COLLOQUIUM MATHEMATICUM

VOL. 82

1999

ON A PROBLEM OF MATKOWSKI

ΒY

ZOLTÁN DARÓCZY AND GYULA MAKSA (DEBRECEN)

Abstract. We solve Matkowski's problem for strictly comparable quasi-arithmetic means.

1. Introduction. Let $I \subset \mathbb{R}$ be an open interval and let CM(I) denote the class of all *continuous* and *strictly monotone* real functions defined on I. A function $M: I^2 \to I$ is called a *quasi-arithmetic mean* on I if there exists $\psi \in CM(I)$ such that

(1.1)
$$M(x,y) = \psi^{-1}\left(\frac{\psi(x) + \psi(y)}{2}\right) =: A_{\psi}(x,y)$$

for all $x, y \in I$. In this case, $\psi \in CM(I)$ is called the *generating function* of the quasi-arithmetic mean $A_{\psi} : I^2 \to I$.

We recall the following result ([1], [4], [5]):

If $\varphi, \chi \in CM(I)$ then $A_{\varphi}(x, y) = A_{\chi}(x, y)$ for all $x, y \in I$ if, and only if, there exist real constants $a \neq 0$ and b such that

(1.2)
$$\varphi(x) = a\chi(x) + b$$
 for all $x \in I$.

If for the (generating) functions $\varphi, \chi \in CM(I)$, (1.2) holds for some constants $a \neq 0$ and b then we say that φ is *equivalent* to χ ; and, in this case, we write $\varphi \sim \chi$ or $\varphi(x) \sim \chi(x)$ if $x \in I$.

Matkowski ([6], [7]) proposed the following problem: For which pairs of functions $\varphi, \psi \in CM(I)$ does the functional equation

(1.3)
$$A_{\varphi}(x,y) + A_{\psi}(x,y) = x + y$$

hold for all $x, y \in I$? The problem has not been solved yet in this general form. Obviously, it is enough to solve (1.3) disregarding the equivalence of the generating functions φ and ψ .

A pair $(\varphi, \psi) \in CM(I)^2$ is called *equivalent* to $(\Phi, \Psi) \in CM(I)^2$ if $\varphi \sim \Phi$ and $\psi \sim \Psi$. We then write $(\varphi, \psi) \sim (\Phi, \Psi)$.

¹⁹⁹¹ Mathematics Subject Classification: 39B22, 26A51.

Key words and phrases: quasi-arithmetic mean, functional equation, convexity.

This work was supported by a grant from the National Foundation for Scientific Research OTKA (no. T-030082).

^[117]

We introduce the following one-parameter family of functions belonging to CM(I):

(1.4)
$$\chi_p(x) := \begin{cases} x & \text{if } p = 0, \\ e^{px} & \text{if } p \neq 0 \end{cases} \quad (x \in I).$$

Using the notions and notations above, Matkowski's result can be formulated as follows ([6]).

THEOREM 1. If a pair $(\varphi, \psi) \in CM(I)^2$ is a solution of the functional equation (1.3) for all $x, y \in I$ and the functions φ and ψ are twice continuously differentiable on I then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$, where χ_p is the function defined in (1.4).

Daróczy and Páles ([3], see also [2]) improved Matkowski's result by proving the following theorem.

THEOREM 2. If a pair $(\varphi, \psi) \in CM(I)^2$ is a solution of the functional equation (1.3) for all $x, y \in I$ and either φ or ψ is continuously differentiable on I then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$.

These results suggest the following conjecture.

CONJECTURE. If a pair $(\varphi, \psi) \in CM(I)^2$ is a solution of the functional equation (1.3) for all $x, y \in I$ then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$.

In this paper we try to give support to our conjecture from a different approach.

2. A preliminary result: The solution of a functional equation. We need the following result.

LEMMA. Let $J \subset \mathbb{R}$ be an open interval. If the strictly decreasing functions $f, g: J \to \mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\}$ satisfy the functional equation

(2.1)
$$\frac{1}{2}f\left(\frac{u+v}{2}\right)(g(u)-g(v)) = f(v)g(u) - f(u)g(v)$$

for all $u, v \in J$ then there exist real constants p > 0, b, and c > 0 such that

(2.2)
$$f(u) = \frac{1}{pu+b} > 0 \quad and \quad g(u) = cf^2(u)$$

for all $u \in J$.

Proof. (i) First we prove that f and g are continuous functions on J. Let $t \in J$. Then 2t - J is an open interval and $t \in 2t - J$. Thus $U := J \cap (2t - J)$ is an open interval containing t. If $u \in U (\subset J)$ and $u \neq t$ then let $v := 2t - u \in U \ (\subset J)$ in (2.1). Then, since g is strictly monotone, (2.1) implies

(2.3)
$$f(t) = 2 \frac{f(2t-u)g(u) - f(u)g(2t-u)}{g(u) - g(2t-u)}$$

for all $u \in U$, $u \neq t$. Because of the monotonicity of f and g, there exists $u_0 \neq t$ such that f and g are continuous at $2t - u_0$. Therefore, by (2.3), with the substitution $u := u_0$, we find that f is continuous at t.

Now let $v \in J$ be fixed. Then by the continuity of f, there exists $\delta > 0$ for which $\frac{1}{2}f((u+v)/2) - f(v) \neq 0$ if $u \in]v - \delta, v + \delta[\subset J$. Thus from (2.1) we deduce that for the values $u \in]v - \delta, v + \delta[\subset J$ we have

$$g(u) = g(v) \frac{\frac{1}{2}f((u+v)/2) - f(u)}{\frac{1}{2}f((u+v)/2) - f(v)},$$

which implies

$$\lim_{u \to v} g(u) = g(v) \lim_{u \to v} \frac{\frac{1}{2}f((u+v)/2) - f(u)}{\frac{1}{2}f((u+v)/2) - f(v)} = g(v),$$

that is, g is continuous at v.

(ii) Let $F := f \circ g^{-1} : g(J) \to \mathbb{R}_+$, where, by the previous results, $g(J) \subset \mathbb{R}_+$ is an open interval. F is obviously continuous on g(J) and

$$F(g(u)) = f(u)$$
 for all $u \in J$.

Then from equation (2.1), for any $s, t \in g(J)$ with $s \neq t$, with the substitutions $u = g^{-1}(s), v = g^{-1}(t)$, we have

$$\frac{1}{2}f\left(\frac{g^{-1}(s)+g^{-1}(t)}{2}\right) = \frac{F(t)s-F(s)t}{s-t} = F(t) - t\frac{F(s)-F(t)}{s-t}.$$

By the continuity of f and g, the limit of the left hand side exists as $s \to t$, thus the right hand side also has a limit. Therefore F is differentiable and

$$\frac{1}{2}F(t) = \frac{1}{2}f \circ g^{-1}(t) = \lim_{s \to t} \frac{1}{2}f\left(\frac{g^{-1}(s) + g^{-1}(t)}{2}\right) = F(t) - tF'(t)$$

for all $t \in g(J)$. Since t > 0 and F(t) > 0, this implies

$$(\log F(t) - \log \sqrt{t})' = 0.$$

Therefore, there exists d > 0 such that $F(t) = d\sqrt{t}$. This yields, by the definition of F, that $f \circ g^{-1}(t) = d\sqrt{t}$, i.e., $f(u) = d\sqrt{g(u)}$ for $u \in J$, which gives

(2.4)
$$g(u) = cf^2(u) \quad \text{for } u \in J,$$

where $c = 1/d^2 > 0$. Putting (2.4) back in (2.1), for $u \neq v$ we have

$$f\left(\frac{u+v}{2}\right) = \frac{2f(u)f(v)}{f(u)+f(v)},$$

which obviously also holds for u = v. This implies that the function h defined by h(u) := 1/f(u) ($u \in J$) satisfies Jensen's functional equation

$$h\left(\frac{u+v}{2}\right) = \frac{h(u)+h(v)}{2} \quad (u,v \in J)$$

([1], [5]), thus, by the continuity and strict monotonicity of f, we have h(u) = pu + b, where p > 0 and b are constants. From this we have

$$f(u) = \frac{1}{pu+b} > 0 \quad \text{ for } u \in J,$$

and so, by (2.4), the statement of the lemma is proved.

3. Comparable quasi-arithmetic means and the main result. The notion of comparability forms the basis of the different approach mentioned in the introduction ([4], [5]). Let $(\varphi, \psi) \in CM(I)^2$. We say that the quasi-arithmetic means A_{φ} and A_{ψ} are strictly comparable in I if

(3.1)
$$A_{\varphi}(x,y) \triangleleft A_{\psi}(x,y)$$
 for all $x \neq y, x, y \in I$,

where \triangleleft is one of the relations =, <, > on the real numbers. With this natural notion, our main result is the following:

THEOREM 3. If a pair $(\varphi, \psi) \in CM(I)^2$ is a solution of the functional equation (1.3), and the quasi-arithmetic means A_{φ} and A_{ψ} are strictly comparable in I, then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$.

Proof. (i) If the relation \triangleleft is = then, by (1.3) and $A_{\varphi} = A_{\psi}$,

$$A_{\varphi}(x,y) = \frac{x+y}{2} = A_{\psi}(x,y) \quad \text{ if } x, y \in I, \ x \neq y.$$

This implies that φ and ψ satisfy Jensen's functional equation, thus, by the continuity and strict monotonicity, $\varphi(x) = ax + b$ and $\psi(x) = Ax + B$ for all $x \in I$, where $aA \neq 0$, b, B are constants ([1], [5]). Therefore $(\varphi, \psi) \sim (\chi_0, \chi_0)$, that is, the conclusion holds with p = 0.

(ii) If the relation \triangleleft is \lt or > then, since φ and ψ can be interchanged, it is enough to investigate only one direction. Suppose that it is >, i.e.,

(3.2)
$$A_{\varphi}(x,y) > A_{\psi}(x,y) \quad \text{for } x, y \in I, \ x \neq y$$

Then, by (3.2), (1.3) implies

(3.3)
$$A_{\varphi}(x,y) > \frac{x+y}{2} \text{ and } \frac{x+y}{2} < A_{\psi}(x,y)$$

for all $x, y \in I$ with $x \neq y$. Since we disregard the equivalence of the generating functions φ and ψ , we can assume that φ and ψ are strictly increasing functions on *I*. Then, by (3.3), φ is strictly Jensen convex and ψ is strictly Jensen concave. Since φ and ψ are continuous and strictly increasing, φ is strictly convex and ψ is strictly concave on *I*. Therefore φ^{-1} is strictly concave on $\varphi(I)$, ψ^{-1} is strictly convex on $\psi(I)$, and $\gamma := \psi \circ \varphi^{-1}$ is strictly increasing and strictly concave on $\varphi(I)$ ([5], [8]). Thus the left and right derivatives of the functions φ^{-1} and γ exist on the open interval $J := \varphi(I)$, as well as those of ψ^{-1} on the open interval $\psi(I)$. If $u, v \in J = \varphi(I)$ and $x = \varphi^{-1}(u), \ y = \varphi^{-1}(v)$ in (1.3) then

(3.4)
$$\psi^{-1}\left(\frac{\gamma(u) + \gamma(v)}{2}\right) = \varphi^{-1}(u) + \varphi^{-1}(v) - \varphi^{-1}\left(\frac{u+v}{2}\right)$$

for all $u, v \in J$.

By the previous results, the right derivative (denoted by h'_+ for a function h) of each function in (3.4) exists at all the points of the domain. Since γ is strictly increasing, both sides of (3.4) can be differentiated from the right with respect to $u \in J$ and $v \in J$; and by the well-known rules, we have the following equations for all $u, v \in J$:

$$\psi_{+}^{-1'}\left(\frac{\gamma(u)+\gamma(v)}{2}\right)\frac{1}{2}\gamma_{+}'(u) = \varphi_{+}^{-1'}(u) - \frac{1}{2}\varphi_{+}^{-1'}\left(\frac{u+v}{2}\right),$$
$$\psi_{+}^{-1'}\left(\frac{\gamma(u)+\gamma(v)}{2}\right)\frac{1}{2}\gamma_{+}'(v) = \varphi_{+}^{-1'}(v) - \frac{1}{2}\varphi_{+}^{-1'}\left(\frac{u+v}{2}\right).$$

These two equations imply, as $(\varphi_+^{-1'}(u) - \frac{1}{2}\varphi_+^{-1'}((u+v)/2))\gamma'_+(v) =: u \circ v = v \circ u$, that

(3.5)
$$\frac{1}{2}\varphi_{+}^{-1'}\left(\frac{u+v}{2}\right)(\gamma_{+}'(u)-\gamma_{+}'(v))=\varphi_{+}^{-1'}(v)\gamma_{+}'(u)-\varphi_{+}^{-1'}(u)\gamma_{+}'(v)$$

for all $u, v \in J$.

We recall that the right derivatives of strictly concave functions are positive and strictly decreasing ([5], [8]). Therefore the functions $f, g: J \to \mathbb{R}_+$ defined by

(3.6)
$$f(u) := \varphi_+^{-1'}(u) \text{ and } g(u) := \gamma'_+(u) \quad (u \in J)$$

are strictly decreasing on I and satisfy (2.1) for all $u, v \in J$. Thus the Lemma implies that there exist real constants p > 0, b, and c > 0 such that

(3.7)
$$f(u) = \frac{1}{pu+b} > 0 \text{ and } g(u) = cf^2(u)$$

for all $u \in J$.

Therefore, by (3.6), the functions $\varphi_{+}^{-1'}$ and γ'_{+} are continuous on J. Thus, since φ^{-1} and γ are concave, φ^{-1} and γ are differentiable on J ([5]). Therefore (3.7) and (3.6) show that

(3.8)
$$\varphi^{-1'}(u) = \frac{1}{pu+b}$$
 and $\gamma'(u) = \frac{c}{(pu+b)^2}$ $(u \in J),$

where p > 0, b, c > 0 are constants. From (3.8) we have

(3.9)
$$\varphi(x) = \frac{1}{p}(e^{p(x-d)} - b) \sim e^{px} \quad \text{for } x \in I$$

where p > 0 (*d* is a constant of integration). On the other hand, as $\gamma = \psi \circ \varphi^{-1}$, we have $\psi = \gamma \circ \varphi$, and therefore (3.8) and (3.9) imply

(3.10)
$$\psi(x) = \frac{c}{-p(p\varphi(x)+b)} + D$$
$$= \frac{c}{-pe^{p(x-d)}} + D \sim e^{-px} \quad \text{for } x \in I,$$

where p > 0 (*D* is a constant of integration). Relations (3.9) and (3.10) prove the statement of the theorem, namely, $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$ for some p > 0. If the reverse inequality holds in (3.2) then $(\varphi, \psi) \sim (\chi_p, \chi_{-p})$ for some p < 0.

4. Concluding remarks. Theorem 3 suggests proving the Conjecture concerning Matkowski's problem stated in the introduction in the following way. From the functional equation (1.3) we should conclude that A_{φ} and A_{ψ} are strictly comparable in *I*. But this leads to the following, still open, problem, which, as shown below, is equivalent to the Conjecture.

OPEN PROBLEM. Is the following statement true or false? If $\varphi, \psi \in CM(I)$ and

$$A_{\varphi}(x,y) + A_{\psi}(x,y) = x + y$$

for all $x, y \in I$, and there exist $a, b \in I$ such that $a \neq b$ and $A_{\varphi}(a, b) = A_{\psi}(a, b)$, then $A_{\varphi}(x, y) = A_{\psi}(x, y) = (x + y)/2$ for all $x, y \in I$.

Proof of the equivalence of the Problem and the Conjecture. Consider the continuous function

$$D(x,y) := A_{\varphi}(x,y) - A_{\psi}(x,y) \quad (x,y \in I)$$

If the answer to the Problem is "yes" then either D(x, y) = 0 for all $x, y \in I$ or $D(x, y) \neq 0$ for all $x, y \in I$ with $x \neq y$. This implies, by the symmetry and continuity of D, that D(x, y) > 0 (or D(x, y) < 0) for all $x, y \in I$ with $x \neq y$. Thus the quasi-arithmetic means A_{φ} and A_{ψ} are strictly comparable in I. Therefore, applying Theorem 3, we conclude that the Conjecture is true.

If the answer to the Problem is "no" then, by Theorem 2, ψ (and of course φ) cannot be continuously differentiable.

REFERENCES

- J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
- Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177–197.
- [3] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar., submitted.
- [4] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press., Cambridge, 1934.
- [5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Śląski and PWN, Katowice-Kraków-Warszawa, 1985.
- J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87–107.
- [7] —, Complementary quasi-arithmetic means, in: Leaflets in Mathematics, Proc. Numbers, Functions, Equations '98 Internat. Conf. Noszvaj (Hungary), Pécs, 1998, 123–124.
- [8] A. W. Roberts and D. E. Varberg, *Convex Functions*, Academic Press, New York, 1973.

Institute of Mathematics and Informatics Kossuth Lajos University H-4010 Debrecen Pf. 12, Hungary E-mail: daroczy@math.klte.hu maksa@math.klte.hu

> Received 13 April 1999; revised 17 May 1999