ON A PROBLEM OF MATKOWSKI

BY
ZOLTÁN DARÓCZY and GYULA MAKSA (DEBRECEN)

Abstract

We solve Matkowski's problem for strictly comparable quasi-arithmetic means.

1. Introduction. Let $I \subset \mathbb{R}$ be an open interval and let $\operatorname{CM}(I)$ denote the class of all continuous and strictly monotone real functions defined on I. A function $M: I^{2} \rightarrow I$ is called a quasi-arithmetic mean on I if there exists $\psi \in \operatorname{CM}(I)$ such that

$$
\begin{equation*}
M(x, y)=\psi^{-1}\left(\frac{\psi(x)+\psi(y)}{2}\right)=: A_{\psi}(x, y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in I$. In this case, $\psi \in \operatorname{CM}(I)$ is called the generating function of the quasi-arithmetic mean $A_{\psi}: I^{2} \rightarrow I$.

We recall the following result ([1], [4], [5]):
If $\varphi, \chi \in \operatorname{CM}(I)$ then $A_{\varphi}(x, y)=A_{\chi}(x, y)$ for all $x, y \in I$ if, and only if, there exist real constants $a \neq 0$ and b such that

$$
\begin{equation*}
\varphi(x)=a \chi(x)+b \quad \text { for all } x \in I . \tag{1.2}
\end{equation*}
$$

If for the (generating) functions $\varphi, \chi \in \mathrm{CM}(I),(1.2)$ holds for some constants $a \neq 0$ and b then we say that φ is equivalent to χ; and, in this case, we write $\varphi \sim \chi$ or $\varphi(x) \sim \chi(x)$ if $x \in I$.

Matkowski ([6], [7]) proposed the following problem: For which pairs of functions $\varphi, \psi \in \operatorname{CM}(I)$ does the functional equation

$$
\begin{equation*}
A_{\varphi}(x, y)+A_{\psi}(x, y)=x+y \tag{1.3}
\end{equation*}
$$

hold for all $x, y \in I$? The problem has not been solved yet in this general form. Obviously, it is enough to solve (1.3) disregarding the equivalence of the generating functions φ and ψ.

A pair $(\varphi, \psi) \in \operatorname{CM}(I)^{2}$ is called equivalent to $(\Phi, \Psi) \in \operatorname{CM}(I)^{2}$ if $\varphi \sim \Phi$ and $\psi \sim \Psi$. We then write $(\varphi, \psi) \sim(\Phi, \Psi)$.

[^0]We introduce the following one-parameter family of functions belonging to $\mathrm{CM}(I)$:

$$
\chi_{p}(x):=\left\{\begin{array}{ll}
x & \text { if } p=0 \tag{1.4}\\
e^{p x} & \text { if } p \neq 0
\end{array} \quad(x \in I)\right.
$$

Using the notions and notations above, Matkowski's result can be formulated as follows ([6]).

ThEOREM 1. If a pair $(\varphi, \psi) \in \operatorname{CM}(I)^{2}$ is a solution of the functional equation (1.3) for all $x, y \in I$ and the functions φ and ψ are twice continuously differentiable on I then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim\left(\chi_{p}, \chi_{-p}\right)$, where χ_{p} is the function defined in (1.4).

Daróczy and Páles ([3], see also [2]) improved Matkowski's result by proving the following theorem.

ThEOREM 2. If a pair $(\varphi, \psi) \in \operatorname{CM}(I)^{2}$ is a solution of the functional equation (1.3) for all $x, y \in I$ and either φ or ψ is continuously differentiable on I then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim\left(\chi_{p}, \chi_{-p}\right)$.

These results suggest the following conjecture.
Conjecture. If a pair $(\varphi, \psi) \in \mathrm{CM}(I)^{2}$ is a solution of the functional equation (1.3) for all $x, y \in I$ then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim$ $\left(\chi_{p}, \chi_{-p}\right)$.

In this paper we try to give support to our conjecture from a different approach.

2. A preliminary result: The solution of a functional equation.

 We need the following result.Lemma. Let $J \subset \mathbb{R}$ be an open interval. If the strictly decreasing functions $f, g: J \rightarrow \mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x>0\}$ satisfy the functional equation

$$
\begin{equation*}
\frac{1}{2} f\left(\frac{u+v}{2}\right)(g(u)-g(v))=f(v) g(u)-f(u) g(v) \tag{2.1}
\end{equation*}
$$

for all $u, v \in J$ then there exist real constants $p>0, b$, and $c>0$ such that

$$
\begin{equation*}
f(u)=\frac{1}{p u+b}>0 \quad \text { and } \quad g(u)=c f^{2}(u) \tag{2.2}
\end{equation*}
$$

for all $u \in J$.
Proof. (i) First we prove that f and g are continuous functions on J. Let $t \in J$. Then $2 t-J$ is an open interval and $t \in 2 t-J$. Thus $U:=$ $J \cap(2 t-J)$ is an open interval containing t. If $u \in U(\subset J)$ and $u \neq t$ then
let $v:=2 t-u \in U(\subset J)$ in (2.1). Then, since g is strictly monotone, (2.1) implies

$$
\begin{equation*}
f(t)=2 \frac{f(2 t-u) g(u)-f(u) g(2 t-u)}{g(u)-g(2 t-u)} \tag{2.3}
\end{equation*}
$$

for all $u \in U, u \neq t$. Because of the monotonicity of f and g, there exists $u_{0} \neq t$ such that f and g are continuous at $2 t-u_{0}$. Therefore, by (2.3), with the substitution $u:=u_{0}$, we find that f is continuous at t.

Now let $v \in J$ be fixed. Then by the continuity of f, there exists $\delta>0$ for which $\frac{1}{2} f((u+v) / 2)-f(v) \neq 0$ if $\left.u \in\right] v-\delta, v+\delta[\subset J$. Thus from (2.1) we deduce that for the values $u \in] v-\delta, v+\delta[\subset J$ we have

$$
g(u)=g(v) \frac{\frac{1}{2} f((u+v) / 2)-f(u)}{\frac{1}{2} f((u+v) / 2)-f(v)}
$$

which implies

$$
\lim _{u \rightarrow v} g(u)=g(v) \lim _{u \rightarrow v} \frac{\frac{1}{2} f((u+v) / 2)-f(u)}{\frac{1}{2} f((u+v) / 2)-f(v)}=g(v)
$$

that is, g is continuous at v.
(ii) Let $F:=f \circ g^{-1}: g(J) \rightarrow \mathbb{R}_{+}$, where, by the previous results, $g(J) \subset \mathbb{R}_{+}$is an open interval. F is obviously continuous on $g(J)$ and

$$
F(g(u))=f(u) \quad \text { for all } u \in J
$$

Then from equation (2.1), for any $s, t \in g(J)$ with $s \neq t$, with the substitutions $u=g^{-1}(s), v=g^{-1}(t)$, we have

$$
\frac{1}{2} f\left(\frac{g^{-1}(s)+g^{-1}(t)}{2}\right)=\frac{F(t) s-F(s) t}{s-t}=F(t)-t \frac{F(s)-F(t)}{s-t}
$$

By the continuity of f and g, the limit of the left hand side exists as $s \rightarrow t$, thus the right hand side also has a limit. Therefore F is differentiable and

$$
\frac{1}{2} F(t)=\frac{1}{2} f \circ g^{-1}(t)=\lim _{s \rightarrow t} \frac{1}{2} f\left(\frac{g^{-1}(s)+g^{-1}(t)}{2}\right)=F(t)-t F^{\prime}(t)
$$

for all $t \in g(J)$. Since $t>0$ and $F(t)>0$, this implies

$$
(\log F(t)-\log \sqrt{t})^{\prime}=0
$$

Therefore, there exists $d>0$ such that $F(t)=d \sqrt{t}$. This yields, by the definition of F, that $f \circ g^{-1}(t)=d \sqrt{t}$, i.e., $f(u)=d \sqrt{g(u)}$ for $u \in J$, which gives

$$
\begin{equation*}
g(u)=c f^{2}(u) \quad \text { for } u \in J \tag{2.4}
\end{equation*}
$$

where $c=1 / d^{2}>0$. Putting (2.4) back in (2.1), for $u \neq v$ we have

$$
f\left(\frac{u+v}{2}\right)=\frac{2 f(u) f(v)}{f(u)+f(v)}
$$

which obviously also holds for $u=v$. This implies that the function h defined by $h(u):=1 / f(u)(u \in J)$ satisfies Jensen's functional equation

$$
h\left(\frac{u+v}{2}\right)=\frac{h(u)+h(v)}{2} \quad(u, v \in J)
$$

([1], [5]), thus, by the continuity and strict monotonicity of f, we have $h(u)=p u+b$, where $p>0$ and b are constants. From this we have

$$
f(u)=\frac{1}{p u+b}>0 \quad \text { for } u \in J
$$

and so, by (2.4), the statement of the lemma is proved.
3. Comparable quasi-arithmetic means and the main result. The notion of comparability forms the basis of the different approach mentioned in the introduction $([4],[5])$. Let $(\varphi, \psi) \in \operatorname{CM}(I)^{2}$. We say that the quasiarithmetic means A_{φ} and A_{ψ} are strictly comparable in I if

$$
\begin{equation*}
A_{\varphi}(x, y) \triangleleft A_{\psi}(x, y) \quad \text { for all } x \neq y, x, y \in I \tag{3.1}
\end{equation*}
$$

where \triangleleft is one of the relations $=,<,>$ on the real numbers. With this natural notion, our main result is the following:

ThEOREM 3. If a pair $(\varphi, \psi) \in \operatorname{CM}(I)^{2}$ is a solution of the functional equation (1.3), and the quasi-arithmetic means A_{φ} and A_{ψ} are strictly comparable in I, then there exists $p \in \mathbb{R}$ such that $(\varphi, \psi) \sim\left(\chi_{p}, \chi_{-p}\right)$.

Proof. (i) If the relation \triangleleft is $=$ then, by (1.3) and $A_{\varphi}=A_{\psi}$,

$$
A_{\varphi}(x, y)=\frac{x+y}{2}=A_{\psi}(x, y) \quad \text { if } x, y \in I, x \neq y
$$

This implies that φ and ψ satisfy Jensen's functional equation, thus, by the continuity and strict monotonicity, $\varphi(x)=a x+b$ and $\psi(x)=A x+B$ for all $x \in I$, where $a A \neq 0, b, B$ are constants ([1], [5]). Therefore $(\varphi, \psi) \sim$ $\left(\chi_{0}, \chi_{0}\right)$, that is, the conclusion holds with $p=0$.
(ii) If the relation \triangleleft is $<$ or $>$ then, since φ and ψ can be interchanged, it is enough to investigate only one direction. Suppose that it is $>$, i.e.,

$$
\begin{equation*}
A_{\varphi}(x, y)>A_{\psi}(x, y) \quad \text { for } x, y \in I, x \neq y \tag{3.2}
\end{equation*}
$$

Then, by (3.2), (1.3) implies

$$
\begin{equation*}
A_{\varphi}(x, y)>\frac{x+y}{2} \quad \text { and } \quad \frac{x+y}{2}<A_{\psi}(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in I$ with $x \neq y$. Since we disregard the equivalence of the generating functions φ and ψ, we can assume that φ and ψ are strictly increasing
functions on I. Then, by (3.3), φ is strictly Jensen convex and ψ is strictly Jensen concave. Since φ and ψ are continuous and strictly increasing, φ is strictly convex and ψ is strictly concave on I. Therefore φ^{-1} is strictly concave on $\varphi(I), \psi^{-1}$ is strictly convex on $\psi(I)$, and $\gamma:=\psi \circ \varphi^{-1}$ is strictly increasing and strictly concave on $\varphi(I)([5],[8])$. Thus the left and right derivatives of the functions φ^{-1} and γ exist on the open interval $J:=\varphi(I)$, as well as those of ψ^{-1} on the open interval $\psi(I)$. If $u, v \in J=\varphi(I)$ and $x=\varphi^{-1}(u), y=\varphi^{-1}(v)$ in (1.3) then

$$
\begin{equation*}
\psi^{-1}\left(\frac{\gamma(u)+\gamma(v)}{2}\right)=\varphi^{-1}(u)+\varphi^{-1}(v)-\varphi^{-1}\left(\frac{u+v}{2}\right) \tag{3.4}
\end{equation*}
$$

for all $u, v \in J$.
By the previous results, the right derivative (denoted by h_{+}^{\prime} for a function h) of each function in (3.4) exists at all the points of the domain. Since γ is strictly increasing, both sides of (3.4) can be differentiated from the right with respect to $u \in J$ and $v \in J$; and by the well-known rules, we have the following equations for all $u, v \in J$:

$$
\begin{aligned}
& \psi_{+}^{-1^{\prime}}\left(\frac{\gamma(u)+\gamma(v)}{2}\right) \frac{1}{2}{\gamma^{\prime}}_{+}(u)=\varphi_{+}^{-1^{\prime}}(u)-\frac{1}{2} \varphi_{+}^{-1^{\prime}}\left(\frac{u+v}{2}\right), \\
& \psi_{+}^{-1^{\prime}}\left(\frac{\gamma(u)+\gamma(v)}{2}\right) \frac{1}{2} \gamma_{+}^{\prime}(v)=\varphi_{+}^{-1^{\prime}}(v)-\frac{1}{2} \varphi_{+}^{-1^{\prime}}\left(\frac{u+v}{2}\right) .
\end{aligned}
$$

These two equations imply, as $\left(\varphi_{+}^{1^{\prime}}(u)-\frac{1}{2} \varphi_{+}^{-1^{\prime}}((u+v) / 2)\right) \gamma_{+}^{\prime}(v)=: u \circ v=$ $v \circ u$, that

$$
\begin{equation*}
\frac{1}{2} \varphi_{+}^{-1^{\prime}}\left(\frac{u+v}{2}\right)\left(\gamma_{+}^{\prime}(u)-\gamma_{+}^{\prime}(v)\right)=\varphi_{+}^{-1^{\prime}}(v) \gamma_{+}^{\prime}(u)-\varphi_{+}^{-1^{\prime}}(u) \gamma_{+}^{\prime}(v) \tag{3.5}
\end{equation*}
$$

for all $u, v \in J$.
We recall that the right derivatives of strictly concave functions are positive and strictly decreasing ([5], [8]). Therefore the functions $f, g: J \rightarrow \mathbb{R}_{+}$ defined by

$$
\begin{equation*}
f(u):=\varphi_{+}^{-1^{\prime}}(u) \quad \text { and } \quad g(u):=\gamma_{+}^{\prime}(u) \quad(u \in J) \tag{3.6}
\end{equation*}
$$

are strictly decreasing on I and satisfy (2.1) for all $u, v \in J$. Thus the Lemma implies that there exist real constants $p>0, b$, and $c>0$ such that

$$
\begin{equation*}
f(u)=\frac{1}{p u+b}>0 \quad \text { and } \quad g(u)=c f^{2}(u) \tag{3.7}
\end{equation*}
$$

for all $u \in J$.
Therefore, by (3.6), the functions $\varphi_{+}^{-1^{\prime}}$ and γ_{+}^{\prime} are continuous on J. Thus, since φ^{-1} and γ are concave, φ^{-1} and γ are differentiable on J ([5]).

Therefore (3.7) and (3.6) show that

$$
\begin{equation*}
\varphi^{-1^{\prime}}(u)=\frac{1}{p u+b} \quad \text { and } \quad \gamma^{\prime}(u)=\frac{c}{(p u+b)^{2}} \quad(u \in J), \tag{3.8}
\end{equation*}
$$

where $p>0, b, c>0$ are constants. From (3.8) we have

$$
\begin{equation*}
\varphi(x)=\frac{1}{p}\left(e^{p(x-d)}-b\right) \sim e^{p x} \quad \text { for } x \in I, \tag{3.9}
\end{equation*}
$$

where $p>0$ (d is a constant of integration). On the other hand, as $\gamma=$ $\psi \circ \varphi^{-1}$, we have $\psi=\gamma \circ \varphi$, and therefore (3.8) and (3.9) imply

$$
\begin{align*}
\psi(x) & =\frac{c}{-p(p \varphi(x)+b)}+D \tag{3.10}\\
& =\frac{c}{-p e^{p(x-d)}}+D \sim e^{-p x} \quad \text { for } x \in I,
\end{align*}
$$

where $p>0$ (D is a constant of integration). Relations (3.9) and (3.10) prove the statement of the theorem, namely, $(\varphi, \psi) \sim\left(\chi_{p}, \chi_{-p}\right)$ for some $p>0$. If the reverse inequality holds in (3.2) then $(\varphi, \psi) \sim\left(\chi_{p}, \chi_{-p}\right)$ for some $p<0$.
4. Concluding remarks. Theorem 3 suggests proving the Conjecture concerning Matkowski's problem stated in the introduction in the following way. From the functional equation (1.3) we should conclude that A_{φ} and A_{ψ} are strictly comparable in I. But this leads to the following, still open, problem, which, as shown below, is equivalent to the Conjecture.

Open Problem. Is the following statement true or false? If $\varphi, \psi \in$ $\mathrm{CM}(I)$ and

$$
A_{\varphi}(x, y)+A_{\psi}(x, y)=x+y
$$

for all $x, y \in I$, and there exist $a, b \in I$ such that $a \neq b$ and $A_{\varphi}(a, b)=$ $A_{\psi}(a, b)$, then $A_{\varphi}(x, y)=A_{\psi}(x, y)=(x+y) / 2$ for all $x, y \in I$.

Proof of the equivalence of the Problem and the Conjecture. Consider the continuous function

$$
D(x, y):=A_{\varphi}(x, y)-A_{\psi}(x, y) \quad(x, y \in I) .
$$

If the answer to the Problem is "yes" then either $D(x, y)=0$ for all $x, y \in I$ or $D(x, y) \neq 0$ for all $x, y \in I$ with $x \neq y$. This implies, by the symmetry and continuity of D, that $D(x, y)>0$ (or $D(x, y)<0$) for all $x, y \in I$ with $x \neq y$. Thus the quasi-arithmetic means A_{φ} and A_{ψ} are strictly comparable in I. Therefore, applying Theorem 3, we conclude that the Conjecture is true.

If the answer to the Problem is "no" then, by Theorem 2, ψ (and of course φ) cannot be continuously differentiable.

REFERENCES

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
[2] Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177-197.
[3] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar., submitted.
[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press., Cambridge, 1934.
[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Śla̧ski and PWN, Katowice-Kraków-Warszawa, 1985.
[6] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.
[7] -, Complementary quasi-arithmetic means, in: Leaflets in Mathematics, Proc. Numbers, Functions, Equations '98 Internat. Conf. Noszvaj (Hungary), Pécs, 1998, 123124.
[8] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.

Institute of Mathematics and Informatics
Kossuth Lajos University
H-4010 Debrecen Pf. 12, Hungary
E-mail: daroczy@math.klte.hu
maksa@math.klte.hu

[^0]: 1991 Mathematics Subject Classification: 39B22, 26A51.
 Key words and phrases: quasi-arithmetic mean, functional equation, convexity.
 This work was supported by a grant from the National Foundation for Scientific Research OTKA (no. T-030082).

