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FEJER MEANS OF TWO-DIMENSIONAL
FOURIER TRANSFORMS ON H,(R x R)

BY

FERENC WEISZ (BUDAPEST)

Abstract. The two-dimensional classical Hardy spaces Hp(R X R) are introduced and
it is shown that the maximal operator of the Fejér means of a tempered distribution is
bounded from Hy(RxR) to Ly(R?) (1/2 < p < o) and is of weak type (H} (RxR), L, (R?))
where the Hardy space Hl‘j (R x R) is defined by the hybrid maximal function. As a con-

sequence we deduce that the Fejér means of a function f € Hl'i (R x R) D Llog L(R?)
converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on
Hp(RxR) whenever 1/2 < p < co. Thus, in case f € Hp(R xR), the Fejér means converge
to f in Hp(R X R) norm (1/2 < p < 00). The same results are proved for the conjugate
Fejér means.

1. Introduction. The Hardy-Lorentz spaces H ;(R x R) of tempered
distributions are endowed with the L, ,(R?) Lorentz norms of the non-
tangential maximal function. Clearly, H,(R x R) = H, ,(R x R) are the
usual Hardy spaces (0 < p < 00).

In Zygmund [22] (Vol. II, p. 246) it is shown that the Fejér means or f
of a one-dimensional function f € L;(R) converge to f a.e. as T — oc.
Moreover, the maximal operator of the Fejér means, o, := supyq|or|, is
of weak type (1,1), i.e.

supyAof >7) < Clifll - (f € La(R))
(see Zygmund [22], Vol. I, p. 154 and Moricz [14]). Mdricz [14] also verified
that o, is bounded from H;(R) to L;(R). The author [19] proved that o, is
also bounded from H,, 4(R) to L, ,(R) whenever 1/2 < p < 00, 0 < g < 0.
In [16] we investigated the Fejér means of two-parameter Fourier series
and proved that o, := sup,, ,,en |0n,m| is bounded from H, (T x T) to
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L,,(T?) (3/4 < p < 0,0 < ¢ < o) and is of weak type (H (T x T),
Ll(Tz))7 i.e

Slifo)’Y)\(U*f’ > ) < CHJCHHﬁ(TX'ﬂ‘) (fe H1ﬁ(T x T)).
-

Moreover, the Fejér means o, ,,, f converge to f a.e. as n,m — oo whenever
fe Hf(']l‘ x T) D Llog L(T?) (see Weisz [15], [16] and Zygmund [22] for
Llog L(T?)).

In this paper we sharpen and generalize these results for the Fejér means
of two-dimensional Fourier transforms.

We show that the maximal operator o, is bounded from H,, ,(R x R) to
L, ,(R?) whenever 1/2<p<oo, 0<g<oo, and is of weak type (HY(R x R),
L1(R?)). We introduce the conjugate distributions f(i’j), the conjugate Fejér

means U(T’(]J) and the conjugate maximal operators a(f"j ) (i,7 = 0,1). We

prove that the operator 5. is also of type (Hpq(RxR), L, ,(R?)) (1/2 <
p <00, 0<q<oo)and of weak type (H!(R x R), Ly (R?)).

A usual density argument then implies that the Fejér means o7 17 f con-
verge to f a.e. and the conjugate Fejér means JT’])f converge to f(W)
(1,7 =0,1) a.e. as T, U — oo provided that f € Hlﬁ(R x R). Note that f(W)
is not necessarily in H ﬁ(JR x R) whenever f is.

We also prove that the operators oy and a(w ) (T,U € R) are uniformly
bounded from H,, ,(RxR) to H,, q(RX]R) if 1/2 <p< 00,0 < q< oo. From

this it follows that o7 ¢y f — f and Jgfljj)f — f (i, =0,1) in Hp 4(R x R)
norm as T, U — oo whenever f € Hpq(RXR) and 1/2 < p < 00,0 < ¢ < o0.

2. Hardy spaces and conjugate functions. Let R denote the real
numbers, Ry the positive real numbers and let A be the 2-dimensional
Lebesgue measure. We also use the notation |I| for the Lebesgue measure
of the set I. We briefly write L, for the real L,(R? \) space; the norm (or
quasinorm) in this space is defined by || f||, == ({g |f[F dA\)/? (0 < p < 0).

The distribution function of a Lebesgue-measurable function f is defined
by

A{IfI> 0}) = A({z : [f(2)[ > 0}) (2 =0).

The weak L, space Ly (0 < p < o) consists of all measurable functions f
for which

1£1lz; = sup 2A({|f] > e})"/? < o0
0>0

and we set L = L.
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The spaces L, are special cases of the more general, Lorentz spaces Ly 4.
In their definition another concept is used. For a measurable function f the
non-increasing rearrangement is defined by

Ft) == inf{o: A{|f] > o}) < t}.

The Lorentz space Ly 4 is defined as follows: for 0 < p < oo, 0 < g < o0,

o 1/
1= ( § Fore &)

0
while for 0 < p < o0,

[/ llp,00 == sup tl/pf(t)-
>0
Let
Lypg = Lpg(R%N) == {f 2 [| fllp.g < o0}
One can show the following equalities:
Lpp=Lp, Lpec=1L, (0<p=<oo)

(see e.g. Bennett—Sharpley [1] or Bergh-Lofstrom [2]).

Let f be a tempered distribution on C°(R?) (briefly f € S'(R?) = &’).
The Fourier transform of f is denoted by f. In the special case when f is
an integrable function,

~ 1
fitow) = o §\ e y)e e W dzdy  (tu€R)

T
RR

where 1 = /—1.

For f € 8" and t,u > 0 let
F(x,y;t,u) = (f x P, x P,)(z,y)
where x denotes convolution and
ct

is the Poisson kernel.
For a > 0 let
Iy :=A{(z,t) : |z] < at},

a cone with vertex at the origin. We denote by I',(x) (z € R) the translate
of I', with vertex at . The non-tangential maximal function is defined by
Fop(x,y) = sup |F(",yst,u)| (o, 8>0).

(' ,t)ETa(z), (v, u)ELp (y)

For 0 < p,q < oo the Hardy-Lorentz space H, ,(R x R) = H,, , consists
of all tempered distributions f for which F 5 € Ly, 4; we set

1fllez, o = (171 g
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For 0 < p < 00, 0 < ¢ < oo Chang and Fefferman [3] and Lin [12] proved
the equivalence || F}; 5llp.q ~ [|F71([p,q (v, B> 0). It is known that if f € H),
(0 < p < o0)then f(z,y) = lim; 0 F(x,y;t, u) in the sense of distributions
(see Gundy—Stein [11], Chang—Fefferman [3]).

Let us introduce the hybrid Hardy spaces. For f € Ly and t > 0 let

Glait) = —= | F(0) e —v) do
R

and
Gi(z,y):=  sup |G yt) (0<a<l).
(x't)ely (x)
We say that f € L is in the hybrid Hardy—Lorentz space H};,q(R xR) = ng
if
1£llgs , 2= G allng < oo
The equivalences ||GZ ||lp.q ~ |GT |lp.q (@ >0,0<p < o0, 0< g < oc)and

Hp,qNHzﬁa,qNLp,q (1<p<oo, 0<qg<o0)

were proved in Fefferman—Stein [7], Gundy—Stein [11] and Lin [12]. Note
that for p = ¢ the usual definitions of the Hardy spaces H, , = H, and
Hﬁ,p = Hg are obtained.

The following interpolation result concerning Hardy—Lorentz spaces will
be used several times in this paper (see Lin [12] and also Weisz [17]).

THEOREM A. If a sublinear (resp. linear) operator V is bounded from
H,, to Ly, (resp. to Hp,) and from L, to L, (po <1 < p1 < oo) then
it is also bounded from H, , to L, (resp. to Hy,,) if po < p < p1 and
0<qg<oo.

In this paper the constants C' are absolute, while C), (resp. C), ;) depend
only on p (resp. p and ¢) and may be different in different contexts.

One can prove similarly to the discrete case (see Weisz [16]) that Llog L
= Llog L(R?) C H! C H; , more exactly,

(1) 1Flli o = sUPOAFT > 0) < Clifllgz - (f € HY)
e

and
1f s < C+CllIfog™ Iflh - (f € Llog L)

where log™ u = T{u>1y logu.
For a tempered distribution f € H, (0 < p < oo) the Hilbert transforms
or conjugate distributions (19, 01 and f(I.D are defined by
(FEN(tu) = (esignt) f(tu)  (fu€R)

(conjugate with respect to the first variable),
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(FO (b u) = (—esignw)f(t,u)  (tu€R)
(conjugate with respect to the second variable) and
(FENN(t,u) := (—sign(tu)) f(t,u) (L, u € R)

(conjugate with respect to both variables). We use the notation }7(0,0) = f.
Gundy and Stein [10], [11] verified that if f € H, (0 < p < c0) then all
conjugate distributions are also in H, and

(2) £, = 17, (3,5 =0,1).
Furthermore (see also Chang and Fefferman [3], Frazier [9], Duren [5]),
3) £l ~ 11 + 1P + POVl + 175
As is well known, if f is an integrable function then
~ 1 —t 1 —1
FEO (2 y) =pv. = S fla—ty) dt :== lim — S fla—ty) dt,
us t e—=0 T
R e<|t|
~ 1 _
FOV(@,y) =pv. = | fow=u g,
s u
R
= Lo fl@—ty—wu)
(1,1 — — ’
fS I (z,y) =p.v. — S S - dt du.

RR

Moreover, the conjugate functions f(l’o), f(o’l) and f(l’l) exist almost
everywhere, but they are not integrable in general. Similarly, if f € Hf

then f(o’l) and f(l’l) are not necessarily in H1jj

3. Fejér means. Suppose first that f € L, for some 1 < p < 2. It is
known that under certain conditions
1 ~
f(z,y) = Py S S ft,w)e™te¥ dtdu (z,y € R).
TRR
This motivates the definition of the Dirichlet integral s, f:

t u

1 ~

Stauf(z,y) = — S S flo,w)e* e dvdw  (t,u > 0).
27 R

The conjugate Dirichlet integrals are introduced by

t u

1 ~
Eﬁ}do)f(x,y) =g X S (—usigno) f(v,w)e™’ e dvdw  (t,u > 0),
—t—u
1 t u N
Eﬁ?{‘l)f(x,y) = o S S (—esignw) f(v,w)e™ e dvdw  (t,u > 0)

—t —u
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and
t u N
%}dl)f(x,y) =g S X (—sign(vw)) f(v,w)e™ e dvdw  (t,u > 0).
—t—u

The Fejér and conjugate Fejér means are defined by

TU
5 fay) = e VNS fayydtdu (T,U > 05 6,5 =0,1).
00

We write sq,,f =: 51/(20)]” and o f = '&g’g)f. It is easy to see that
sintv sinuw
st,uf(x7y) ::SSf(x_Uay_w) : dv dw
v W
RR
and
O-T,Uf(x’ y) = S S f(CC - ta Y- u)KT(t)KU(u) dt du
RR
where
2 sin? (Tt/2)
Kp(t)=— - ——————
r(®) T Tt2?
is the Fejér kernel. Note that
(4) \Krtydt=1 (T>0)
R

(see Zygmund [22], Vol. II, pp. 250-251).
We extend the definition of the Fejér means and conjugate Fejér means
to tempered distributions as follows:

Gol f = FOD % (K x Ky)  (T,U > 0; i,j = 0,1).

One can show that 5%%) f is well defined for all tempered distributions
f e H, (0 <p < oo) and for all functions f € L, (1 < p < oo) (cf.
Fefferman—Stein [7]).

The maximal and mazimal conjugate Fejér operators are defined by

gD = sup G8IfI (6,5 =0,1).
T,U>0
We again write o, f 1= 'av,(ﬁo’o)f.

4. The boundedness of the maximal Fejér operator. A function
a € Ly is called a rectangle p-atom if there exists a rectangle R C R? such
that

(i) suppa C R,
(ii) [lafl2 < [R[V/271/7,
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(iii) for all z,y € R and all N < [2/p —3/2],
S a(z,y)z dr = S a(z,y)y™ dy = 0.
R R

If I is an interval then let 71 be the interval with the same center as I
and with length r|I| (r € N). For a rectangle R =1 x J let rR=1rI x rJ.

An operator V which maps the set of tempered distributions into the
collection of measurable functions will be called p-quasi-local if there exist a
constant Cp, > 0 and 1 > 0 such that for every rectangle p-atom a supported
on the rectangle R and for every r > 2 one has

| [TalPdx < cp27m.
R2\2" R

Although H), cannot be decomposed into rectangle p-atoms, in the next
theorem it is enough to take such atoms (see Weisz [16], Fefferman [§]).

THEOREM B. Suppose that the operator V is sublinear and p-quasi-local
for some 0 < p < 1. If V is bounded from Ly to Lo then

WV llp < Collflle,  (f € Hp).

Since the Fejér kernel is positive, we can prove the following inequality
in the same way as in the discrete case (see Weisz [18]):

(5) lowfllpy < Cullfll, (1 <p<o0).
Now we can formulate our main result.

THEOREM 1. We have

(6) lowfllpg < Cpallfllm,, (f € Hpg)
for every 1/2 < p < oo and 0 < q < oo. In particular, if f € Hljj then

™ Nowf >0 < Slflyg (e>0),

Proof. First we will show that the operator o, is p-quasi-local for each
1/2 < p < 1. To this end let a be an arbitrary rectangle p-atom with support
R=1xJ and

of =t <rp <2k, 2kt <y <2t (K, Len).
We can suppose that the center of R is zero. In this case

[_2K—272K—2 _2K—1’2K—1]

|jcIcC]|

and
[_2L72’2L72] C J C [_2L7172L71].



162 F. WEISZ

To prove the p-quasi-locality of the operator o, we have to integrate |o.a|P
over

R?\2"R=(R\2'I) x JU(R\2"T) x (R\ J)
UIx (R\2"J)U(R\T) x (R\2"J)
where r > 2 is an arbitrary integer.
First we integrate over (R \ 2"I) x J. Obviously,
oo (i+1)2K

S S |lova(z,y)|P dedy < Z S S lowa(z,y)|P dz dy.
R\27T J lijl=2r—2 2K J

For z,y € R let

T Y
Al,O(xay) = S (Z(t,y)dt, AU,l(xay) = S a(:n,u)du
and
r Y
Avazy) = | | alt,y) dtdu,

By (iii) of the definition of the rectangle atom we can show that supp Ay
C R and Ay is zero at the vertices of R (k,l = 0,1). Moreover, using (ii)
we can compute that

(8) 1Akllz < [*T1(I]-[IDY22HP 0 (k1= 0,1).
Integrating by parts we can see that
lorva(z,y)| = ‘ SAIO t,u)Kin(z —t) Ky (y —u)dtdu‘
1J
HAN (t, ) Ko (y — u du‘]KT z — 1) dt.
IJ

Using the inequality
|Kr(t) < C/t* (T e Ry)

we get

lor.va(z,y)| < X ‘ SALO(tau)KU(y du‘ 12 dt
1
2 2K

SHAlOtuKU —u du(dt
I J

for x € [i2K, (i + 1)2K). Hélder’s inequality, the one-dimensional version of
(5) and (8) imply
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Vlowa(z, y)” dy
J

02

1—
(e

CPQ—QKp‘J‘l—p/Q (X <S

i%p

X Aqo(t,u)Ky(y — u) du‘ dy dt)p
J

2 \1/2 \p
sup S Aqo(t,u)Ky(y — u) du‘ dy) dt)
R U€R+ 7

IN

C 92— 2Kp|J|1 p/2 (S

i%p

<S!Aloty\ dy) th)p
I J

G2 2|12 g /2

IN

<H|A10 (t,y)I? dydt) o
IJ

i%p

- Cp2—2Kp|I|2p—1
i Z~2p .

Hence

| {loatPard<c, 3 2620 <carer,

7 ZU
R\271 J i=2r—2
Next we integrate over (R\ 2"1) x (R\ J):

oo (i+1)2% (j+1)2"

S S lowa(x,y)|P dedy < Z Z X X lowa(x,y)|P dx dy.

R\2'T R\J li|=2r=2 jl=1 2K j2r
Integrating by parts we obtain, for x € [i2X, (i+1)2%) and y € [i2L, (i+1)2%),

lor.va(z,y)| = ‘ S SALl(t,u)K{p(x — 1)K (y —u)dtdu
1J

—2Ko9—2L
LT V1ALt u)] dt du

fL'2j2
IJ
C2—2K9— 2L‘I‘2 1/p‘J‘2 1/p
= 252
Thus
K2—
[ leaapda<c, 3 S oot 2l e,
R\2"T R\J li|=27—2 |j|=1 v

The integrations over I x (R \ 2"J) and over (R\ I) x (R\ 2"J) are
similar. Hence o, is p-quasi-local. Theorem B implies (6) for p=¢q. Applying
Theorem A and (5) we obtain (6).
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Let us single out this result for p =1 and ¢ = co. If f € Hlﬁ then (1)
implies

loeflheo = supyA(Onf > 0) < Clif o < Clifll 2
e

which shows (7). The proof of the theorem is complete. m

Note that Theorem 1 was proved for Fourier series and for 3/4 < p < o
by the author [16] with another method.
We can state the same for the maximal conjugate Fejér operator.

THEOREM 2. Fori,5 = 0,1 we have

1557 Flpa < CpallFllm,., (€ Hy)
for every 1/2 < p < oo and 0 < q < oo. In particular, if f € Hlﬁ then

(i, C
MG > 0) < Sl (o> 0)

Proof. By Theorem 1 for p = ¢ and (2) we obtain

157 £l = llow Dy < Col FOPNm, = Coll fllm, — (f € Hy)
for every 1/2 < p < oo. Now Theorem 2 follows from Theorem A and (1).
n

Since the set of those functions f € L; whose Fourier transform has a
compact support is dense in H f (see Wiener [20]), the weak type inequalities
of Theorems 1 and 2 and the usual density argument (see Marcinkiewicz—
Zygmund [13]) imply

COROLLARY 1. If f € H! (D LlogL) and i,j = 0,1 then
G(Ti:(jj)f — f(i’j) a.e. as T, U — oo.
Note that f(i’j ) is not necessarily in H f whenever f is.
Now we consider the norm convergence of op 7 f. It follows from (5) that

oruf — fin Ly norm as T,U — oo if f € L, (1 < p < 00). We are going
to generalize this result.

THEOREM 3. Assume that T,U € Ry and i,7 =0,1. Then
155 17, < Coall flar,.,  (F € Hp)
for every 1/2 < p < oo and 0 < ¢ < oco.
Proof. Since (op,pf)~7) = 5%’[]}]‘, by Theorem 2 we have
oo )~y < Collflm,  (f € Hy)
for all T,U € Ry and ¢,7 = 0,1. (3) implies that
loruflla, < Collflla, (f € Hy; T,U € Ry).
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Hence, for i,5 = 0,1,
155 llm, < Coll fllar,  (F € Hyi T.U € Ry).
which together with Theorem A implies Theorem 3.

COROLLARY 2. Suppose that 1/2 < p < 00,0 < qg<oc andi,j=0,1. If
f € Hp, then

5%’(]}]0 N J’fv(ivj) in Hy 4 norm as T,U — 0.

We suspect that Theorems 1, 2 and 3 are not true for p < 1/2 though
we could not find any counterexample.
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