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ON THE ISOMORPHISM PROBLEM
FOR MODULAR GROUP ALGEBRAS

OF ELEMENTARY ABELIAN-BY-CYCLIC p-GROUPS

BY

CZES LAW B A G I Ń S K I (BIA LYSTOK)

Abstract. Let G be a finite p-group and let F be the field of p elements. It is shown
that if G is elementary abelian-by-cyclic then the isomorphism type of G is determined
by FG.

1. Introduction. The isomorphism problem for modular group algebras
is whether the isomorphism of the group algebras FG and FH implies the
isomorphism of the groups G and H, where F is a field of characteristic p,
p > 0, and G is a finite p-group. The problem, though studied for more than
fifty years, is solved only for some special classes of finite p-groups. For a
survey of existing results see e.g. [5], [6], [7] and [10].

In this paper, developing some ideas from [2] and [5], we solve the prob-
lem for elementary abelian-by-cyclic p-groups. This extends essentially the
results of [2]. In fact, we show something more: if the centralizer N of the
commutator subgroup G2 modulo its Frattini subgroup Φ(G2) is elementary
abelian and G/N is cyclic then the isomorphism class of G/Φ(G2) is deter-
mined by the group algebra FG, where F is the field of p elements. Similarly
to [2] in the proof we use only the information provided by the factor alge-
bra FG/I(G2)2FG. If G2 is elementary abelian then the inclusion G ⊂ FG
induces a monomorphism of G into the factor algebra FG/I(G2)I(G). This
factor algebra is called the small group algebra. In [5] the structure of this
algebra was used in solving the problem for groups of nilpotency class two
with elementary abelian commutator subgroup. We show that when study-
ing the small group algebra it is not possible to solve the problem even
for p-groups of maximal class with elementary abelian commutator sub-
group.

Throughout, F denotes the field of p elements, where p is a fixed prime,
and G is a finite p-group with FG its modular group algebra. I(G) denotes
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the augmentation ideal of FG and V = 1 + I(G) the group of normalized
units of FG. The terms of the lower central series of G are denoted by
Gi, in particular G2 is the commutator subgroup of G. We will denote by
(g, h) = g−1h−1gh the group commutator of two elements g, h of a group
and by [a, b] = ab− ba the Lie commutator of two elements of an associative
algebra.

We also often use well-known standard identities, such as:

(xy − 1) = (x− 1) + (y − 1) + (x− 1)(y − 1),(1)

[x− 1, y − 1] = ((y, x)− 1) + (x− 1)((y, x)− 1)(2)

+ (y − 1)((y, x)− 1) + (y − 1)(x− 1)((y, x)− 1),

[x, yt] =

t∑
k=1

yt−k[x, y, . . . , y︸ ︷︷ ︸
k

].(3)

A subgroup H of V is called a base subgroup if |H| = |G| and all elements
of H are linearly independent over F .

2. Preliminary results. We begin with some general combinatorial
observations. Let K be an arbitrary field and let A be a K-algebra. For
arbitrary elements x, y ∈ A and for i > j > 0 we define elements cij =
cij(x, y) of A in the following way:

c21 = [y, x], c31 = [x, y, y] = [−c21, y], c32 = [c21, x],

and inductively

cn1 = [−cn−1,1, y], cni = [cn−1,i−1, x] for 2 ≤ i ≤ n− 1.

The following formula can be easily derived from (3):

[ym, x] =

m∑
j=1

(
m

j

)
(−1)j−1[c21, y, . . . , y︸ ︷︷ ︸

j−1

]ym−j(4)

=

m+1∑
j=2

(
m

j − 1

)
cj1y

m−j+1.

Let

cn =
n−1∑
i=1

cni.

It is seen from the definition that cn+1 = [cn, x] + [−cn1, y].
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Lemma 1. Let L be the ideal of A generated by all elements of the form
[a, b][c, d], where a, b, c, d ∈ A. For all x, y ∈ A and all natural n ≥ 2,

(x+ y)n ≡
n∑
j=0

(
n

j

)
xn−jyj(a)

+

n∑
i=2

(
n

i

) n−i∑
k=0

(
n− i
k

)
xn−i−kciy

k (mod L),

(xy)n ≡ xnyn +

n∑
j=2

(
n

j

) j−1∑
i=1

xn−icjiy
n−j+i (mod L).(b)

P r o o f. (a) The case n = 2 is obvious:

(x+ y)2 = x2 + 2xy + y2 + c2.

For the induction step we have

(x+ y)n = (x+ y)n−1(x+ y)(5)

=

n−1∑
j=0

(
n− 1

j

)
xn−1−jyjx

+

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kciy

kx

+

n−1∑
j=0

(
n− 1

j

)
xn−1−jyj+1

+

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kciy

k+1.

Now using (4) and the equality
(
l
j

)(
j
i

)
=
(
l
i

)(
l−i
l−j
)
, which is true for all

i ≤ j ≤ l, we obtain

(6)

n−1∑
j=0

(
n− 1

j

)
xn−1−jyjx

=

n−1∑
j=0

(
n− 1

j

)
xn−jyj

+
n−1∑
j=1

(
n− 1

j

)
xn−1−j

j∑
i=1

(
j

i

)
(−1)i−1[c2, y, . . . , y︸ ︷︷ ︸

i−1

]yj−i
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=

n−1∑
j=0

(
n− 1

j

)
xn−jyj

+

n−1∑
i=1

(
n− 1

i

)
(−1)i−1

n−1∑
j=i

(
n− 1− i
n− 1− j

)
xn−1−j [c2, y, . . . , y]yj−i.

So taking j − i = k we get

n−1∑
j=1

(
n− 1

j

)
xn−1−jyjx(7)

=

n−1∑
j=1

(
n− 1

j

)
xn−jyj

+

n−1∑
i=1

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kci+1,1y

k.

We also have

(8)

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kciy

kx

≡
n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−i−kciy

k

+

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−k[ci, x]yk.

Let α be the first right hand double sum of (8) and β the second one. Then
by (6), (7) and the definition of cm,

(9)

n−1∑
j=1

(
n− 1

j

)
xn−1−jyjx+ β

=

n−1∑
j=1

xn−jyj +

(
n− 1

1

) n−2∑
k=0

(
n− 2

k

)
xn−2−kc2y

k

+

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kci+1y

k

=

n−1∑
j=1

(
n− 1

j

)
xn−jyj +

n−1∑
i=2

(
n− 1

i− 1

) n−i∑
k=0

(
n− i
k

)
xn−i−kciy

k + cn
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and similarly

(10) α+

n−1∑
i=2

(
n− 1

i

) n−1−i∑
k=0

(
n− 1− i

k

)
xn−1−i−kciy

k+1

=

n−1∑
i=2

(
n− 1

i

) n−i∑
k=0

(
n− i
k

)
xn−i−kciy

k.

Using the last two equalities for extending (5) one obtains part (a) of Lemma.
For the induction step in the proof of part (b) one only needs to use the

equality
(
n−1
j

)
+
(
n−1
j−1

)
=
(
n
j

)
. This part is much easier so we leave it to

the reader.

Corollary 2. If F is a field of characteristic p > 0, then for all x, y ∈ A
and n ≥ 1,

(x+ y)p
n

≡ xp
n

+ yp
n

+ cpn (mod L),(a)

(xy)p
n

≡ xp
n

yp
n

+

pn−1∑
i=1

xp
n−icpn,iy

i (mod L),(b)

where L is the ideal of A generated by all elements of the form [a, b][c, d]
with arbitrary a, b, c, d ∈ A.

Now let N be a normal subgroup of G such that G/N is cyclic of order pn.
Let g be an element of G with G = 〈g,N〉 and let % denote the automorphism
of N induced by conjugation by g. If u is an element of N let µu denote
conjugation in N by u. The following lemma is an easy strengthening of
Lemma 1 from [9] and can be proved in the same way.

Lemma 3. Let α be an automorphism of N. Then there is a bijection
between

Aα = {ϕ ∈ Aut(G) | ϕ|N = α, ϕ|G/N = idG/N}
and

Nα = {u ∈ N | (%, α) = µu, (gp
n

)α = (gu)p
n

}
given by ϕ 7→ g−1gϕ. In particular , for a fixed y ∈ N the function

g 7→ gy, x 7→ x for all x ∈ N
can be extended to an automorphism of G if and only if (gy)p

n

= gp
n

.

The following lemma is a special case of the main result of [4].

Lemma 4. If G is a cyclic group of order pn generated by an element g
and F is a field of p elements then the group V of normalized units of the
group algebra FG is the direct product of the cyclic groups generated by all
elements of the form 1 + (g− 1)δ, where 0 < δ < pn and p - δ. In particular ,
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the subgroup U = 〈1 + (g − 1)δ | 1 < δ < pn, p - δ〉 has index pn in V and
V = 〈g〉 × U .

3. The structure of the algebra FG/I(G2)2FG. Let N and H,
H ≤ N, be normal subgroups of G and let |G : N | = pn, |N : H| = pm. Let
g1, . . . , gn be elements of G such that the elements

(11) (g1 − 1)i1 . . . (gn − 1)in , 0 ≤ i1, . . . , in ≤ p, 0 <
∑
j

ij < pn,

form a linear basis of I(G) modulo I(N)FG. In particular, if G/N is a cyclic
group generated by gN, where g ∈ G \ N is a fixed element, we can take

g1 = g, gi+1 = gpi = gp
i

, i = 1, . . . , n − 1, and then the basis (11) has the
form

(g − 1)i1(gp − 1)i2 . . . (gp
n−1

− 1)in = (g − 1)i1+i2p+...+inp
n−1

.

Let now similarly x1, . . . , xm ∈ N be such that

(12) (x1 − 1)i1 . . . (xm − 1)im , 0 ≤ i1, . . . , im < p, 0 <
∑
j

ij < pm,

form a basis of I(N) modulo I(H)FN, which is of course a linear basis of
I(N) + I(H)FG modulo I(H)FG.

Let h1, . . . , hk be a minimal set of generators of H. It is well known
that the set {h1 − 1, . . . , hk − 1} is a basis of the space I(H) modulo I(H)2

([8], Prop. III.1.15(i)). It is also a basis of I(H)FG modulo I(H)I(G) ([8],
Prop. III.1.15(ii)). Notice that we can treat the space I(H)FG/I(H)I(G)
as a module over the ring FG/I(H)FG, where the action is induced by
conjugation by elements of G.

Now assume that H = G2 and N = CG(G2/Φ(G2)). Let also G/N be
cyclic of order pn generated by gN , where g ∈ G\N is a fixed element. Since
the annihilator of the FG/I(G2)FG-module M = I(G2)FG/I(G2)I(G)
contains I(N)FG/I(G2)FG we can view M as an FG/I(N)FG-module.
But FG/I(N)FG ' F (G/N) is a group ring of a cyclic p-group, so M
splits into a direct sum of cyclic submodules. Let z11, . . . , z1s be elements
of H such that the images of the elements z11 − 1, . . . , z1s − 1 in M are
generators of all different direct summands of M. Let Mi be the submodule
of M generated by z1i − 1 and let dimF Mi = ki. Moreover, assume that
k1 ≥ . . . ≥ ks. It is clear that for fixed i, 1 ≤ i ≤ s, the submodule Mi is
spanned over F by the images of the elements z1i − 1, . . . , zkii − 1, where
zj+1,i = (zji, g). Now observe that the elements

(13) (g − 1)t(x1 − 1)i1 . . . (xm − 1)im

form a basis of FG modulo I(G2)FG and the elements

(14) (g − 1)t(x1 − 1)i1 . . . (xm − 1)im(zji − 1)
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form a basis of I(G2)FG modulo I(G2)2FG, where 0 ≤ t < pn, 0 ≤
i1, . . . , im < p, 0 <

∑
r ir < pm, 1 ≤ j ≤ ki. Now put z = z0 = z11

and for 1 ≤ i < k1 let zi = zi+1,1.

Lemma 5. The function

(15) α 7→ [α, z]

induces a monomorphism from the space spanned by elements of the form
(13) with 1 ≤ t < pn into I(G2)FG/I(G2)2FG.

P r o o f. Let A be the space spanned by all elements of the form (13)
and let At be its subspace spanned by such elements for fixed t, 1 ≤ t < pn.
It is clear that A = A1 ⊕ . . . ⊕ Apn−1. The image of an arbitrary element
α is contained in the subspace of I(G2)FG/I(G2)2FG spanned modulo
I(G2)2FG by all elements of the form

(g − 1)t(x1 − 1)i1 . . . (xk − 1)ik(zj − 1).

Now observe that by (2),

[g, zi] ≡ (zi+1 − 1) + (g − 1)(zi+1 − 1) ≡ g(zi+1 − 1) (mod I(H)2FG)

and then for 1 ≤ l < k1,

[g, z, g, . . . , g︸ ︷︷ ︸
l−1

] ≡ (−1)l−1gl(zl − 1) (mod I(G2)2FG).

Hence by a slight modification of (4) for all t, 1 ≤ t < pn, we have

[(g − 1)t, z] ≡
t∑
l=1

(
t

l

)
(g − 1)t−l[g, z, g, . . . , g︸ ︷︷ ︸

l−1

]

≡
t∑
l=1

(
t

l

)
(g − 1)t−l(−1)l−1gl(zl − 1) (mod I(G2)2FG).

Therefore[ pn−1∑
t=1

at(g − 1)t, z
]

≡
pn−1∑
t=1

at

t∑
l=1

(
t

l

)
(g − 1)t−l(−1)l−1gl(zl − 1)

≡
k1∑
l=1

( pn−1∑
t=l

at

(
t

l

)
(g − 1)t−l

)
(−1)l−1gl(zl − 1) (mod I(G2)2FG)

as pn−1 < k1 < pn and for l ≥ k1 we have zl − 1 ≡ 0 (mod I(G2)2FG).
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Now, if [ pn−1∑
t=1

at(g − 1)t, z
]
≡ 0 (mod I(G2)2FG),

then for t = l < k1 we get atg
t(zt − 1) ≡ 0, which implies at = 0. For

k1 ≤ t ≤ pn − 1 we obtain at = 0 upon taking l = 1 when t 6≡ 0 (mod p),
and l = pj when t = ipj , i 6≡ 0 (mod p). The lemma now follows from the
fact that

[(g− 1)t(x1− 1)i1 . . . (xm− 1)im , z] ≡ [(g− 1)t, z](x1− 1)i1 . . . (xm− 1)im .

The following result is a more general version of Proposition 1.4 of [2].

Proposition 6. Let G be a finite p-group, and assume that the subgroup

N = CG(G2 : Φ(G2))

is such that G/N is cyclic. Then

I(N) + I(G2)FG = CI(G)(I(G2)FG : I(G2)2FG).

In particular ,

(a) the subring I(N)+I(G2)FG is determined by FG, i.e. it is canonical
in the sense of Passman, and

(b) the algebra (I(N) + I(G2)FG)/(I(G2)2FG) is commutative iff the
group N/Φ(G2) is commutative.

P r o o f. Let

S = I(N) + I(G2)FG and U = CI(G2)(I(G2)FG : I(G2)2FG).

The inclusion S ⊂ U follows from the assumption N = CG(G2 : Φ(G2))
and one can prove it in the same way as in the proof of Prop. 1.4 of [2].
The proof of the reverse inclusion is also similar to that in [2] and is an
immediate consequence of Lemma 5. In fact, if α is an element of I(G) then
it can be uniquely expressed in the form

α =
∑

ati1...im(g − 1)t(x1 − 1)i1 . . . (xm − 1)im ,

where ati1...im ∈ F , 0 < t, 0 ≤ i1, . . . , im < p. So if [α, β] ∈ I(G2)2FG for
all β ∈ I(G2)FG then in particular [α, z− 1] ∈ I(G2)2FG and by Lemma 5
for t < pn we must have ati1...im = 0, that is, α ∈ U .

Corollary 7. Let G be a finite p-group, and assume that the subgroup
N = CG(G2 : Φ(G2)) is such that G/N is cyclic. Then N/Φ(G2) is deter-
mined by the structure of the algebra FG.

P r o o f. Observe first that by standard considerations one can easily
obtain

(I(N) + I(G2)FG)/I(G2)I(G) ' I(N)/I(G2)I(N) ' I(N)/I(G2)I(N),
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where X means the image of a subset X ⊂ N under the natural epimorphism
N → N/Φ(G2). But by definition of N, N/Φ(G2) is of nilpotency class two
with elementary abelian commutator subgroup. So the result follows from
the main result of [6].

Lemma 8. Let G and N be as in the assumptions of Corollary 7. Then
for all n ≥ 1:

(x+ y)p
n

≡ xp
n

+ yp
n

(mod I(N)I(G)) if x, y ∈ I(G)2,(a)

(xy)p
n

≡ xp
n

yp
n

(mod I(N)I(G)) if y ∈ I(G)2.(b)

P r o o f. Let J2 = I(G2)FG and for k > 2,

Jk = Jk−1I(G) + I(G)Jk−1 =

k−1∑
i=2

I(Gi)I(G)k−i

where I(G)0 = FG (see [2]). An easy induction shows that for all m > 1,

[I(G)2, I(G)2, . . . , I(G)2︸ ︷︷ ︸
m

] ⊂ J2k.

Therefore for x, y ∈ I(G)2 in Corollary 2 the element cpn must belong
to J2pn . Since by definition of N, G2pn ≤ Φ(G2), it follows that cpn ≡ 0
(mod I(G2)I(G)) and (a) follows. By Corollary 2(b) part (b) is obvious.

Theorem 9. Let G be a finite p-group such that for the subgroup N =
CG(G2 : Φ(G2)) the factor group G/N is cyclic. Then the isomorphism class
of G/Φ(N) is determined by the structure of FG.

P r o o f. Let, as previously, G = 〈g,N〉 and N = 〈x1, . . . , xk, Φ(G2)〉.
Since

(I(N) + I(G2)FG)FG = I(N)FG,

by Proposition 6 the ideal I(N)FG, and then also the ideal I(N)I(G), is
determined by FG. Let H be an arbitrary base subgroup of FG. Then again
by Proposition 6, H contains a subgroup M such that

I(M) + I(H2)FH = I(N) + I(G2)FG.

We will use the bar convention to denote images in the quotient algebra
FG/I(N)I(G). It is clear that we may assume that M = N. Let h ∈ H \M
be such that H = 〈h,N〉. Then h generates FG modulo I(N)FG and by
Lemma 4, h = giut, where

u ∈ 〈1 + (g − 1)δ | 1 < δ < pn, p - δ〉 and t ∈ N.
Since t − 1 ∈ I(G)2 the element x = git must generate G modulo N. By
Lemma 8(b) for y= t−1ut we have (xy)p

n ≡ xpnypn (mod I(G2)I(G)). More-
over, since y−1 ∈ I(G)2, by Lemma 8(a) we have yp

n ≡ 0 (mod I(G2)I(G)).
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Hence by the inclusion G2 ≤ N we obtain (xy)p
n ≡ xp

n

(mod I(N)I(G)).
It is clear that G = 〈x,N〉. Let

W = 〈N, 1 + (g − 1)δ | 1 < δ < pn, p - δ〉

be a subgroup of the group of normalized units V = 1 +I(G). By Lemma 4,
|V : W | = pn and V = 〈x,W 〉. Therefore by the above and by Lemma 3 the
function

x 7→ xy, z 7→ z, z ∈W,
can be extended to an automorphism of V . This automorphism maps G
onto H.

Corollary 10. If G is an elementary abelian-by-cyclic p-group and
FG ' FH then G ' H.

4. The small group algebra. In the proof of Proposition 6 we used
the information provided only by the factor algebra FG/I(G2)2FG. Having
this proposition we proved Theorem 9 using even a smaller factor algebra,
namely FG/I(G2)I(G). Notice that the inclusion G ⊂ FG determines a
monomorphism of G/Φ(G2) into FG/I(G2)I(G). The following example
shows that in this last factor algebra there is not enough information about
G to determine its isomorphism type.

Example 1. LetGbe a p-group of maximal class with elementary abelian
maximal subgroup N. By III.14 of [3], |G| ≤ pp+1 and G = 〈g,N〉 = 〈g, h〉,
with h ∈ N. Assume that |G| ≥ p5. Consider the subgroup H of the group of
normalized units generated by the elements g and h+(g−1)2. It is clear that
H generates the algebra FG and its image H in FG/I(G2)I(G) is a p-group
of maximal class and of order equal to |G|, in particular FG/I(G2)I(G) '
FH/I(H2)I(H). Moreover, it can be easily proved that H does not contain
a maximal abelian subgroup, that is, FG 6' FH.

The situation described in the example is a special case of a more general
property of the factor algebra FG/I(G2)I(G).

Let G be a finite p-group and assume that the nilpotency class of
G/Φ(G2) is equal to c. Let {t21, . . . , t2k2 , t31, . . . , t3n3

, . . . , tc1, . . . , tcnc
} be

a minimal set of generators of G2 such that {ti1, . . . , tini
} is a minimal set

of generators of Φ(G2)Gi modulo Φ(G2)Gi+1. For k ≥ 2 we define ideals
Ik = I(G2)I(G) + I(Gk)FG. It is clear that each element of Ik has the form∑
i≥k aij(tij − 1) +α, where aij ∈ F and α ∈ I(G2)I(G). The following two

lemmas can be proved by easy induction.

Lemma 11. For every k ≥ 2, G2 ∩ (1 + Ik) = Φ(G2)Gk. In particular , if
k ≥ c then G2 ∩ (1 + Ik) = Φ(G2).
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Lemma 12. Let α1, . . . , αn ∈ V, n ≥ 2. Then [α1, . . . , αn] ∈ In and
(α1, . . . , αn) − 1 ≡ [α1, . . . , αn] (mod In+1). Moreover , if αi = xi + βi,
i = 1, . . . , n, where xi ∈ G and βi ∈ I(G)2, then (α1, . . . , αn) ≡ (x1, . . . , xn)
(mod In+1).

Proposition 13. Let G be a p-group of maximal class with elementary
abelian commutator subgroup G2. Then there exists a p-group H of maximal
class having maximal abelian subgroup such that

FG/I(H) ' FH/I(H2)I(H).

P r o o f. Let G1 = CG(G2/G4). It is well known (e.g. [3], III.14) that
|G : G1| = p. Let y ∈ G \ G1, x1 ∈ G1 \ G2 and for i ≥ 1 let xi+1 =
(xi, y). If G1 is abelian there is nothing to prove. So assume that G1 is non-
abelian and let (G1, G1) = Gi. Since all normal subgroups of G containing
x2 contain also G2, the subgroup C = CG2

(G1/Gi+1) as a normal subgroup
of G does not contain x2. Otherwise (G1, G2) ≤ Gi+1. Hence (x2, x1) ≡ xk1
(mod Gi+1) for some k, 1 ≤ k < p. Let H be the subgroup of the unit
group of FG/I(G2)I(G) generated by the elements y = y + I(G2)I(G) and
x1 = x1 − k(y − 1)i−1 + I(G2)I(G). Then H is of course of maximal class,
has the same order as G and since

(x2, x1)− 1 ≡ [x2, x1] ≡ [x2, x1]− k[x2, (y − 1)i−1]

≡ ((x2, x1)− 1)− k[x2, y, . . . , y]

≡ (xki − 1)− k(x2, y, . . . , y) ≡ 0 (mod Ji+1)

we have (H1, H2) ≤ Hi+1. Observe now that the natural embedding of H
into the small group algebra FG/I(G2)I(G) can be extended to a homo-
morphism of FH onto FG/I(G2)I(G) and the kernel of this homomorphism
is equal to I(H2)I(H). This means that

FH/I(H2)I(H) ' FG/I(G2)I(G).

Repeating this construction for H we again get a group K with small group
algebra isomorphic to FH/I(H2)I(H) such that (K1,K2) ≤ Ki+2. So the
proposition follows by easy induction.

It is clear by [7] that FG/I(G2)I(G) determines G/Gp2G3. Finally, notice
that a slight modification of the proof from [7] also implies that G/Gp2G4 is
determined by this factor algebra if G is two-generated.
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