \mathcal{A}_m is compact. Hence, $\pi \circ g | \mathcal{A}_m : \mathcal{A}_m \to S$ is a homeomorphism. The equality $\pi(g(\mathcal{A}_m \cap \mathcal{C}_m)) = R$ is easy to prove. Now, we check that $\operatorname{Bd}_{C(B_m)}(\mathcal{A}_m) = (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5))$. Let $A \in C(B_m)$ and let $\pi(g(A)) = (x', z')$. We analyze two possibilities for A.

If $A \subset \pi_1^{-1}(D_0)$, then as we saw before, z' < 2 - 4x'. Thus $A \notin \mathcal{A}_m$ and $A \notin (\pi \circ g)^{-1}((1/2, 0)(2/5, 2/5))$.

If $A \not\subseteq \pi_1^{-1}(D_0)$, let $p, q \in A$ be such that $M_1(A) = \pi_1(p)$ and $M_2(A) = \pi_2(q)$ (if m = 0, we can take q = p; then $M_1(A) = \pi_1(q)$). Let J (respectively, K and L) be the (possibly degenerate) subarc of B_m which joins θ and q (respectively, p and q and θ and p). Notice that $K \subset A$, and K is a one-point set or $K \subset \pi_1^{-1}(D_0)$. Then $M_1(K) = M_1(A), M_2(K) = M_2(A)$ and $\pi(g(K)) = (x', \mu(K))$. Thus $\mu(K) = 0$ or $\mu(K) < 2 - 4x'$.

Since $A \not\subseteq \pi_1^{-1}(D_0)$, it is easy to prove that $M_1(A) = M_1(J)$ and $M_2(A) = M_2(J)$. Let $\alpha : [0,1] \to J$ be a continuous function such that $\alpha(0) = q$ and $\alpha(1) = \theta$. Let $\beta : [0,1] \to C(B_m)$ be given by $\beta(t) = K \cup \alpha([0,t])$. Then β is continuous, $\beta(0) = K$, $\beta(1) = J$, there exists $t_0 \in [0,1]$ such that $\beta(t_0) = A$, $M_1(\beta(t)) = M_1(A)$, $M_2(\beta(t)) = M_2(A)$ for every $t \in [0,1]$ and if $s \leq t$, then $\mu(\beta(s)) \leq \mu(\beta(t))$. Thus $\pi(g(\beta(t))) = (x', \mu(\beta(t)))$ for each $t \in [0,1]$.

Since $J = \beta(1) \in C_m$, we have $x' = \mu(J) = \mu(\beta(1)) \ge \mu(\beta(t_0)) = \mu(A)$. Moreover, since $x' \le 1/2$, $\pi(g(A))$ is in the triangle in \mathbb{R}^2 which has vertices θ , (1/2, 1/2) and (1/2, 0).

Combining the conclusions of the two cases $A \subset \pi_1^{-1}(D_0)$ and $A \not\subseteq \pi_1^{-1}(D_0)$, we find that $\mathcal{A}_m = (\pi \circ g)^{-1}(S) \cap C(B_m) = (\pi \circ g)^{-1}(\{(x, z) \in \mathbb{R}^2 : 2 - 4x \leq z \text{ and } 0 \leq z\}) \cap C(B_m)$. Thus

$$\operatorname{Bd}_{C(B_m)}(\mathcal{A}_m) \subset (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5)).$$

Now, take $A \in (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5) - \{(1/2, 0)\})$. Then $A \not\subseteq \pi_1^{-1}(D_0)$. Let β and t_0 be as before. Since $\mu(A) > 0$, we have $A \neq K$ and β can be chosen to be one-to-one. Thus $0 < t_0$ and for each $t \in [0, t_0)$, $\mu(\beta(t)) < \mu(\beta(t_0))$. This implies that $\beta(t) \notin \mathcal{A}_m$ for every $t < t_0$. Hence, $A \in \operatorname{Bd}_{C(B_m)}(\mathcal{A}_m)$. Since $\operatorname{Bd}_{C(B_m)}(\mathcal{A}_m)$ is closed, we conclude that

$$Bd_{C(B_m)}(\mathcal{A}_m) = (\pi \circ g | C(B_m))^{-1}((1/2, 0)(2/5, 2/5)).$$

Finally, the equality

$$\operatorname{Bd}_{T(X)}\Big(\bigcup\{\mathcal{A}_m: m=0,1,\ldots\}\Big) = (\pi \circ g)^{-1}((1/2,0)(2/5,2/5))$$

easily follows. This completes the proof of Claim 4.

CLAIM 5. There is a homeomorphism $F : T(Y) \to T(X)$ such that F(N(Y)) = N(X).

For each $m = 1, 2, ..., \text{let } t_m = 1/2^{m-1} + 1/2^{m+1}$ and $E_m = (2, t_m)(3, t_m) = e_m(3, t_m)$. Let $t_0 = 0, E_0 = (2, t_0)(3, t_0) = e_0(3, 0)$ and $\mathcal{A} = \bigcup \{\mathcal{A}_m : m = 0, 1, ...\}$.

Let $G: T(Y) \to \mathbb{R}^3$ be given by

$$G(A) = \begin{cases} g(A) & \text{if } A \in T(X), \\ (1/2 + M_1(A) - 2, t_m, \mu(A \cap B_m)) \\ & \text{if } e_m \in A \subset B_m \cup E_m \text{ for some } m \ge 0, \\ (1/2 + M_1(A) - 2, t_m, 2 - m_1(A)) \\ & \text{if } A \subset E_m \text{ for some } m = 0, 1, \dots \end{cases}$$

If $A \in T(X) \cap C(B_m \cup E_m)$ and $e_m \in A$, then $A \subset B_m$. So $\mu(A \cap B_m) = \mu(A)$, $M_1(A) = 2$ and $M_2(A) = 1/2^{m-1} + 1/2^{m+1} = t_m$. It follows that $(1/2 + M_1(A) - 2, t_m, \mu(A \cap B_m)) = (1/2, t_m, \mu(A)) = g(A)$.

If $A \subset E_m$ and $e_m \in A$, then $m_1(A) = 2$. Thus, $\mu(A \cap B_m) = \mu(\{e_m\}) = 0 = 2 - m_1(A)$.

This proves that G is well defined. It is easy to show that G is continuous and one-to-one. Therefore, $G: T(Y) \to G(T(Y))$ is a homeomorphism.

Let $S_1 = S \cup ([1/2, 3/2] \times [0, 1/2]) \cup \{(x, z) \in \mathbb{R}^2 : 1/2 \le x \le 3/2 \text{ and } 1/2 - x \le z \le 0\}, R_1 = R \cup ([1/2, 3/2] \times \{1/2\}) \text{ and } R_2 \text{ be the triangle with vertices } \theta, (1/2, 0) \text{ and } (2/5, 2/5).$

Clearly, there is a homeomorphism $h: S_1 \to S$ such that $h(R_1) = R$ and $h|R_2$ is the identity on R_2 . Suppose that $h = (h_1, h_3)$.

For each m = 0, 1, ...,let $\mathcal{F}_m = \mathcal{A}_m \cup \{A \in C(B_m \cup E_m) : e_m \in A\} \cup C(E_m)$. It is easy to check that $\pi \circ G | \mathcal{F}_m : \mathcal{F}_m \to S_1$ is a homeomorphism. Let $\mathcal{F} = \bigcup \{\mathcal{F}_m : m = 0, 1, ...\}$. Notice that $\mathrm{Bd}_{T(Y)}(\mathcal{F}) = \mathrm{Bd}_{T(X)}(\mathcal{A}) = (\pi \circ g)^{-1}((1/2, 0), (2/5, 2/5)).$

Define $F: T(Y) \to T(X)$ by

$$F(A) = \begin{cases} ((\pi \circ g)|\mathcal{A}_m)^{-1}(h(\pi(G(A)))) & \text{if } A \in \mathcal{F}_m \text{ for some } m = 0, 1, \dots, \\ A & \text{if } A \notin \mathcal{F}. \end{cases}$$

If $A \in \mathcal{F}_m$ for some m = 0, 1, ... and $A \in \operatorname{Cl}_{T(Y)}(T(Y) - \mathcal{F})$, then $A \in \operatorname{Bd}_{T(Y)}(\mathcal{F})$. This implies that $A \in T(X)$ and $\pi(g(A)) \in (1/2, 0)(2/5, 2/5) \subset R_2$. Thus $((\pi \circ g)|\mathcal{A}_m)^{-1}(h(\pi(G(A)))) = ((\pi \circ g)|\mathcal{A}_m)^{-1}(\pi(g(A))) = A$.

It is easy to show that F is a homeomorphism.

If $A \in N(Y)$, $A \in \mathcal{F}_m$ and $A \subset B_m$, then $A \in \mathcal{A}_m \cap \mathcal{C}_m$ and $\pi(G(A)) \in R$. Thus $h(\pi(G(A))) \in R$. Hence, $F(A) \in ((\pi \circ g)|\mathcal{A}_m)^{-1}(h(\pi(G(A)))) \subset \mathcal{C}_m \subset N(X)$.

If $A \in N(Y)$, $A \in \mathcal{F}_m$ and $A \notin C(B_m)$, then $\mu(A \cap B_m) = \mu(B_m) = 1/2$ and $2 \leq M_1(A) \leq 3$. Thus $\pi(G(A)) \in R_1$. Therefore, $F(A) \in N(X) \cap \mathcal{C}_m \subset N(X)$.

This implies that $F(N(Y)) \subset N(X)$.

Now, let $B \in N(X)$ be such that $B \in \mathcal{A}_m$. Then $B \in \mathcal{C}_m$ and $\pi(g(B)) \in R$. Thus $h^{-1}(\pi(g(B))) \in R_1 = R \cup ([1/2, 3/2] \times \{1/2\}).$

If $h^{-1}(\pi(g(B)) \in R)$, then by Claim 4, there exists $A \in \mathcal{A}_m \cap \mathcal{C}_m \subset N(X)$ such that $\pi(g(A)) = h^{-1}(\pi(g(B)))$. Hence B = F(A).

If $h^{-1}(\pi(g(B))) \in [1/2, 3/2] \times \{1/2\}$, then $h^{-1}(\pi(g(B))) = (1/2 + t - 2, 1/2)$ for some $t \in [2, 3]$. Let $A = B_m \cup ([2, t] \times \{t_m\})$. Then $\pi(G(A)) = h^{-1}(\pi(g(B)))$ and $A \in N(Y)$.

This completes the proof that F(N(Y)) = N(X).

CLAIM 6. C(X) is homeomorphic to C(Y).

Since N(X) (respectively, N(Y)) is a Z-set in $C(\{\theta\}, X)$ (respectively, $C(\{\theta\}, Y)$) and $C(\{\theta\}, X)$ and $C(\{\theta\}, Y)$ are homeomorphic to Hilbert cubes (see Theorem 2.3 of [4]), by [2] (see also 1.3 of [4]), there exists a homeomorphism $F_1 : C(\{\theta\}, Y) \to C(\{\theta\}, X)$ such that $F_1|N(Y) = F|N(Y)$. Define $F_2 : C(Y) \to C(X)$ by

$$F_2(A) = \begin{cases} F(A) & \text{if } A \in T(Y), \\ F_1(A) & \text{if } A \in C(\{\theta\}, Y). \end{cases}$$

Then F_2 is a homeomorphism.

Final remarks. Recently, Acosta ([1]) has introduced the following notion: A continuum X is said to have unique hyperspace C(X) provided that if Y is a continuum such that $C(X) \cong C(Y)$, then $X \cong Y$. He has showed that if X is a continuum in one of the following classes, then X has unique hyperspace C(X):

(a) finite graphs different from an arc and from a circle,

(b) hereditarily indecomposable continua,

(c) indecomposable continua such that all their proper nondegenerate subcontinua are arcs, and

(d) metric compactifications of the half-ray $[0, \infty)$.

Macías in [8] has defined the corresponding notion with 2^X in place of C(X); namely, X is said to have unique hyperspace 2^X provided that if Y is a continuum such that $2^X \cong 2^Y$, then $X \cong Y$. He has showed that the hereditarily indecomposable continua have unique hyperspace 2^X .

The following question remains open.

QUESTION [9, Questions 0.62]. Is the class of circle-like continua C-determined?

Acknowledgments. The author wishes to thank Margareta Boege for all the useful conversations they had.

REFERENCES

- [1] G. Acosta, Hyperspaces with unique hyperspace, preprint.
- [2] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216.
- [3] R. Duda, On the hyperspace of subcontinua of a finite graph, I, Fund. Math. 69 (1968), 265–286.
- C. Eberhart and S. B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), 279–288.
- [5] A. Illanes, Chainable continua are not C-determined, Topology Appl., to appear.
- [6] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), 155–164.
- [7] S. Macías, On C-determined continua, Glas. Mat., to appear.
- [8] —, Hereditarily indecomposable continua have unique hyperspace 2^X , preprint.
- [9] S. B. Nadler, Jr., *Hyperspaces of Sets*, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, New York, 1978.
- [10] L. E. Ward, Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.

Instituto de Matemáticas Circuito Exterior Cd. Universitaria México, 04510, México E-mail: illanes@gauss.matem.unam.mx

> Received 16 November 1998; revised 25 March 1999