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SIMPLY CONNECTED RIGHT MULTIPEAK ALGEBRAS
AND THE SEPARATION PROPERTY

BY

STANISLAW KASJAN (TORUN)

Abstract. Let R = k(Q, I) be a finite-dimensional algebra over a field k determined
by a bound quiver (@, I'). We show that if R is a simply connected right multipeak algebra

which is chord-free and A-free in the sense defined below then R has the separation prop-
erty and there exists a preprojective component of the Auslander—Reiten quiver of the
category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for
finite representation type of prin(R) in terms of the prinjective Tits quadratic form of R.

1. Introduction. Let k£ be a field. We consider triangular simply con-
nected right multipeak algebras R = kQ/I, where @ is a finite quiver and
is an admissible ideal in the path algebra k£Q). Triangularity means that the
ordinary quiver @ of R has no oriented cycles. Following [13] we say that R
is a right multipeak algebra if the right socle soc(Rg) of R is R-projective.
The main objective of the paper is a criterion for R to have the separation
property [2]. We prove in Section 4 that R has the separation property when
R is chord-free (see 2.5) and A-free as a right multipeak algebra. Our main
result, Theorem 4.5, is analogous to [21, Theorem 4.1] and [1, 1.2]; cf. [6].

Recall from [1, 1.2] that if R is schurian, triangular, simply connected and
does not contain any full subcategory (see 2.2) isomorphic to ku&m, m > 1,
then R has the separation property. Our result is a version of this statement:
algebras considered are right multipeak algebras and the requirement that
R is A-free as a right multipeak algebra is a weaker version of A-freeness
considered in [1], [3]. The condition that R is chord-free plays a similar role
as the assumption that R is schurian. Note that the arguments used in [1]
do not work in our situation: our assumptions on R do not imply that R
is schurian. Moreover, R (viewed as a k-category) admits full subcategories
isomorphic to kA, for some m > 1, although R is A-free as a right multipeak
algebra (see the Example in 2.5). Hence the arguments used in [3, 2.3] and
[5, 2.9] do not apply here.
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In Section 2 we recall and discuss the basic concepts related to the no-
tion of the fundamental group of a bound quiver. The next section is de-
voted to investigating the fundamental group of the bound quiver of the
reflection-dual algebra R*® associated with R introduced in [14, 2.6] and [15,
17.4]. The reflection duality important for socle projective modules over
right multipeak algebras is a substitute of the usual duality for modules
over finite-dimensional algebras.

The proof of the main result is contained in Section 4. Following the
ideas of Skowroriski [21, 4.1] we apply induction on the rank rgr of the
Grothendieck group Ko (R) of R. In order to do it we prove in Proposition 4.1
that, under suitable assumptions, if R is a one-point extension B[M] of a
simply connected algebra B with rg < rg then B is also simply connected.

There is another similarity to the results of [21], namely we prove in 4.5
that the algebras considered in our paper have the first Hochschild coho-
mology group zero.

As an application we obtain in 4.6 a criterion for the finite representation
type of the category of prinjective R-modules over a triangular chord-free
simply connected right multipeak algebra R. Our result can be applied to
incidence algebras of posets with zero-relations investigated by Simson [18]-
[20] as a tool for determining the representation theory of lattices over special
orders. They also form a nice class of examples of algebras admitting only
inner derivations.

2. Preliminaries. The main aim of this section is to recall the notion
of the fundamental group of a bound quiver.

2.1. By a quiver we mean a tuple Q = (Qo, @1, s,t) of two sets, the set
Qo of vertices and @)1 of arrows, and two functions s,¢: Q1 — Q. Instead
of (Qo,Q1,s,t) we usually write (Qop,Q1). Given an arrow a € Q1 we call
s(a) and t(a) the source and the sink of a respectively. We denote by a~!
the formal inverse of a and set s(a™!) = t(a) and t(a™!) = s(a). A sink
(resp. source) of @ is a vertex which is not a source (resp. sink) of any
arrow in Q.

If Q= (Qo,Q1,s,t) and Q' = (Qy, R}, s',t') are two quivers such that
s(a) = §'(a) and t(a) = t'(«) for every a € Q1 N Q) then their intersection
QNQ =(QoNQH Q1 NQY) is defined in the obvious way. For A C Qg we
denote by @ \ A the quiver (Qo \ 4,Q,), where @, = {a € Q; : s(a) € A,

t(cr) & A}
A walk in Q is a sequence u = a7 ... a, of arrows and formal inverses of
arrows in @ such that s(a;11) = t(ey) for i = 1,...,n — 1. The trivial walk

at © € Qo is denoted by e,. If u is as above we define the source s(u) of u to
be s(ay) and the sink t(u) to be t(a,,). We denote by u~! the inverse walk

n
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If all oy, ..., are arrows (not inverses of arrows) then we call u a path.
Two paths u and v are parallel if s(u) = s(v) and t(u) = t(v).

If w and v are two walks with s(v) = t(u) then we define the composition
uv in the obvious way.

A walk w is a loop (at x) provided s(u) = t(u) = z. It is well known
that given x € @)y the composition of walks induces a group structure on
the set of homotopy classes of loops at x. The homotopy relation is induced
by the topological structure associated with the quiver () in the usual way.
The group obtained that way is called the fundamental group of QQ at x and
it is denoted by II1(Q,z). If @ is connected then the isomorphism class of
I1,(Q, z) does not depend on the choice of x. In this case we shall speak
about the fundamental group of () and denote it by I1;(Q).

Assume that @) is connected and T is a maximal tree in Q. If aq,...,qa,
are all arrows of () not belonging to 7" then I1;(Q) can be identified with the
free group with free generators s, ..., a, [22, 3.7]. Under this identification
each walk u in @ can be regarded as an element of 11 (Q): we identify arrows
that belong to T" with the unit element of I7;(Q).

2.2. Given a field k the path algebra of Q) with coefficients in & is denoted
by kQ. If I is an admissible ideal in k£Q then the pair (Q, I) is called a bound
quiver and k(Q, I) denotes the bound quiver algebra kQ/I of (Q,I) (cf. [4,
2.1]). We agree that the trivial paths e,, x € Q, form a complete set of
primitive orthogonal idempotents of R.

Fix @ and I as above and let R = k(Q, I). Recall that the algebra R is
said to be connected if the quiver @ is connected. By connected components
of R we mean the algebras determined by connected components of the
quiver . The algebra R is triangular if () has no oriented cycle, and it is
schurian if dimy e, Re, < 1 for all z,y € Q. It is easy to check that R is
a right multipeak algebra if and only if for any w in kQ not belonging to I
there exists a path v terminating at a sink of @ such that uv & I.

It is often convenient to treat R as a k-category with @)y as objects and
with morphism spaces R(x,y) = e, Re, for xz,y € Qo. The composition is
induced by multiplication in R. Given two paths u, v in @) we denote by uRv
the subspace of R generated by the I-cosets of paths of the form wwwv in Q.

For x € Qo we denote by S, the simple R-module e, R/rad(e,R) associ-
ated with « and by P, its R-projective cover e, R. Here rad(X) = X rad(R)
is the Jacobson radical of the module X.

For A C Qo we denote by R4 the full subcategory of R with Qo \ A
as objects. In algebraic terms this means that R4 = Endp(,cqqa Pr)-
Given a vertex x of QQ we write R, instead of Ry,,.

We identify in the usual way an R-module M with a k-representation
(M(x), M()zeq,ac, of (Q,I). Given a path u=q ..., in Q we denote
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by M(u) : M(s(a)) — M(t(a)) the composition M(a.)... M(aq). By the
support of M we mean the subset supp(M) = {x € Qo : M(x) # 0} of Q.

2.3. Let I be an admissible ideal in the path algebra kQ. Following [7],
[10, 1.3] we say that an element w = >"»_; A\ju; of I is a minimal relation in
I provided uq,...,u, are parallel paths in @, A\1,..., A € k, n > 2 and for
any proper subset J of {1,... ,n} we have > ., A\ju; & I.

We say that a path u appears in w = Y| \ju; with coefficient u pro-
vided Zi;ui:u A; = p. If u appears in w with a nonzero coefficient then
we just say that u appears in w. If o/ and o are arrows such that u)a/u),
and v o/'ul are different parallel paths appearing in a minimal relation for
some paths uf,u), uf, v in @ then we also say that o/ and o appear in a
manimal relation in I.

Let {2 be a fixed set of minimal relations generating the two-sided ideal
I in kQ. Following [7] we denote by =, the homotopy relation defined by

{2; it is the smallest equivalence relation on the set of walks in () satisfying:

(a) if uw and v are homotopic in @ then u ~ v,
(b) if umgp v, v=rpv and t(u) = s(v), t(u') = s(v') then wv = u'v/,
(c) if uw and v appear in a minimal relation belonging to {2 then u ~, v.

We denote by IT; ((Q, I),x, 2) the group of homotopy classes of loops at x
and call it the fundamental group of the bound quiver (Q,I) at the vertex
x with respect to the set (2. Again if @) is connected then this group does
not depend on the choice of x and we speak about the fundamental group

of (@, I) with respect to 2 and denote it by IT1 ((Q,I), 2) (cf. [7], [10], [1]).

2.4. Assume that @ is connected and fix a maximal tree T = (T}, T})
in Q. As above we identify IT;(Q) with the free group on the set Q1 \ T3 of
free generators. Fix a set {2 of minimal relations generating I and denote
by N({2) the normal subgroup of I7;(Q) generated by all elements of the
form wv™!, where u,v are parallel paths appearing in a minimal relation
belonging to {2. Then by [12] and [16, Remark 3.6] (see also [9]),

IL,((Q, 1), £2) = I (Q) /N (£2).

The lemma below implies that N ({2) and consequently IT; ((Q, I), 2) do
not depend on the choice of (2.

LEMMA. In the notation above assume that 2 and (2’ are two sets of
generators of I consisting of minimal relations. Then N(£2) = N(£2').

Proof. We show that N(£2) C N(f2'), the remaining inclusion follows
analogously. It is enough to prove that if w’ € (2’ is a minimal relation and
u, v appear in w’ then uv=t € N(£2). Since {2 generates I there exist elements
w; € 12, paths u;,v; and \; € k for i = 1,...,r such that ' = > !_; A&y,
where w; denotes u;w;v; for i =1,...,r.
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We introduce a relation — in {1,...,r} by writing ¢ — j provided there
exists a path appearing in both w; and w;. Then:

(1) If @ and j belong to the same connected component of {1,...,r}
with respect to the relation —, u appears in w; and v appears in w; then
w~t e N(02).

(2) If C is a component with respect to — and u appears in wp = ), W
with coefficient A\, then u appears in w’ with the same coefficient.

By minimality of ' it follows from (2) that for any component C we
have w;, = w’. Now the assertion follows from (1). m

Since N(£2) does not depend on the choice of £2 we denote it by N(I);
also, we shorten the notation IT; ((Q, I), 2) to II(Q, I).

2.5. From now on we assume that R = k(Q,I) is a right multipeak
algebra. Denote by max @ the set of all sinks in @ and put @~ = @\ max Q.

We say that the algebra R is A,,-free, m > 1, if it does not contain a full
subcategory isomorphic to kA,,, where

Ar DI NI
*< kK * ok

(m stars at the bottom), and Ay is the Kronecker two-arrow quiver. If R is
&nk—free for every m = 1,2, ... then we say that R is A- free. Observe that R
is A;-free if and only if dimy e, Re, < 1 for any x € Q¢ and p € max Q.

We say that a triangular right multipeak algebra R is chord-free if for
any arrow « in the ordinary quiver @ of R with ¢(«) ¢ max @ there is no
path u different from « and parallel to «. In particular, the only multiple
arrows in () terminate in max Q).

LEMMA. Let R = kQ/I = kQ/I' for admissible ideals I, 1" be a chord-free
A -free right multipeak algebra. Then a path u in Q belongs to I if and only
if it belongs to I'.
Proof. This follows from the observation that our assumptions imply
that for any arrow a € Q1 the space e,(q) Rey(q) is 1-dimensional. m
EXAMPLE. Let @ be the quiver
1 2
DR
3 4
N
5
N
7

6 8
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Denote the arrow from i to j by o;;. Let I be the ideal in kQ) generated by
the following elements:

130035 — (14045, 230035 — (24045, (350557,  O45058.
The algebra R = kQ/I is a chord-free A-free right multipeak algebra but it
contains a full subcategory isomorphic to kA,.

2.6. Under the assumption that R is a chord-free Aq-free right multipeak
algebra we give a new description of the homotopy relation from 2.3. Let ~
be the smallest equivalence relation on the set of walks in @) satisfying the
conditions (a) and (b) in 2.3 (with ~, replaced by ~) and the condition

(') if u and w are parallel paths in @ and there exists a path v in @
ending at a sink of Q) such that uv € I and wv ¢ I, then u ~ w.

LEMMA. If R is a chord-free Al—free right multipeak algebra then the
relations ~¢q and ~ coincide on the set of walks in Q.

Proof. Assume first that v and w are parallel paths in ) and there
exists a path v in @ ending at a sink of @) such that uv ¢ I and wv & I.
Since R is an Aj-free it follows that Auv + wv € I for some nonzero \ € k.
Then u =~ v and hence the relation ~ is contained in ~,.

To prove the converse inclusion let 2;1 A;w; be a minimal relation in

I. Let z be the sink of w;, ¢ = 1,...,r. It is enough to prove that w; ~ w;
forany 1 <i,j5 <r.
Assume that Wy,..., W, are equivalence classes of the relation ~ re-

stricted to the set {wy,...,w,} and let s > 1. For j =1,...,s let S; be the
set of p € max Q) such that there exists a path v from x to p with wv & I
for some w € W;. For any p € max( such that e,Re, # 0 let v, be a
path in @ from x to p not belonging to I. Since R is A;-free any two paths
from x to a fixed vertex p € max (@ are equal modulo I. It follows that
S; ={p € maxQ : wu, ¢ I for all w € W;} for any j = 1,...,s. The sets
S; are nonempty and pairwise disjoint for j =1,...,s.
Observe that by minimality of Y.._; \;w; we have
w; €Wy

and since R is a right multipeak algebra,

(wiGZWl )\iwi> < Z vp> £ 0.

pEmax Q, ez Rep #0

This yields a contradiction as the left hand side equals

(w;% )\i?lh‘) ( > vp> = <ZZT;)‘””1>< > vp> —0. m

peS1 PES1L
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COROLLARY. Suppose that R = k(Q, I) is a chord-free A -free right peak
algebra and R = kQ/I =2 kQ/I', where I and I' are admissible ideals in kQ.
Then I, (Q, 1) = I, (Q,I"). In particular, the algebra R is simply connected
in the sense of [1] if and only if there exists a bound quiver (Q,I) such that
R=kQ/I and the group IT11(Q,I) is trivial.

Proof. The assertion follows from the above Lemma and the fact (see
2.5) that a path w in @ belongs to I if and only if it belongs to I’. m

3. Right multipeak algebras and a reflection duality. Throughout
this section we assume that R is a triangular A;-free right multipeak algebra.

3.1. We represent the algebra R in the triangular matrix form

A M

=5 5)
where A = k(Q~,17), I~ is the restriction of the ideal I to kQ~ and
B = k(max Q) = HpEmaxQ k,, with k, = k for p € max Q. According to
[14, Definition 2.6] (see also [15]) the reflection dual algebra R® is

. [A® DM

= ()

where DM = Homy (M, k) is the bimodule dual to M. It follows from
[15, 17.4] that R°® is a right multipeak algebra as well.

3.2. A construction. Our main aim in this section is to present the con-
struction of a new bound quiver (Q°,I°®) such that R®* = k(Q°®,I*) and the
fundamental groups of (@, ) and (Q*,I*) coincide. We follow the idea of
[14, Definition 2.16].

Let B be a set of paths in @) such that the I-cosets of the elements of B
form a k-basis of the left A-socle of M. Each u € B is a path terminating
in max @ and such that v € I but au € I for any arrow a. Given two
vertices y,p of @ such that p € max@ and y € max (@ we define the set
Byp={ueB:s(u)=y, t(u) = p}.

Observe that since R is A;-free each path u parallel to an element b of
B equals \b modulo I for some A € k.

Define the quiver Q* = Qg = (Qf, Q}), where the set Qf of vertices of
Q* coincides with () and

Q}={a':acQ, ta) gmaxQ} U {b* : b € B},

where b* are new arrows. We set s(b*) =y and t(b*) = p if b€ By ).
The ideal I® = I is generated by elements of the following types:

(1) 327, Nuy b, where all u; are paths in Q7% and >°/_, \u; € 1,
(2) u'v* if b € By, u is a path from y to z in Q and uRe, = 0,



144 S. KASJAN

(3) )\guflbi‘ — Aluglbs if b; € By, p, w; is a path from y; to x in @ for
i = 1,2 and there exists a path v € I from = to p such that \;b; — u;v € 1
for some A\; € k and i =1, 2.

Since R is A;-free the element of type (3) above does not depend (up to
a scalar multiplication) on the choice of v.

ExXAMPLE. Let ) be the quiver

1
!

2 3
N
4
N
5 6

We denote by «;; the arrow from ¢ to j. Let I be the ideal generated by
Q12024046 and let B = {bl,bz,bg,b4} where by = a12a04045, by = azsaus,
by = qagug6, by = Q340146.
The quiver ()% has the form
2+ 4

4
1 6+ 3

N
5

If a;j denotes the arrow in Q% starting from ¢ and ending at j then o, =
a541, ay = Oz;;, 0413 = a?;Lla 0/15 = b7, O‘é5 = b3, O/26 = b3, O‘éG = bj.
Since by — aggas = 0 and by — azgae in kQ, according to (2) we have
ol by — aglbh € Iy
Analogously, ay} a, b —az, by € If. The ideal Ip is generated by commu-
tativity relations, and k(Q*®, I*®) is the incidence algebra of a poset.

3.3. LEMMA. If R = k(Q,I) is a triangular A -free right multipeak
algebra then there exists an algebra isomorphism
E(Q%,I°) = R".
Proof. This follows from Proposition 2.19 and Corollary 2.22 of [14]. =

3.4. PROPOSITION. Suppose that R = k(Q,I) is an 1&1—free triangular
connected right multipeak algebra and let (Q°,I°*) be the reflection dual bound
quiver to (Q, I) with respect to a set B of paths. Then there exists a group
isomorphism

I (Q,I) =2 IIL(Q°, I°).
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Proof. Let T = (Tp,T1) be a maximal tree in @ such that the re-
striction T~ =T NQ~ of T to Q~ is a maximal tree in Q~. Let Q1 \ T1 =

{a,...,ar, 71, ,7s}, where g, ..., .. are arrows in (Q~ )p and 71, ..., s
are arrows in Q1 \ Q7 -
Construct a maximal tree T in Q* such that Q3 \ T} = {a*,...,a; ",
T,..., b}, where by, ..., b} are arrows from (Q®)” to max Q°.

Recall from 2.1 that we agreed to treat walks in Q° (resp. in Q) as
elements of IT;(Q*®) (resp. I11(Q)). Denote by [w] the image of w € IT;(Q)
in IT,(Q,I). Define a homomorphism

¢ 1L(Q%) = II(Q,I)

by setting &(a; ') = [o; ] fori = 1,...,r and D(b7) = [bj] for j =1,...,t.

We are going to prove that @ induces a homomorphism @ : IT, (Q*,I°*) —
I1,(Q, I). By 2.4 it is enough to prove that if two paths wy, ws in Q® appear
in a minimal relation generating I* then &(w;) = @(wz). This is clear if
wy and wy are paths in (Q°*)~. It remains to consider the case when w; =
uy by & 1%, wo = uy by, € I° and Apuy b}, — Ajuy b}, for some Ap, Ay € k¥
is a relation of type (3) in 3.2. It follows that if ¢(b;,) = t(b;,) = p and z is
a sink of u; and of us then there exists a path v from z to p in @ such that
bi, — Auqv € I and b;, — Aaugv € I. Then [b;,] = [uiv] and [b;,] = [ugv] in
IT,(Q, I), hence ®(wy) = [u] 'b;,] = [uy 'bs,] = D(wy).

In order to define a map

[/ Hl(Q) — Hl(Q.,I.)

inducing the inverse to @ first consider an arrow v; in @ and let u; be a
path such that u;v; is a nonzero element of the left socle of M. Assume that
s(u;7v;) = y; and t(u;7;) = p; and let b; € By, ,. and \; € k* be such that
)\jbj —ujijv; € 1.

Now define ¥(a;) = [oy] for i = 1,...,7r and ¥(y,) = [u;lbj] for j =
1,...,s. Observe that ¥(y;) does not depend on the choice of u; thanks to
the assumption that R is 1&1-free.

Next we prove that W(N(I)) = {1}. Take any minimal relation w € I
and let u and v appear in w. If v and v are paths in Q! then it is easy
to observe that [u] = [v] in II;(Q°®,I*). Otherwise, since R is A;-free, we
can assume that w is of the form Au + pv with A\, u € k*. Let u = u'v,
v = v'd, where ~,9 are arrows. Let w be a path in @ such that wu’y and
wv'd are elements of the left socle of M and let b € B be the element linearly
dependent on each of wu'y and wv’d. Then

W(u) =W (u)¥(y) = [u]fwd]7 B = [w 'Y,
U(v) =¥ ()P(0) = [V][wo'] 7 ] = [w D],
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which proves that (N (I)) = {1} and ¥ induces a homomorphism
U I (Q, 1) — I (Q°,I°).
It is easy to check that @ and ¥ are inverse to each other. m

3.5. LEMMA. Assume that x is a vertex in Q~ and let S = R, be the
full subcategory of R obtained by deleting the vertex x. Then

St (R.)za

where (R*), is by definition the full subcategory of R® obtained by removing
the vertex x.

The proof is routine and is left to the reader. m

3.6. LEMMA. Assume that R is a chord-free Al—free right multipeak al-
gebra with ordinary quiver Q and x is a_source or a sink in Q~. Then the
algebras R* and R, are chord-free and Ai-free.

Proof. The statement about A;-freeness is clear; the remaining asser-
tion also follows immediately from the definition of a chord-free algebra. m

4. Separation property. From now on we assume that R is a trian-
gular, connected, chord-free A-free right multipeak algebra. In the proof of
our main theorem the following proposition is crucial.

4.1. PROPOSITION (cf. [21]). Assume that R = k(Q,I) is a triangular,

connected, chord-free A-free right multipeak algebra which is simply con-
nected. Let x be a sink or a source in Q~. Then each connected component
of the algebra R, is a simply connected right multipeak algebra.

The main tool for the proof of the proposition is the following lemma.

LEMMA. Let R = k(Q,I) be a right multipeak chord-free &—free triangu-
lar algebra and let x be a source in Q). Assume that Q1,...,Q, are connected
components of Q\ {z} and I; is the restriction of I to Q; for j=1,...,r.
Then there exists a surjective homomorphism

m@Q,1) - [ M@, 1))
j=1
Proof. Denote by @j the full subquiver of @) containing @; and = and
by I; the restriction of I to @; for j =1,...,r. It is easy to see that
Q. 1) = I(Q1, 1) + ... x I (Qr, I)

(free product of groups_). Thus without loss of generality we can assume that
the quiver @ \ {z} = @ is connected.
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Let T be a maximal tree in Q such that T = T'N Q is a maximal tree
in Q. Denote by U the set of arrows starting at z. There is exactly one
belonging to T' among them, say ag € 171 NU.

We define a homomorphism

D : Hl(Q) — Hl(@,j)

in the following way. If 3 is an arrow in Q; \ T} then we set &(3) = [B]. To
define @ on elements of U we introduce in U a partial order < satisfying:

(i) If @ < ' is a minimal relation in (U, <) then there exist paths w, '’
in @ with ¢(w) = t(w’) € max @ such that aw ¢ I and o/w’ & I.
(ii) Every connected component of U with respect to =< has a smallest
element.
(iii) The arrow o is minimal in U.
(iv) The poset (U, =) is a tree.
(v) The relation < is maximal among those satisfying (i)—(iv).

The existence of such an order follows easily by induction on the cardinality
of U. Let oy < ... < «, be a sequence of minimal relations in U such
that oy is a minimal element in U. We define (o) by induction on s. Set
@(a1) = 1. Assume that s > 1 and P(as_1) has already been defined. Let
vs, Uug be paths such that t(vs) = t(us) € max @ and as_1vs € I, asus & I.
Then we set @(a,) = P(as_1)[vs] - [us] L.

Thanks to condition (iv) this definition is correct.

It is clear that @ is surjective; we prove that it induces a homomorphism

&I (Q, 1) — I (Q,I).

Let u, v’ be parallel paths which are homotopy equivalent. We prove that
&(u) = @¢(u'). If uw and ' do not start at x the assertion follows by the
description of the homotopy relation given in 2.6 (observe that by Lemma 3.6
the algebra R, is chord-free and Al—free).

Assume now that u and v’ start at x and let v = av, v/ = o/v’, where
a,o’ € U. By Lemma 2.6 without loss of generality we can assume that
there exists a path w ending at max @ such that cvw € I and av'w ¢ 1.
We need to prove that @(«)[v] = &(a/)[v'].

Let

a; <...<a, and o) <...<al,

be sequences of minimal relations in U such that oy = o} is the maximal
common predecessor of a,, and o/, and «,, = a, o/, = &’. The existence of

such sequences follows from the conditions (iv) and (v).

Let a;v;11 € I and a1 qui1 € I be parallel paths terminating at max @
fori=1,...,n—1and similarly let ojv; | ¢ I and o u},; ¢ I be parallel

paths terminating at max @ for j = 1,...,n’ — 1. Denote by xz; the sink of
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a; for i =1,...,n and by m the sink ofa forj =1,...,n’. Denote by p;
the sink of o;v;11 and by pj the sink of 04j+1u]Jr1 Moreover, let p be the
sink of avw.

Observe that po = ... =p, =p=p5y = ... = p,, since otherwise the full
subcategory of R formed by x1,..., 2z, 25, ... 20, and pa,...,pp, D, P, ..

..,pl, contains a subcategory isomorphic to kA for some s > 2, contrary

to our assumption that R is A-free.

The following equalities hold in ITy(Q, I):

[v2] = [v3],
[u;] = [vig1] fori=2,...,n—1,
[un] = [v][w],
[uf] = [} ,] forj=2,....n -1,
(] = [v'][w].

D(a)[v] = D(an)[v] = P(an-1)[vn][un] 0] =
= P(a)[va]ua] ™" .. [vn][un] T [v]
= P(a)[valfua] " [vn—1][un—1] 7 [vn][w] T
= D(ar)[va][uz] " - [ona][w] T == Bl [va][w]
Analogously we get @(a/)[v'] = ®(ay)[vh][w] ™. Thus the equality [vs] = [v}]

yields @(a)[v] = &(a/)[v']. =

Proof of the Proposition. 1t is clear that R, is a right peak algebra. If x
is a source in Q~ the remaining assertion follows directly from the lemma
above. Otherwise we use reflection duality. The vertex x is then a source in
@° and the assertion follows by the above Lemma and 3.3-3.5. =

4.2. Now we are going to prove that simply connected triangular chord-
free A-free right multipeak algebras have the separation property.

Recall from [21, 2.3] (comp. [2]) that if R = k(Q, ) then a vertex = of
Q is called separating in R if the restriction of the module rad(P,) to any
connected component of R,v is indecomposable, where P, = e, R is the
indecomposable projective R-module associated with z, and zV is the set
of vertices y of () such that there exists a path from y to xz in Q or z = y.

If R =Ek(Q,I) and every vertex of () is separating in R then we say that
R has the separation property.

A special case of the general result is treated separately in the following
lemma.

LEMMA. Assume that R = k(Q, I) is a chord-free &—free triangular right
multipeak algebra, x is the unique source in QQ and each vertex of Q~ except
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x s the sink of an arrow starting at x. If IT1,(Q,I) is trivial then the vertex
T 15 separating.

Proof. Every vertex of (Q apart from x is either a sink of Q) or a sink of
Q. Set M =rad(P,). It is easy to see that under the assumptions of the
Lemma, if x is not separating then there exist in () parallel paths u,w such
that v € I. Hence we easily conclude by 2.6 that there are two paths from
x to t(«) which are not homotopic. m

4.3. LEMMA. Let x,y be vertices of @ such that there is no arrow a € Q1
with s(a) = x and t(a) =y and let Q1,...,Q, be connected components of
the ordinary quiver Q" of Ry, , . Assume that

(a) for any 1 < j <r there exists a vertex z; of Q; and paths u;, vj in
Q such that s(u;) = z, t(u;) = s(vj) = z; and t(v;) = v,

(b) for any minimal relation Y ;_, Ajw; there exists 1 < j <1 such that
all the paths wn, ..., ws have vertices in the set (Q;)o U {x,y}.

Then there exists a surjective group homomorphism
h:IL(Q, 1) = Fry

where ¥F,._1 is the free nonabelian group with » — 1 free generators f,...
s St

Proof. Any loop at the vertex x in () can be represented as a compo-
sition of walks wq,...,w,, for some m > 1 such that s(w;),t(w;) € {x,y}
for any ¢ = 1,...,m, and any vertex of w; which is neither a source nor a
sink of w; is not equal to x or y. Observe that if s(w;) # t(w;) then all the
vertices of w; belong to (Q;)o U {x,y} for exactly one j € {1,...,r}. With
each w; we associate the numbers d(w;) and £(w;) in the following way:
d(w;) = {0 if s(w;) = t(w;),

¢ J if s(w;) # t(w;), the vertices of w; belong to (Q;)o U {z,y},

and
0 if s(w;) = t(w;),
e(w)) =491 if s(wi) =, t(w;) =1y,
-1 if s(w;) =y, t(w;) = x.
Let

h(w) = fyut) . foum) € Fyy,
where fo = f, is the unit element of F,._.
Condition (a) implies that E(w) depends only on the homotopy class of
w and hence h induces a group homomorphism A : IT1(Q,I) — F,_1, which

is surjective thanks to the assumption (b). m

4.4. LEMMA (cf. [21]). Suppose that R = k(Q,I) is a chord-free A-free
triangular right multipeak algebra and R is simply connected. Let x be a
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vertex of @) such that the algebra R, is connected. Then Endpg(rad P(z)) =
k or P(z) is a simple module.

Proof. The proof mimics that of Lemma 4.2 in [21]. We proceed by
induction on |Qp|. Denote by M the radical rad P, of P,. Since @ has no
multiple arrows, the multiplicities of simple modules occurring in M /rad M
are equal to 1, and thus it is enough to show that M is indecomposable. By
Proposition 4.1 one can assume that x is a unique source in Q.

If  is a sink of )~ or a sink of () then the assertion is clear; now
suppose otherwise. By Lemma 4.2 we can assume that there exists a sink
y in @~ such that there is no arrow from x to y in (). Assume that M =
Ni@...&N,,r>2 N;#0fori=1,...,r. It follows from 4.1 that each
connected component of the algebra R, is simply connected. Denote by M’,
NJ’- the restrictions of M and N; to R, for j = 1,...,r. Since the simple
R-module corresponding to y is not a direct summand of M it follows that
N]( # 0 for j = 1,...,r. By the induction hypothesis there exist pairwise
different connected components Q1,...,Q, of the quiver Q" of Ry, 3 such
that supp(NV}) C (Qj)o for j=1,...,7.

We show that the elements x,y and components Q1,...,Q, satisfy the
assumptions of Lemma 4.3. The assumption (a) follows easily.

We prove that if there is a minimal relation w = Zle A;u; in I then
the vertices of all paths u;, i =1,...,r, belong to (Q;)o U{z,y} for some j.
This is clear if = is not the source of w. So consider the case when «x is the
source of w.

Suppose the contrary and let the vertices of uq,...,u; belong to (Q1)oU
{z,y} and the vertices of uj41, ..., us belong to (J;_,(Q:)oU{z, y} for some
I < s. Denote by z the sink of w. Since u; ¢ I it follows that Ni(z) # 0.
Minimality of w implies Zf;:l Au; & 1.

Take v € P,(z) such that m; = Zi;:1 Ai Py (u;)(a) is a nonzero element
of Ni(z) and consider the projection p; : M — N;. Clearly, p;(my) # 0.
Observe that p1 (ma) = 0 where my = 37/ | Py(u;)(a) since my € No@... @
N,.. This contradicts the assumption that mi+ms = >, APy (u;)(a) = 0.

It follows that M is indecomposable. m

EXAMPLE (cf. [21, 2.1]). We now show the importance of the assumption
that R is chord-free. Let R = k(Q, I), where @ is the quiver

2+ 1
N

3
s
4 5

and [ is the two-sided ideal in k@ generated by the elements aszazs and
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Q203035 — (13035, With a;; the arrow of @) from ¢ to j. The algebra R is

a right multipeak A-free algebra, the quiver ) has no multiple arrows, the
group IT;(Q, I) is trivial, but the vertex 1 of @ is not separating in R. The
algebra R is not chord-free: the arrow a3 is parallel to the path ajsass.

4.5. We denote by H'(R) the first Hochschild cohomology group
H'(R, R) of the algebra R with coefficients in R and with the natural R-R-
bimodule structure (see [21]).

THEOREM. Assume that R = k(Q,I) is a triangular simply connected
chord-free A-free right multipeak algebra. Then:

(a) The algebra R has the separation property.
(b) The first Hochschild cohomology group H'(R) vanishes.

Proof. Both assertions follow from 4.4: (a) is an immediate conse-
quence, whereas the proof of [21, Theorem 4.1] directly applies to (b). m

4.6. Let R = k(Q,I) be a right multipeak algebra, which we represent
in the triangular matrix form

A M
R= (0 ! ) .
Following [11], [17, Section 2] define the category prin(R) = prin(R)5 of
prinjective R-modules to be the full subcategory of mod(R) (the category

of right finitely generated R-modules) consisting of modules X admitting a
short exact sequence

0P ' -P - X —0,
where P’ is projective and P” is semisimple projective.
According to [11, 4.1] the prinjective Tits quadratic form associated with
R is the integral quadratic form

Qr:Z% = 7

given by

qr(v) = Z v Z Vv, dimy, R(z,y)— Z Z Upy dimy, R(z, p)

€Qo zT,YeQy pEmMax @ yeQy

for any v = (vy)zeq, € Z°.
The reader is referred to [11], [15] for the definitions of the Auslander—
Reiten quiver of the category prin(R) and the preprojective components.
It is proved in [11, 4.2, 4.13] that if the category prin(R) is of finite rep-
resentation type, that is, there are only finitely many isomorphism classes
of indecomposable modules in prin(R), then the form qp is weakly positive,
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which means that qr(v) > 0 for every nonzero element v € Z%° with non-
negative coefficients. The converse is true under the assumption that the
Auslander—Reiten quiver of prin(R) has a preprojective component.

Recall from [13], [17] that modg,(R) is the full subcategory of mod(R)
formed by modules having projective socles.

THEOREM. Assume that R is a triangular chord-free simply connected
right peak algebra. Then

(1) If R is an A—free right multipeak algebra then the Auslander—Reiten
quiver of the category prin(R) has a preprojective component.
(2) The following conditions are equivalent:
(i) the prinjective Tits quadratic form qg is weakly positive,
(ii) the category prin(R) is of finite representation type,
(ili) the category mods,(R) is of finite representation type.

Proof. (1) By Theorem 4.5, R has the separation property, thus the
existence of a preprojective component can be proved analogously to [3,
Theorem 2.5] (cf. [8, 3.4]).

(2) The equivalence of conditions (ii) and (iii) follows from the properties
of the adjustment functor ® (see [17, Lemma 2.1]). If the prinjective Tits
quadratic form qp is weakly positive or the category prin(R) is of finite

representation type then R is A-free (cf. [8]). Thus, in view of (1), the
equivalence (i)<(ii) follows again by [11, 4.13]. =
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