SIMPLY CONNECTED RIGHT MULTIPEAK ALGEBRAS AND THE SEPARATION PROPERTY

BY
STANISŁAW KASJAN (TORUŃ)

Abstract

Let $R=k(Q, I)$ be a finite-dimensional algebra over a field k determined by a bound quiver (Q, I). We show that if R is a simply connected right multipeak algebra which is chord-free and $\widetilde{\mathbb{A}}$-free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category $\operatorname{prin}(R)$ of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of $\operatorname{prin}(R)$ in terms of the prinjective Tits quadratic form of R.

1. Introduction. Let k be a field. We consider triangular simply connected right multipeak algebras $R=k Q / I$, where Q is a finite quiver and I is an admissible ideal in the path algebra $k Q$. Triangularity means that the ordinary quiver Q of R has no oriented cycles. Following [13] we say that R is a right multipeak algebra if the right $\operatorname{socle} \operatorname{soc}\left(R_{R}\right)$ of R is R-projective. The main objective of the paper is a criterion for R to have the separation property [2]. We prove in Section 4 that R has the separation property when R is chord-free (see 2.5) and $\widetilde{\mathbb{A}}$-free as a right multipeak algebra. Our main result, Theorem 4.5, is analogous to [21, Theorem 4.1] and [1, 1.2]; cf. [6].

Recall from $[1,1.2]$ that if R is schurian, triangular, simply connected and does not contain any full subcategory (see 2.2) isomorphic to $k \widetilde{\mathbb{A}}_{m}, m \geq 1$, then R has the separation property. Our result is a version of this statement: algebras considered are right multipeak algebras and the requirement that R is $\widetilde{\mathbb{A}}$-free as a right multipeak algebra is a weaker version of $\widetilde{\mathbb{A}}$-freeness considered in [1], [3]. The condition that R is chord-free plays a similar role as the assumption that R is schurian. Note that the arguments used in [1] do not work in our situation: our assumptions on R do not imply that R is schurian. Moreover, R (viewed as a k-category) admits full subcategories isomorphic to $k \widetilde{\mathbb{A}}_{m}$ for some $m \geq 1$, although R is $\widetilde{\mathbb{A}}$-free as a right multipeak algebra (see the Example in 2.5). Hence the arguments used in [3, 2.3] and [5, 2.9] do not apply here.

In Section 2 we recall and discuss the basic concepts related to the notion of the fundamental group of a bound quiver. The next section is devoted to investigating the fundamental group of the bound quiver of the reflection-dual algebra R^{\bullet} associated with R introduced in $[14,2.6]$ and [15, 17.4]. The reflection duality important for socle projective modules over right multipeak algebras is a substitute of the usual duality for modules over finite-dimensional algebras.

The proof of the main result is contained in Section 4. Following the ideas of Skowroński [21, 4.1] we apply induction on the rank \mathbf{r}_{R} of the Grothendieck group $\mathbf{K}_{0}(R)$ of R. In order to do it we prove in Proposition 4.1 that, under suitable assumptions, if R is a one-point extension $B[M]$ of a simply connected algebra B with $\mathbf{r}_{B}<\mathbf{r}_{R}$ then B is also simply connected.

There is another similarity to the results of [21], namely we prove in 4.5 that the algebras considered in our paper have the first Hochschild cohomology group zero.

As an application we obtain in 4.6 a criterion for the finite representation type of the category of prinjective R-modules over a triangular chord-free simply connected right multipeak algebra R. Our result can be applied to incidence algebras of posets with zero-relations investigated by Simson [18][20] as a tool for determining the representation theory of lattices over special orders. They also form a nice class of examples of algebras admitting only inner derivations.
2. Preliminaries. The main aim of this section is to recall the notion of the fundamental group of a bound quiver.
2.1. By a quiver we mean a tuple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ of two sets, the set Q_{0} of vertices and Q_{1} of arrows, and two functions $s, t: Q_{1} \rightarrow Q_{0}$. Instead of $\left(Q_{0}, Q_{1}, s, t\right)$ we usually write $\left(Q_{0}, Q_{1}\right)$. Given an arrow $\alpha \in Q_{1}$ we call $s(\alpha)$ and $t(\alpha)$ the source and the sink of α respectively. We denote by α^{-1} the formal inverse of α and set $s\left(\alpha^{-1}\right)=t(\alpha)$ and $t\left(\alpha^{-1}\right)=s(\alpha)$. A sink (resp. source) of Q is a vertex which is not a source (resp. sink) of any arrow in Q.

If $Q=\left(Q_{0}, Q_{1}, s, t\right)$ and $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)$ are two quivers such that $s(\alpha)=s^{\prime}(\alpha)$ and $t(\alpha)=t^{\prime}(\alpha)$ for every $\alpha \in Q_{1} \cap Q_{1}^{\prime}$ then their intersection $Q \cap Q^{\prime}=\left(Q_{0} \cap Q_{0}^{\prime}, Q_{1} \cap Q_{1}^{\prime}\right)$ is defined in the obvious way. For $A \subseteq Q_{0}$ we denote by $Q \backslash A$ the quiver $\left(Q_{0} \backslash A, \bar{Q}_{1}\right)$, where $\bar{Q}_{1}=\left\{\alpha \in Q_{1}: s(\alpha) \notin A\right.$, $t(\alpha) \notin A\}$.

A walk in Q is a sequence $u=\alpha_{1} \ldots \alpha_{n}$ of arrows and formal inverses of arrows in Q such that $s\left(\alpha_{i+1}\right)=t\left(\alpha_{i}\right)$ for $i=1, \ldots, n-1$. The trivial walk at $x \in Q_{0}$ is denoted by e_{x}. If u is as above we define the source $s(u)$ of u to be $s\left(\alpha_{1}\right)$ and the sink $t(u)$ to be $t\left(\alpha_{n}\right)$. We denote by u^{-1} the inverse walk $\alpha_{n}^{-1} \ldots \alpha_{1}^{-1}$.

If all $\alpha_{1}, \ldots, \alpha_{r}$ are arrows (not inverses of arrows) then we call u a path. Two paths u and v are parallel if $s(u)=s(v)$ and $t(u)=t(v)$.

If u and v are two walks with $s(v)=t(u)$ then we define the composition $u v$ in the obvious way.

A walk u is a loop (at x) provided $s(u)=t(u)=x$. It is well known that given $x \in Q_{0}$ the composition of walks induces a group structure on the set of homotopy classes of loops at x. The homotopy relation is induced by the topological structure associated with the quiver Q in the usual way. The group obtained that way is called the fundamental group of Q at x and it is denoted by $\Pi_{1}(Q, x)$. If Q is connected then the isomorphism class of $\Pi_{1}(Q, x)$ does not depend on the choice of x. In this case we shall speak about the fundamental group of Q and denote it by $\Pi_{1}(Q)$.

Assume that Q is connected and T is a maximal tree in Q. If $\alpha_{1}, \ldots, \alpha_{r}$ are all arrows of Q not belonging to T then $\Pi_{1}(Q)$ can be identified with the free group with free generators $\alpha_{1}, \ldots, \alpha_{r}[22,3.7]$. Under this identification each walk u in Q can be regarded as an element of $\Pi_{1}(Q)$: we identify arrows that belong to T with the unit element of $\Pi_{1}(Q)$.
2.2. Given a field k the path algebra of Q with coefficients in k is denoted by $k Q$. If I is an admissible ideal in $k Q$ then the pair (Q, I) is called a bound quiver and $k(Q, I)$ denotes the bound quiver algebra $k Q / I$ of (Q, I) (cf. [4, 2.1]). We agree that the trivial paths $e_{x}, x \in Q_{0}$, form a complete set of primitive orthogonal idempotents of R.

Fix Q and I as above and let $R=k(Q, I)$. Recall that the algebra R is said to be connected if the quiver Q is connected. By connected components of R we mean the algebras determined by connected components of the quiver Q. The algebra R is triangular if Q has no oriented cycle, and it is schurian if $\operatorname{dim}_{k} e_{x} R e_{y} \leq 1$ for all $x, y \in Q_{0}$. It is easy to check that R is a right multipeak algebra if and only if for any w in $k Q$ not belonging to I there exists a path v terminating at a sink of Q such that $u v \notin I$.

It is often convenient to treat R as a k-category with Q_{0} as objects and with morphism spaces $R(x, y)=e_{x} R e_{y}$ for $x, y \in Q_{0}$. The composition is induced by multiplication in R. Given two paths u, v in Q we denote by $u R v$ the subspace of R generated by the I-cosets of paths of the form uwv in Q.

For $x \in Q_{0}$ we denote by S_{x} the simple R-module $e_{x} R / \operatorname{rad}\left(e_{x} R\right)$ associated with x and by P_{x} its R-projective cover $e_{x} R$. Here $\operatorname{rad}(X)=X \operatorname{rad}(R)$ is the Jacobson radical of the module X.

For $A \subseteq Q_{0}$ we denote by R_{A} the full subcategory of R with $Q_{0} \backslash A$ as objects. In algebraic terms this means that $R_{A} \cong \operatorname{End}_{R}\left(\bigoplus_{x \in Q_{0} \backslash A} P_{x}\right)$. Given a vertex x of Q we write R_{x} instead of $R_{\{x\}}$.

We identify in the usual way an R-module M with a k-representation $(M(x), M(\alpha))_{x \in Q_{0}, \alpha \in Q_{1}}$ of (Q, I). Given a path $u=\alpha_{1} \ldots \alpha_{r}$ in Q we denote
by $M(u): M(s(\alpha)) \rightarrow M(t(\alpha))$ the composition $M\left(\alpha_{r}\right) \ldots M\left(\alpha_{1}\right)$. By the support of M we mean the subset $\operatorname{supp}(M)=\left\{x \in Q_{0}: M(x) \neq 0\right\}$ of Q_{0}.
2.3. Let I be an admissible ideal in the path algebra $k Q$. Following [7], $[10,1.3]$ we say that an element $\omega=\sum_{i=1}^{n} \lambda_{i} u_{i}$ of I is a minimal relation in I provided u_{1}, \ldots, u_{n} are parallel paths in $Q, \lambda_{1}, \ldots, \lambda_{r} \in k, n \geq 2$ and for any proper subset J of $\{1, \ldots, n\}$ we have $\sum_{j \in J} \lambda_{j} u_{j} \notin I$.

We say that a path u appears in $\omega=\sum_{i=1}^{n} \lambda_{i} u_{i}$ with coefficient μ provided $\sum_{i ; u_{i}=u} \lambda_{i}=\mu$. If u appears in ω with a nonzero coefficient then we just say that u appears in ω. If α^{\prime} and $\alpha^{\prime \prime}$ are arrows such that $u_{1}^{\prime} \alpha^{\prime} u_{2}^{\prime}$ and $u_{1}^{\prime \prime} \alpha^{\prime \prime} u_{2}^{\prime \prime}$ are different parallel paths appearing in a minimal relation for some paths $u_{1}^{\prime}, u_{2}^{\prime}, u_{1}^{\prime \prime}, u_{2}^{\prime \prime}$ in Q then we also say that α^{\prime} and $\alpha^{\prime \prime}$ appear in a minimal relation in I.

Let Ω be a fixed set of minimal relations generating the two-sided ideal I in $k Q$. Following [7] we denote by \approx_{Ω} the homotopy relation defined by Ω; it is the smallest equivalence relation on the set of walks in Q satisfying:
(a) if u and v are homotopic in Q then $u \approx_{\Omega} v$,
(b) if $u \approx_{\Omega} u^{\prime}, v \approx_{\Omega} v^{\prime}$ and $t(u)=s(v), t\left(u^{\prime}\right)=s\left(v^{\prime}\right)$ then $u v \approx_{\Omega} u^{\prime} v^{\prime}$,
(c) if u and v appear in a minimal relation belonging to Ω then $u \approx_{\Omega} v$.

We denote by $\Pi_{1}((Q, I), x, \Omega)$ the group of homotopy classes of loops at x and call it the fundamental group of the bound quiver (Q, I) at the vertex x with respect to the set Ω. Again if Q is connected then this group does not depend on the choice of x and we speak about the fundamental group of (Q, I) with respect to Ω and denote it by $\Pi_{1}((Q, I), \Omega)$ (cf. [7], [10], [1]).
2.4. Assume that Q is connected and fix a maximal tree $T=\left(T_{0}, T_{1}\right)$ in Q. As above we identify $\Pi_{1}(Q)$ with the free group on the set $Q_{1} \backslash T_{1}$ of free generators. Fix a set Ω of minimal relations generating I and denote by $N(\Omega)$ the normal subgroup of $\Pi_{1}(Q)$ generated by all elements of the form $u v^{-1}$, where u, v are parallel paths appearing in a minimal relation belonging to Ω. Then by [12] and [16, Remark 3.6] (see also [9]),

$$
\Pi_{1}((Q, I), \Omega) \cong \Pi_{1}(Q) / N(\Omega)
$$

The lemma below implies that $N(\Omega)$ and consequently $\Pi_{1}((Q, I), \Omega)$ do not depend on the choice of Ω.

Lemma. In the notation above assume that Ω and Ω^{\prime} are two sets of generators of I consisting of minimal relations. Then $N(\Omega)=N\left(\Omega^{\prime}\right)$.

Proof. We show that $N(\Omega) \subseteq N\left(\Omega^{\prime}\right)$, the remaining inclusion follows analogously. It is enough to prove that if $\omega^{\prime} \in \Omega^{\prime}$ is a minimal relation and u, v appear in ω^{\prime} then $u v^{-1} \in N(\Omega)$. Since Ω generates I there exist elements $\omega_{i} \in \Omega$, paths u_{i}, v_{i} and $\lambda_{i} \in k$ for $i=1, \ldots, r$ such that $\omega^{\prime}=\sum_{i=1}^{r} \lambda_{i} \widetilde{\omega}_{i}$, where $\widetilde{\omega}_{i}$ denotes $u_{i} \omega_{i} v_{i}$ for $i=1, \ldots, r$.

We introduce a relation \smile in $\{1, \ldots, r\}$ by writing $i \smile j$ provided there exists a path appearing in both $\widetilde{\omega}_{i}$ and $\widetilde{\omega}_{j}$. Then:
(1) If i and j belong to the same connected component of $\{1, \ldots, r\}$ with respect to the relation \smile, u appears in $\widetilde{\omega}_{i}$ and v appears in $\widetilde{\omega}_{j}$ then $u v^{-1} \in N(\Omega)$.
(2) If \mathcal{C} is a component with respect to \smile and u appears in $\omega_{\mathcal{C}}^{\prime}=\sum_{i \in \mathcal{C}} \widetilde{\omega}_{i}$ with coefficient λ_{u} then u appears in ω^{\prime} with the same coefficient.

By minimality of ω^{\prime} it follows from (2) that for any component \mathcal{C} we have $\omega_{\mathcal{C}}^{\prime}=\omega^{\prime}$. Now the assertion follows from (1).

Since $N(\Omega)$ does not depend on the choice of Ω we denote it by $N(I)$; also, we shorten the notation $\Pi_{1}((Q, I), \Omega)$ to $\Pi_{1}(Q, I)$.
2.5. From now on we assume that $R=k(Q, I)$ is a right multipeak algebra. Denote by $\max Q$ the set of all sinks in Q and put $Q^{-}=Q \backslash \max Q$. We say that the algebra R is $\widetilde{\mathbb{A}}_{m}$-free, $m \geq 1$, if it does not contain a full subcategory isomorphic to $k \widetilde{\mathbb{A}}_{m}$, where

(m stars at the bottom), and $\widetilde{\mathbb{A}}_{1}$ is the Kronecker two-arrow quiver. If R is $\widetilde{\mathbb{A}}_{m^{\prime}}$-free for every $m=1,2, \ldots$ then we say that R is $\widetilde{\mathbb{A}}$-free. Observe that R is $\widetilde{\mathbb{A}}_{1}$-free if and only if $\operatorname{dim}_{k} e_{x} R e_{p} \leq 1$ for any $x \in Q_{0}$ and $p \in \max Q$.

We say that a triangular right multipeak algebra R is chord-free if for any arrow α in the ordinary quiver Q of R with $t(\alpha) \notin \max Q$ there is no path u different from α and parallel to α. In particular, the only multiple arrows in Q terminate in $\max Q$.

LEmma. Let $R \cong k Q / I \cong k Q / I^{\prime}$ for admissible ideals I, I^{\prime} be a chord-free $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra. Then a path u in Q belongs to I if and only if it belongs to I^{\prime}.

Proof. This follows from the observation that our assumptions imply that for any arrow $\alpha \in Q_{1}$ the space $e_{s(\alpha)} R e_{t(\alpha)}$ is 1-dimensional.

Example. Let Q be the quiver

Denote the arrow from i to j by $\alpha_{i j}$. Let I be the ideal in $k Q$ generated by the following elements:

$$
\alpha_{13} \alpha_{35}-\alpha_{14} \alpha_{45}, \quad \alpha_{23} \alpha_{35}-\alpha_{24} \alpha_{45}, \quad \alpha_{35} \alpha_{57}, \quad \alpha_{45} \alpha_{58}
$$

The algebra $R=k Q / I$ is a chord-free $\widetilde{\mathbb{A}}$-free right multipeak algebra but it contains a full subcategory isomorphic to $k \widetilde{\mathbb{A}}_{2}$.
2.6. Under the assumption that R is a chord-free $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra we give a new description of the homotopy relation from 2.3. Let \sim be the smallest equivalence relation on the set of walks in Q satisfying the conditions (a) and (b) in 2.3 (with \approx_{Ω} replaced by \sim) and the condition
$\left(\mathrm{c}^{\prime}\right)$ if u and w are parallel paths in Q and there exists a path v in Q ending at a sink of Q such that $u v \notin I$ and $w v \notin I$, then $u \sim w$.

Lemma. If R is a chord-free $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra then the relations \approx_{Ω} and \sim coincide on the set of walks in Q.

Proof. Assume first that u and w are parallel paths in Q and there exists a path v in Q ending at a sink of Q such that $u v \notin I$ and $w v \notin I$. Since R is an $\widetilde{\mathbb{A}}_{1}$-free it follows that $\lambda u v+w v \in I$ for some nonzero $\lambda \in k$. Then $u \approx_{\Omega} v$ and hence the relation \sim is contained in \approx_{Ω}.

To prove the converse inclusion let $\sum_{i=1}^{r} \lambda_{i} w_{i}$ be a minimal relation in I. Let x be the sink of $w_{i}, i=1, \ldots, r$. It is enough to prove that $w_{i} \sim w_{j}$ for any $1 \leq i, j \leq r$.

Assume that W_{1}, \ldots, W_{s} are equivalence classes of the relation \sim restricted to the set $\left\{w_{1}, \ldots, w_{r}\right\}$ and let $s>1$. For $j=1, \ldots, s$ let S_{j} be the set of $p \in \max Q$ such that there exists a path v from x to p with $w v \notin I$ for some $w \in W_{j}$. For any $p \in \max Q$ such that $e_{x} R e_{p} \neq 0$ let v_{p} be a path in Q from x to p not belonging to I. Since R is $\widetilde{\mathbb{A}}_{1}$-free any two paths from x to a fixed vertex $p \in \max Q$ are equal modulo I. It follows that $S_{j}=\left\{p \in \max Q: w v_{p} \notin I\right.$ for all $\left.w \in W_{j}\right\}$ for any $j=1, \ldots, s$. The sets S_{j} are nonempty and pairwise disjoint for $j=1, \ldots, s$.

Observe that by minimality of $\sum_{i=1}^{r} \lambda_{i} w_{i}$ we have

$$
\sum_{w_{i} \in W_{1}} \lambda_{i} w_{i} \neq 0
$$

and since R is a right multipeak algebra,

$$
\left(\sum_{w_{i} \in W_{1}} \lambda_{i} w_{i}\right)\left(\sum_{p \in \max Q, e_{x} R e_{p} \neq 0} v_{p}\right) \neq 0
$$

This yields a contradiction as the left hand side equals

$$
\left(\sum_{w_{i} \in W_{1}} \lambda_{i} w_{i}\right)\left(\sum_{p \in S_{1}} v_{p}\right)=\left(\sum_{i=1}^{r} \lambda_{i} w_{i}\right)\left(\sum_{p \in S_{1}} v_{p}\right)=0
$$

Corollary. Suppose that $R=k(Q, I)$ is a chord-free $\widetilde{\mathbb{A}}_{1}$-free right peak algebra and $R \cong k Q / I \cong k Q / I^{\prime}$, where I and I^{\prime} are admissible ideals in $k Q$. Then $\Pi_{1}(Q, I) \cong \Pi_{1}\left(Q, I^{\prime}\right)$. In particular, the algebra R is simply connected in the sense of [1] if and only if there exists a bound quiver (Q, I) such that $R \cong k Q / I$ and the group $\Pi_{1}(Q, I)$ is trivial.

Proof. The assertion follows from the above Lemma and the fact (see 2.5) that a path u in Q belongs to I if and only if it belongs to I^{\prime}.
3. Right multipeak algebras and a reflection duality. Throughout this section we assume that R is a triangular $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra.
3.1. We represent the algebra R in the triangular matrix form

$$
R=\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right)
$$

where $A=k\left(Q^{-}, I^{-}\right), I^{-}$is the restriction of the ideal I to $k Q^{-}$and $B=k(\max Q) \cong \prod_{p \in \max Q} k_{p}$, with $k_{p}=k$ for $p \in \max Q$. According to [14, Definition 2.6] (see also [15]) the reflection dual algebra R^{\bullet} is

$$
R^{\bullet}=\left(\begin{array}{cc}
A^{\mathrm{op}} & D M \\
0 & B^{\mathrm{op}}
\end{array}\right)
$$

where $D M=\operatorname{Hom}_{k}(M, k)$ is the bimodule dual to M. It follows from $[15,17.4]$ that R^{\bullet} is a right multipeak algebra as well.
3.2. A construction. Our main aim in this section is to present the construction of a new bound quiver $\left(Q^{\bullet}, I^{\bullet}\right)$ such that $R^{\bullet} \cong k\left(Q^{\bullet}, I^{\bullet}\right)$ and the fundamental groups of (Q, I) and $\left(Q^{\bullet}, I^{\bullet}\right)$ coincide. We follow the idea of [14, Definition 2.16].

Let \mathcal{B} be a set of paths in Q such that the I-cosets of the elements of \mathcal{B} form a k-basis of the left A-socle of M. Each $u \in \mathcal{B}$ is a path terminating in $\max Q$ and such that $u \notin I$ but $\alpha u \in I$ for any arrow α. Given two vertices y, p of Q such that $p \in \max Q$ and $y \notin \max Q$ we define the set $\mathcal{B}_{y, p}=\{u \in \mathcal{B}: s(u)=y, t(u)=p\}$.

Observe that since R is $\widetilde{\mathbb{A}}_{1}$-free each path u parallel to an element b of \mathcal{B} equals λb modulo I for some $\lambda \in k$.

Define the quiver $Q^{\bullet}=Q_{\mathcal{B}}^{\bullet}=\left(Q_{0}^{\bullet}, Q_{1}^{\bullet}\right)$, where the set Q_{0}^{\bullet} of vertices of Q^{\bullet} coincides with Q_{0} and

$$
Q_{1}^{\bullet}=\left\{\alpha^{-1}: \alpha \in Q_{1}, t(\alpha) \notin \max Q\right\} \cup\left\{b^{*}: b \in \mathcal{B}\right\}
$$

where b^{*} are new arrows. We set $s\left(b^{*}\right)=y$ and $t\left(b^{*}\right)=p$ if $b \in \mathcal{B}_{y, p}$.
The ideal $I^{\bullet}=I_{\mathcal{B}}^{\bullet}$ is generated by elements of the following types:
(1) $\sum_{i=1}^{r} \lambda_{i} u_{i}^{-1}$, where all u_{i} are paths in Q^{-1} and $\sum_{i=1}^{r} \lambda_{i} u_{i} \in I$,
(2) $u^{-1} b^{*}$ if $b \in \mathcal{B}_{y, p}, u$ is a path from y to x in Q and $u R e_{p}=0$,
(3) $\lambda_{2} u_{1}^{-1} b_{1}^{*}-\lambda_{1} u_{2}^{-1} b_{2}^{*}$ if $b_{i} \in \mathcal{B}_{y_{i}, p}, u_{i}$ is a path from y_{i} to x in Q for $i=1,2$ and there exists a path $v \notin I$ from x to p such that $\lambda_{i} b_{i}-u_{i} v \in I$ for some $\lambda_{i} \in k$ and $i=1,2$.

Since R is $\widetilde{\mathbb{A}}_{1}$-free the element of type (3) above does not depend (up to a scalar multiplication) on the choice of v.

Example. Let Q be the quiver

We denote by $\alpha_{i j}$ the arrow from i to j. Let I be the ideal generated by $\alpha_{12} \alpha_{24} \alpha_{46}$ and let $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ where $b_{1}=\alpha_{12} \alpha_{24} \alpha_{45}, b_{2}=\alpha_{34} \alpha_{45}$, $b_{3}=\alpha_{24} \alpha_{46}, b_{4}=\alpha_{34} \alpha_{46}$.

The quiver $Q_{\mathcal{B}}^{\bullet}$ has the form

If $\alpha_{i j}^{\prime}$ denotes the arrow in $Q_{\mathcal{B}}^{\bullet}$ starting from i and ending at j then $\alpha_{42}^{\prime}=$ $\alpha_{24}^{-1}, \alpha_{21}^{\prime}=\alpha_{12}^{-1}, \alpha_{43}^{\prime}=\alpha_{34}^{-1}, \alpha_{15}^{\prime}=b_{1}^{*}, \alpha_{35}^{\prime}=b_{2}^{*}, \alpha_{26}^{\prime}=b_{3}^{*}, \alpha_{36}^{\prime}=b_{4}^{*}$.

Since $b_{3}-\alpha_{24} \alpha_{46}=0$ and $b_{4}-\alpha_{34} \alpha_{46}$ in $k Q$, according to (2) we have

$$
\alpha_{24}^{-1} b_{3}^{*}-\alpha_{34}^{-1} b_{4}^{*} \in I_{\mathcal{B}}^{\bullet}
$$

Analogously, $\alpha_{24}^{-1} \alpha_{12}^{-1} b_{1}^{*}-\alpha_{34}^{-1} b_{2}^{*} \in I_{\mathcal{B}}^{\bullet}$. The ideal $I_{\mathcal{B}}^{\bullet}$ is generated by commutativity relations, and $k\left(Q^{\bullet}, I^{\bullet}\right)$ is the incidence algebra of a poset.
3.3. LEMMA. If $R=k(Q, I)$ is a triangular $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra then there exists an algebra isomorphism

$$
k\left(Q^{\bullet}, I^{\bullet}\right) \cong R^{\bullet}
$$

Proof. This follows from Proposition 2.19 and Corollary 2.22 of [14].
3.4. Proposition. Suppose that $R=k(Q, I)$ is an $\widetilde{\mathbb{A}}_{1}$-free triangular connected right multipeak algebra and let $\left(Q^{\bullet}, I^{\bullet}\right)$ be the reflection dual bound quiver to (Q, I) with respect to a set \mathcal{B} of paths. Then there exists a group isomorphism

$$
\Pi_{1}(Q, I) \cong \Pi_{1}\left(Q^{\bullet}, I^{\bullet}\right)
$$

Proof. Let $T=\left(T_{0}, T_{1}\right)$ be a maximal tree in Q such that the restriction $T^{-}=T \cap Q^{-}$of T to Q^{-}is a maximal tree in Q^{-}. Let $Q_{1} \backslash T_{1}=$ $\left\{\alpha_{1}, \ldots, \alpha_{r}, \gamma_{1}, \ldots, \gamma_{s}\right\}$, where $\alpha_{1}, \ldots, \alpha_{r}$ are arrows in $\left(Q^{-}\right)_{0}$ and $\gamma_{1}, \ldots, \gamma_{s}$ are arrows in $Q_{1} \backslash Q_{1}^{-}$.

Construct a maximal tree T^{\prime} in Q^{\bullet} such that $Q_{1}^{\bullet} \backslash T_{1}^{\prime}=\left\{\alpha_{1}^{-1}, \ldots, \alpha_{r}^{-1}\right.$, $\left.b_{1}^{*}, \ldots, b_{t}^{*}\right\}$, where $b_{1}^{*}, \ldots, b_{t}^{*}$ are arrows from $\left(Q^{\bullet}\right)^{-}$to $\max Q^{\bullet}$.

Recall from 2.1 that we agreed to treat walks in Q^{\bullet} (resp. in Q) as elements of $\Pi_{1}\left(Q^{\bullet}\right)$ (resp. $\left.\Pi_{1}(Q)\right)$. Denote by $[w]$ the image of $w \in \Pi_{1}(Q)$ in $\Pi_{1}(Q, I)$. Define a homomorphism

$$
\Phi: \Pi_{1}\left(Q^{\bullet}\right) \rightarrow \Pi_{1}(Q, I)
$$

by setting $\Phi\left(\alpha_{i}^{-1}\right)=\left[\alpha_{i}^{-1}\right]$ for $i=1, \ldots, r$ and $\Phi\left(b_{j}^{*}\right)=\left[b_{j}\right]$ for $j=1, \ldots, t$.
We are going to prove that Φ induces a homomorphism $\bar{\Phi}: \Pi_{1}\left(Q^{\bullet}, I^{\bullet}\right) \rightarrow$ $\Pi_{1}(Q, I)$. By 2.4 it is enough to prove that if two paths w_{1}, w_{2} in Q^{\bullet} appear in a minimal relation generating I^{\bullet} then $\Phi\left(w_{1}\right)=\Phi\left(w_{2}\right)$. This is clear if w_{1} and w_{2} are paths in $\left(Q^{\bullet}\right)^{-}$. It remains to consider the case when $w_{1}=$ $u_{1}^{-1} b_{i_{1}}^{*} \notin I^{\bullet}, w_{2}=u_{2}^{-1} b_{i_{2}}^{*} \notin I^{\bullet}$ and $\lambda_{2} u_{1}^{-1} b_{i_{1}}^{*}-\lambda_{1} u_{2}^{-1} b_{i_{2}}^{*}$ for some $\lambda_{1}, \lambda_{2} \in k^{*}$ is a relation of type (3) in 3.2. It follows that if $t\left(b_{i_{1}}\right)=t\left(b_{i_{2}}\right)=p$ and x is a sink of u_{1} and of u_{2} then there exists a path v from x to p in Q such that $b_{i_{1}}-\lambda_{1} u_{1} v \in I$ and $b_{i_{2}}-\lambda_{2} u_{2} v \in I$. Then $\left[b_{i_{1}}\right]=\left[u_{1} v\right]$ and $\left[b_{i_{2}}\right]=\left[u_{2} v\right]$ in $\Pi_{1}(Q, I)$, hence $\Phi\left(w_{1}\right)=\left[u_{1}^{-1} b_{i_{1}}\right]=\left[u_{2}^{-1} b_{i_{2}}\right]=\Phi\left(w_{2}\right)$.

In order to define a map

$$
\Psi: \Pi_{1}(Q) \rightarrow \Pi_{1}\left(Q^{\bullet}, I^{\bullet}\right)
$$

inducing the inverse to $\bar{\Phi}$ first consider an arrow γ_{j} in Q and let u_{j} be a path such that $u_{j} \gamma_{j}$ is a nonzero element of the left socle of M. Assume that $s\left(u_{j} \gamma_{j}\right)=y_{j}$ and $t\left(u_{j} \gamma_{j}\right)=p_{j}$ and let $b_{j} \in \mathcal{B}_{y_{j}, p_{j}}$ and $\lambda_{j} \in k^{*}$ be such that $\lambda_{j} b_{j}-u_{j} \gamma_{j} \in I$.

Now define $\Psi\left(\alpha_{i}\right)=\left[\alpha_{i}\right]$ for $i=1, \ldots, r$ and $\Psi\left(\gamma_{j}\right)=\left[u_{j}^{-1} b_{j}\right]$ for $j=$ $1, \ldots, s$. Observe that $\Psi(\underset{\sim}{\gamma})$ does not depend on the choice of u_{j} thanks to the assumption that R is $\widetilde{\mathbb{A}}_{1}$-free.

Next we prove that $\Psi(N(I))=\{1\}$. Take any minimal relation $\omega \in I$ and let u and v appear in ω. If u and v are paths in Q^{-1} then it is easy to observe that $[u]=[v]$ in $\Pi_{1}\left(Q^{\bullet}, I^{\bullet}\right)$. Otherwise, since R is $\widetilde{\mathbb{A}}_{1}$-free, we can assume that ω is of the form $\lambda u+\mu v$ with $\lambda, \mu \in k^{*}$. Let $u=u^{\prime} \gamma$, $v=v^{\prime} \delta$, where γ, δ are arrows. Let w be a path in Q such that $w u^{\prime} \gamma$ and $w v^{\prime} \delta$ are elements of the left socle of M and let $b \in \mathcal{B}$ be the element linearly dependent on each of $w u^{\prime} \gamma$ and $w v^{\prime} \delta$. Then

$$
\begin{aligned}
& \Psi(u)=\Psi\left(u^{\prime}\right) \Psi(\gamma)=\left[u^{\prime}\right]\left[w u^{\prime}\right]^{-1}[b]=\left[w^{-1} b\right] \\
& \Psi(v)=\Psi\left(v^{\prime}\right) \Psi(\delta)=\left[v^{\prime}\right]\left[w v^{\prime}\right]^{-1}[b]=\left[w^{-1} b\right]
\end{aligned}
$$

which proves that $\Psi(N(I))=\{1\}$ and Ψ induces a homomorphism

$$
\bar{\Psi}: \Pi_{1}(Q, I) \rightarrow \Pi_{1}\left(Q^{\bullet}, I^{\bullet}\right) .
$$

It is easy to check that $\bar{\Phi}$ and $\bar{\Psi}$ are inverse to each other.
3.5. Lemma. Assume that x is a vertex in Q^{-}and let $S=R_{x}$ be the full subcategory of R obtained by deleting the vertex x. Then

$$
S^{\bullet} \cong\left(R^{\bullet}\right)_{x}
$$

where $\left(R^{\bullet}\right)_{x}$ is by definition the full subcategory of R^{\bullet} obtained by removing the vertex x.

The proof is routine and is left to the reader.
3.6. Lemma. Assume that R is a chord-free $\widetilde{\mathbb{A}}_{1}$-free right multipeak algebra with ordinary quiver Q and x is a source or a sink in Q^{-}. Then the algebras R^{\bullet} and R_{x} are chord-free and $\widetilde{\mathbb{A}}_{1}$-free.

Proof. The statement about $\widetilde{\mathbb{A}}_{1}$-freeness is clear; the remaining assertion also follows immediately from the definition of a chord-free algebra.
4. Separation property. From now on we assume that R is a triangular, connected, chord-free \mathbb{A}-free right multipeak algebra. In the proof of our main theorem the following proposition is crucial.
4.1. Proposition (cf. [21]). Assume that $R=k(Q, I)$ is a triangular, connected, chord-free $\widetilde{\mathbb{A}}$-free right multipeak algebra which is simply connected. Let x be a sink or a source in Q^{-}. Then each connected component of the algebra R_{x} is a simply connected right multipeak algebra.

The main tool for the proof of the proposition is the following lemma.
Lemma. Let $R=k(Q, I)$ be a right multipeak chord-free $\widetilde{\mathbb{A}}$-free triangular algebra and let x be a source in Q. Assume that Q_{1}, \ldots, Q_{r} are connected components of $Q \backslash\{x\}$ and I_{j} is the restriction of I to Q_{j} for $j=1, \ldots, r$. Then there exists a surjective homomorphism

$$
\Pi_{1}(Q, I) \rightarrow \prod_{j=1}^{r} \Pi_{1}\left(Q_{j}, I_{j}\right) .
$$

Proof. Denote by \widetilde{Q}_{j} the full subquiver of Q containing Q_{j} and x and by \widetilde{I}_{j} the restriction of I to \widetilde{Q}_{j} for $j=1, \ldots, r$. It is easy to see that

$$
\Pi_{1}(Q, I) \cong \Pi_{1}\left(\widetilde{Q}_{1}, \widetilde{I}_{1}\right) * \ldots * \Pi_{1}\left(\widetilde{Q}_{r}, \widetilde{I}_{r}\right)
$$

(free product of groups). Thus without loss of generality we can assume that the quiver $Q \backslash\{x\}=\bar{Q}$ is connected.

Let T be a maximal tree in Q such that $\bar{T}=T \cap \bar{Q}$ is a maximal tree in \bar{Q}. Denote by U the set of arrows starting at x. There is exactly one belonging to T among them, say $\alpha_{0} \in T_{1} \cap U$.

We define a homomorphism

$$
\Phi: \Pi_{1}(Q) \rightarrow \Pi_{1}(\bar{Q}, \bar{I})
$$

in the following way. If β is an arrow in $\bar{Q}_{1} \backslash T_{1}$ then we set $\Phi(\beta)=[\beta]$. To define Φ on elements of U we introduce in U a partial order \preceq satisfying:
(i) If $\alpha \prec \alpha^{\prime}$ is a minimal relation in (U, \preceq) then there exist paths w, w^{\prime} in Q with $t(w)=t\left(w^{\prime}\right) \in \max Q$ such that $\alpha w \notin I$ and $\alpha^{\prime} w^{\prime} \notin I$.
(ii) Every connected component of U with respect to \preceq has a smallest element.
(iii) The arrow α_{0} is minimal in U.
(iv) The poset (U, \preceq) is a tree.
(v) The relation \preceq is maximal among those satisfying (i)-(iv).

The existence of such an order follows easily by induction on the cardinality of U. Let $\alpha_{1} \prec \ldots \prec \alpha_{n}$ be a sequence of minimal relations in U such that α_{1} is a minimal element in U. We define $\Phi\left(\alpha_{s}\right)$ by induction on s. Set $\Phi\left(\alpha_{1}\right)=1$. Assume that $s>1$ and $\Phi\left(\alpha_{s-1}\right)$ has already been defined. Let v_{s}, u_{s} be paths such that $t\left(v_{s}\right)=t\left(u_{s}\right) \in \max Q$ and $\alpha_{s-1} v_{s} \notin I, \alpha_{s} u_{s} \notin I$. Then we set $\Phi\left(\alpha_{s}\right)=\Phi\left(\alpha_{s-1}\right)\left[v_{s}\right] \cdot\left[u_{s}\right]^{-1}$.

Thanks to condition (iv) this definition is correct.
It is clear that Φ is surjective; we prove that it induces a homomorphism

$$
\bar{\Phi}: \Pi_{1}(Q, I) \rightarrow \Pi_{1}(\bar{Q}, \bar{I})
$$

Let u, u^{\prime} be parallel paths which are homotopy equivalent. We prove that $\Phi(u)=\Phi\left(u^{\prime}\right)$. If u and u^{\prime} do not start at x the assertion follows by the description of the homotopy relation given in 2.6 (observe that by Lemma 3.6 the algebra R_{x} is chord-free and $\widetilde{\mathbb{A}}_{1}$-free).

Assume now that u and u^{\prime} start at x and let $u=\alpha v, u^{\prime}=\alpha^{\prime} v^{\prime}$, where $\alpha, \alpha^{\prime} \in U$. By Lemma 2.6 without loss of generality we can assume that there exists a path w ending at $\max Q$ such that $\alpha v w \notin I$ and $\alpha v^{\prime} w \notin I$. We need to prove that $\Phi(\alpha)[v]=\Phi\left(\alpha^{\prime}\right)\left[v^{\prime}\right]$.

Let

$$
\alpha_{1} \prec \ldots \prec \alpha_{n} \quad \text { and } \quad \alpha_{1}^{\prime} \prec \ldots \prec \alpha_{n^{\prime}}^{\prime}
$$

be sequences of minimal relations in U such that $\alpha_{1}=\alpha_{1}^{\prime}$ is the maximal common predecessor of α_{n} and $\alpha_{n^{\prime}}^{\prime}$ and $\alpha_{n}=\alpha, \alpha_{n^{\prime}}^{\prime}=\alpha^{\prime}$. The existence of such sequences follows from the conditions (iv) and (v).

Let $\alpha_{i} v_{i+1} \notin I$ and $\alpha_{i+1} u_{i+1} \notin I$ be parallel paths terminating at $\max Q$ for $i=1, \ldots, n-1$ and similarly let $\alpha_{j}^{\prime} v_{j+1}^{\prime} \notin I$ and $\alpha_{j+1}^{\prime} u_{j+1}^{\prime} \notin I$ be parallel paths terminating at $\max Q$ for $j=1, \ldots, n^{\prime}-1$. Denote by x_{i} the sink of
α_{i} for $i=1, \ldots, n$ and by x_{j}^{\prime} the sink of α_{j}^{\prime} for $j=1, \ldots, n^{\prime}$. Denote by p_{i} the sink of $\alpha_{i} v_{i+1}$ and by p_{j}^{\prime} the sink of $\alpha_{j+1}^{\prime} u_{j+1}^{\prime}$. Moreover, let p be the sink of $\alpha v w$.

Observe that $p_{2}=\ldots=p_{n}=p=p_{2}^{\prime}=\ldots=p_{n^{\prime}}^{\prime}$ since otherwise the full subcategory of R formed by $x_{1}, \ldots, x_{n}, x_{2}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}$ and $p_{2}, \ldots, p_{n}, p, p_{2}^{\prime}, \ldots$ $\ldots, p_{n^{\prime}}^{\prime}$ contains a subcategory isomorphic to $k \widetilde{\mathbb{A}}_{s}$ for some $s \geq 2$, contrary to our assumption that R is $\widetilde{\mathbb{A}}$-free.

The following equalities hold in $\Pi_{1}(\bar{Q}, \bar{I})$:

$$
\begin{aligned}
{\left[v_{2}\right] } & =\left[v_{2}^{\prime}\right], \\
{\left[u_{i}\right] } & =\left[v_{i+1}\right] \quad \text { for } i=2, \ldots, n-1 \\
{\left[u_{n}\right] } & =[v][w], \\
{\left[u_{j}^{\prime}\right] } & =\left[v_{j+1}^{\prime}\right] \quad \text { for } j=2, \ldots, n^{\prime}-1, \\
{\left[u_{n^{\prime}}^{\prime}\right] } & =\left[v^{\prime}\right][w]
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\Phi(\alpha)[v] & =\Phi\left(\alpha_{n}\right)[v]=\Phi\left(\alpha_{n-1}\right)\left[v_{n}\right]\left[u_{n}\right]^{-1}[v]=\ldots \\
& =\Phi\left(\alpha_{1}\right)\left[v_{2}\right]\left[u_{2}\right]^{-1} \ldots\left[v_{n}\right]\left[u_{n}\right]^{-1}[v] \\
& =\Phi\left(\alpha_{1}\right)\left[v_{2}\right]\left[u_{2}\right]^{-1} \ldots\left[v_{n-1}\right]\left[u_{n-1}\right]^{-1}\left[v_{n}\right][w]^{-1} \\
& =\Phi\left(\alpha_{1}\right)\left[v_{2}\right]\left[u_{2}\right]^{-1} \ldots\left[v_{n-1}\right][w]^{-1}=\ldots=\Phi\left(\alpha_{1}\right)\left[v_{2}\right][w]^{-1} .
\end{aligned}
$$

Analogously we get $\Phi\left(\alpha^{\prime}\right)\left[v^{\prime}\right]=\Phi\left(\alpha_{1}\right)\left[v_{2}^{\prime}\right][w]^{-1}$. Thus the equality $\left[v_{2}\right]=\left[v_{2}^{\prime}\right]$ yields $\Phi(\alpha)[v]=\Phi\left(\alpha^{\prime}\right)\left[v^{\prime}\right]$.

Proof of the Proposition. It is clear that R_{x} is a right peak algebra. If x is a source in Q^{-}the remaining assertion follows directly from the lemma above. Otherwise we use reflection duality. The vertex x is then a source in Q^{\bullet} and the assertion follows by the above Lemma and 3.3-3.5.
4.2. Now we are going to prove that simply connected triangular chordfree $\widetilde{\mathbb{A}}$-free right multipeak algebras have the separation property.

Recall from [21, 2.3] (comp. [2]) that if $R=k(Q, I)$ then a vertex x of Q is called separating in R if the restriction of the $\operatorname{module} \operatorname{rad}\left(P_{x}\right)$ to any connected component of $R_{x} \nabla$ is indecomposable, where $P_{x}=e_{x} R$ is the indecomposable projective R-module associated with x, and x^{∇} is the set of vertices y of Q such that there exists a path from y to x in Q or $x=y$.

If $R=k(Q, I)$ and every vertex of Q is separating in R then we say that R has the separation property.

A special case of the general result is treated separately in the following lemma.

LEmma. Assume that $R=k(Q, I)$ is a chord-free $\widetilde{\mathbb{A}}$-free triangular right multipeak algebra, x is the unique source in Q and each vertex of Q^{-}except
x is the sink of an arrow starting at x. If $\Pi_{1}(Q, I)$ is trivial then the vertex x is separating.

Proof. Every vertex of Q apart from x is either a sink of Q or a sink of Q^{-}. Set $M=\operatorname{rad}\left(P_{x}\right)$. It is easy to see that under the assumptions of the Lemma, if x is not separating then there exist in Q parallel paths u, w such that $u \in I$. Hence we easily conclude by 2.6 that there are two paths from x to $t(\alpha)$ which are not homotopic.
4.3. Lemma. Let x, y be vertices of Q such that there is no arrow $\alpha \in Q_{1}$ with $s(\alpha)=x$ and $t(\alpha)=y$ and let Q_{1}, \ldots, Q_{r} be connected components of the ordinary quiver Q^{\prime} of $R_{\{x, y\}}$. Assume that
(a) for any $1 \leq j \leq r$ there exists a vertex z_{j} of Q_{j} and paths u_{j}, v_{j} in Q such that $s\left(u_{j}\right)=x, t\left(u_{j}\right)=s\left(v_{j}\right)=z_{j}$ and $t\left(v_{j}\right)=y$,
(b) for any minimal relation $\sum_{i=1}^{s} \lambda_{i} w_{i}$ there exists $1 \leq j \leq r$ such that all the paths w_{1}, \ldots, w_{s} have vertices in the set $\left(Q_{j}\right)_{0} \cup\{x, y\}$.

Then there exists a surjective group homomorphism

$$
h: \Pi_{1}(Q, I) \rightarrow \mathbf{F}_{r-1}
$$

where \mathbf{F}_{r-1} is the free nonabelian group with $r-1$ free generators f_{1}, \ldots \ldots, f_{r-1}.

Proof. Any loop at the vertex x in Q can be represented as a composition of walks w_{1}, \ldots, w_{m} for some $m \geq 1$ such that $s\left(w_{i}\right), t\left(w_{i}\right) \in\{x, y\}$ for any $i=1, \ldots, m$, and any vertex of w_{i} which is neither a source nor a sink of w_{i} is not equal to x or y. Observe that if $s\left(w_{i}\right) \neq t\left(w_{i}\right)$ then all the vertices of w_{i} belong to $\left(Q_{j}\right)_{0} \cup\{x, y\}$ for exactly one $j \in\{1, \ldots, r\}$. With each w_{i} we associate the numbers $d\left(w_{i}\right)$ and $\varepsilon\left(w_{i}\right)$ in the following way:

$$
d\left(w_{i}\right)= \begin{cases}0 & \text { if } s\left(w_{i}\right)=t\left(w_{i}\right) \\ j & \text { if } s\left(w_{i}\right) \neq t\left(w_{i}\right), \text { the vertices of } w_{i} \text { belong to }\left(Q_{j}\right)_{0} \cup\{x, y\}\end{cases}
$$

and

$$
\varepsilon\left(w_{i}\right)= \begin{cases}0 & \text { if } s\left(w_{i}\right)=t\left(w_{i}\right) \\ 1 & \text { if } s\left(w_{i}\right)=x, t\left(w_{i}\right)=y \\ -1 & \text { if } s\left(w_{i}\right)=y, t\left(w_{i}\right)=x\end{cases}
$$

Let

$$
\widetilde{h}(w)=f_{d\left(w_{1}\right)}^{\varepsilon\left(w_{1}\right)} \ldots f_{d\left(w_{m}\right)}^{\varepsilon\left(w_{m}\right)} \in \mathbf{F}_{r-1},
$$

where $f_{0}=f_{r}$ is the unit element of \mathbf{F}_{r-1}.
Condition (a) implies that $\widetilde{h}(w)$ depends only on the homotopy class of w and hence \widetilde{h} induces a group homomorphism $h: \Pi_{1}(Q, I) \rightarrow \mathbf{F}_{r-1}$, which is surjective thanks to the assumption (b).
4.4. Lemma (cf. [21]). Suppose that $R=k(Q, I)$ is a chord-free $\widetilde{\mathbb{A}}$-free triangular right multipeak algebra and R is simply connected. Let x be a
vertex of Q such that the algebra R_{x} is connected. Then $\operatorname{End}_{R}(\operatorname{rad} P(x)) \cong$ k or $P(x)$ is a simple module.

Proof. The proof mimics that of Lemma 4.2 in [21]. We proceed by induction on $\left|Q_{0}\right|$. Denote by M the radical rad P_{x} of P_{x}. Since Q has no multiple arrows, the multiplicities of simple modules occurring in $M / \mathrm{rad} M$ are equal to 1 , and thus it is enough to show that M is indecomposable. By Proposition 4.1 one can assume that x is a unique source in Q.

If x is a sink of Q^{-}or a sink of Q then the assertion is clear; now suppose otherwise. By Lemma 4.2 we can assume that there exists a sink y in Q^{-}such that there is no arrow from x to y in Q. Assume that $M \cong$ $N_{1} \oplus \ldots \oplus N_{r}, r \geq 2, N_{i} \neq 0$ for $i=1, \ldots, r$. It follows from 4.1 that each connected component of the algebra R_{y} is simply connected. Denote by M^{\prime}, N_{j}^{\prime} the restrictions of M and N_{j} to R_{y} for $j=1, \ldots, r$. Since the simple R-module corresponding to y is not a direct summand of M it follows that $N_{j}^{\prime} \neq 0$ for $j=1, \ldots, r$. By the induction hypothesis there exist pairwise different connected components Q_{1}, \ldots, Q_{r} of the quiver Q^{\prime} of $R_{\{x, y\}}$ such that $\operatorname{supp}\left(N_{j}^{\prime}\right) \subseteq\left(Q_{j}\right)_{0}$ for $j=1, \ldots, r$.

We show that the elements x, y and components Q_{1}, \ldots, Q_{r} satisfy the assumptions of Lemma 4.3. The assumption (a) follows easily.

We prove that if there is a minimal relation $\omega=\sum_{i=1}^{s} \lambda_{i} u_{i}$ in I then the vertices of all paths $u_{i}, i=1, \ldots, r$, belong to $\left(Q_{j}\right)_{0} \cup\{x, y\}$ for some j. This is clear if x is not the source of ω. So consider the case when x is the source of ω.

Suppose the contrary and let the vertices of u_{1}, \ldots, u_{l} belong to $\left(Q_{1}\right)_{0} \cup$ $\{x, y\}$ and the vertices of u_{l+1}, \ldots, u_{s} belong to $\bigcup_{i=2}^{r}\left(Q_{r}\right)_{0} \cup\{x, y\}$ for some $l<s$. Denote by z the sink of ω. Since $u_{1} \notin I$ it follows that $N_{1}^{\prime}(z) \neq 0$. Minimality of ω implies $\sum_{i=1}^{l} \lambda_{i} u_{i} \notin I$.

Take $v \in P_{x}(x)$ such that $m_{1}=\sum_{i=1}^{l} \lambda_{i} P_{x}\left(u_{i}\right)(a)$ is a nonzero element of $N_{1}(z)$ and consider the projection $p_{1}: M \rightarrow N_{1}$. Clearly, $p_{1}\left(m_{1}\right) \neq 0$. Observe that $p_{1}\left(m_{2}\right)=0$ where $m_{2}=\sum_{l+1}^{s} P_{x}\left(u_{i}\right)(a)$ since $m_{2} \in N_{2} \oplus \ldots \oplus$ N_{r}. This contradicts the assumption that $m_{1}+m_{2}=\sum_{i=1}^{s} \lambda_{i} P_{x}\left(u_{i}\right)(a)=0$.

It follows that M is indecomposable.
Example (cf. [21, 2.1]). We now show the importance of the assumption that R is chord-free. Let $R=k(Q, I)$, where Q is the quiver
$2 \leftarrow 1$
$\searrow \downarrow$
3
$\swarrow \quad \downarrow$
4
and I is the two-sided ideal in $k Q$ generated by the elements $\alpha_{23} \alpha_{34}$ and
$\alpha_{12} \alpha_{23} \alpha_{35}-\alpha_{13} \alpha_{35}$, with $\alpha_{i j}$ the arrow of Q from i to j. The algebra R is a right multipeak $\widetilde{\mathbb{A}}$-free algebra, the quiver Q has no multiple arrows, the group $\Pi_{1}(Q, I)$ is trivial, but the vertex 1 of Q is not separating in R. The algebra R is not chord-free: the arrow α_{13} is parallel to the path $\alpha_{12} \alpha_{23}$.
4.5. We denote by $H^{1}(R)$ the first Hochschild cohomology group $H^{1}(R, R)$ of the algebra R with coefficients in R and with the natural $R-R$ bimodule structure (see [21]).

Theorem. Assume that $R=k(Q, I)$ is a triangular simply connected chord-free $\widetilde{\mathbb{A}}$-free right multipeak algebra. Then:
(a) The algebra R has the separation property.
(b) The first Hochschild cohomology group $H^{1}(R)$ vanishes.

Proof. Both assertions follow from 4.4: (a) is an immediate consequence, whereas the proof of [21, Theorem 4.1] directly applies to (b).
4.6. Let $R=k(Q, I)$ be a right multipeak algebra, which we represent in the triangular matrix form

$$
R=\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right)
$$

Following [11], [17, Section 2] define the category $\operatorname{prin}(R)=\operatorname{prin}(R)_{B}^{A}$ of prinjective R-modules to be the full subcategory of $\bmod (R)$ (the category of right finitely generated R-modules) consisting of modules X admitting a short exact sequence

$$
0 \rightarrow P^{\prime \prime} \rightarrow P^{\prime} \rightarrow X \rightarrow 0
$$

where P^{\prime} is projective and $P^{\prime \prime}$ is semisimple projective.
According to [11, 4.1] the prinjective Tits quadratic form associated with R is the integral quadratic form

$$
\mathbf{q}_{R}: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}
$$

given by
$\mathbf{q}_{R}(v)=\sum_{x \in Q_{0}} v_{x}^{2}+\sum_{x, y \in Q_{0}^{-}} v_{x} v_{y} \operatorname{dim}_{k} R(x, y)-\sum_{p \in \max Q} \sum_{x \in Q_{0}^{-}} v_{p} v_{x} \operatorname{dim}_{k} R(x, p)$ for any $v=\left(v_{x}\right)_{x \in Q_{0}} \in \mathbb{Z}^{Q_{0}}$.

The reader is referred to [11], [15] for the definitions of the AuslanderReiten quiver of the category $\operatorname{prin}(R)$ and the preprojective components.

It is proved in $[11,4.2,4.13]$ that if the category $\operatorname{prin}(R)$ is of finite representation type, that is, there are only finitely many isomorphism classes of indecomposable modules in $\operatorname{prin}(R)$, then the form \mathbf{q}_{R} is weakly positive,
which means that $\mathbf{q}_{R}(v)>0$ for every nonzero element $v \in \mathbb{Z}^{Q_{0}}$ with nonnegative coefficients. The converse is true under the assumption that the Auslander-Reiten quiver of $\operatorname{prin}(R)$ has a preprojective component.

Recall from [13], [17] that $\bmod _{\mathrm{sp}}(R)$ is the full subcategory of $\bmod (R)$ formed by modules having projective socles.

Theorem. Assume that R is a triangular chord-free simply connected right peak algebra. Then
(1) If R is an $\widetilde{\mathbb{A}}$-free right multipeak algebra then the Auslander-Reiten quiver of the category $\operatorname{prin}(R)$ has a preprojective component.
(2) The following conditions are equivalent:
(i) the prinjective Tits quadratic form \mathbf{q}_{R} is weakly positive,
(ii) the category $\operatorname{prin}(R)$ is of finite representation type,
(iii) the category $\bmod _{\mathrm{sp}}(R)$ is of finite representation type.

Proof. (1) By Theorem 4.5, R has the separation property, thus the existence of a preprojective component can be proved analogously to [3, Theorem 2.5] (cf. [8, 3.4]).
(2) The equivalence of conditions (ii) and (iii) follows from the properties of the adjustment functor Θ (see [17, Lemma 2.1]). If the prinjective Tits quadratic form \mathbf{q}_{R} is weakly positive or the category $\operatorname{prin}(R)$ is of finite representation type then R is $\widetilde{\mathbb{A}}$-free (cf. [8]). Thus, in view of (1), the equivalence (i) \Leftrightarrow (ii) follows again by [11, 4.13].

Acknowledgements. The author thanks Daniel Simson for his careful reading of the preliminary versions of the paper and many helpful remarks and suggestions concerning the text.

REFERENCES

[1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
[2] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220.
[3] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
[4] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
[5] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40.
[6] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565.
[7] E. L. Green, Group-graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 106-115.
[8] H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type, J. Algebra 201 (1998), 86-114.
[9] S. Kasjan, Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations, Fund. Math. 143 (1993), 259-279.
[10] R. Martínez-Villa and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure. Appl. Algebra 30 (1983), 277-292.
[11] J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
[12] Z. Pogorzały, On star-free bound quivers, Bull. Polish Acad. Sci. Math. 37 (1989), 255-267.
[13] D. Simson, Socle reductions and socle projective modules, J. Algebra 103 (1986), 18-68.
[14] -, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 112137.
[15] - Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon \& Breach, 1992.
[16] -, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591.
[17] —, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103.
[18] - , Three-partite subamalgams of tiled orders of finite lattice type, ibid. 138 (1999), 151-184.
[19] -, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342.
[20] -, Three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 82 (1999), in press.
[21] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Proc. Sixth Internat. Conf. on Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1992, 431-447.
[22] H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Department of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: skasjan@mat.uni.torun.pl

