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Abstract. We construct infinite measure preserving and nonsingular rank one Zd-
actions. The first example is ergodic infinite measure preserving but with nonergodic,
infinite conservative index, basis transformations; in this case we exhibit sets of increasing
finite and infinite measure which are properly exhaustive and weakly wandering. The next
examples are staircase rank one infinite measure preserving Zd-actions; for these we show
that the individual basis transformations have conservative ergodic Cartesian products of
all orders, hence infinite ergodic index. We generalize this example to obtain a stronger
condition called power weakly mixing. The last examples are nonsingular Zd-actions for
each Krieger ratio set type with individual basis transformations with similar properties.

1. Introduction. In this paper we construct families of ergodic in -
finite measure preserving and nonsingular free actions of Zd on the real
line. The method is by the natural generalization of the “cutting and stack-
ing”constructions for integer actions. This method has been used in Park–
Robinson [PR] and Adams [A] to construct ergodic finite measure preserving
Z2-actions with various properties, but we do not know of its use for infinite
measure preserving Z2-actions. Recently there has been much interest in
constructing examples of ergodic actions of groups other than the integers;
cf. [Sch] and the references therein.

To simplify the exposition we first exhibit the examples for the case
when d = 2; the changes needed for general d are in general straightforward.
The first examples we construct are the analogues in Z2 of the well-known
ergodic infinite measure preserving transformation of Hajian and Kakutani
[HK2]. In this case we study the weakly wandering sets for these actions,
and introduce the notion of properly exhaustive sets, a notion that becomes
important in Z2-actions. We exhibit properly exhaustive weakly wandering
sets of finite increasing measure and of infinite measure.

However, it is easy to see that for the ergodic Z2-actions mentioned
above, the basis transformations (individual horizontal and vertical integer
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actions) are not ergodic, though we show that all their Cartesian products
are conservative. In [AS], Adams and Silva constructed rank one mixing
finite measure preserving Zd-actions, d ≥ 2. In Section 4 we modify the
staircase Zd constructions of [AS] to obtain infinite measure preserving Zd-
actions. For these actions the basis transformations are indeed ergodic and
also have continuous L∞ spectrum, hence are weak mixing; in fact, we show
that all their Cartesian products are ergodic, i.e., have infinite ergodic in-
dex. (In infinite measure, ergodicity of the k-fold Cartesian product does not
imply ergodicity of the (k + 1)st Cartesian product [KP].)

The difficulty in the infinite measure preserving case is that there is
currently no formulation of a pointwise ergodic theorem for Zd-actions in
infinite measure, as the counter-example of Brunel and Krengel [Kre], p. 217
prevents the obvious formulation. Also, in infinite measure, the weakly wan-
dering sets preclude a useful notion of mixing (the notions of mixing for
infinite measure in the literature do not imply ergodicity, and in the exi-
sting examples ergodicity has to be shown separately).

Next, we modify the construction of the infinite staircase actions to ob-
tain a new action called a multistep action, where the earlier proof applies
and shows that the action is power weakly mixing, a condition stronger than
having every nontrivial element of the action of infinite ergodic index.

The last section constructs, for each 0 ≤ λ ≤ 1, conservative ergodic free
nonsingular type IIIλ Zd-actions. For the case of 0 < λ ≤ 1 we prove that
the basis transformations have infinite ergodic index. For the case λ = 0 we
show that the basis transformations are weakly mixing.
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2. Preliminaries. We let X denote a finite or infinite interval, B the
Borel σ-algebra in X , and µ Lebesgue measure. A Zd-action is a measur-
able map T : Zd ×X → X such that if e is the identity in Zd then for a.a.
x ∈ X , T e(x) = x, and for all p, q ∈ Zd, T p(T q(x)) = T p+q(x) a.e. We write
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T p(x) instead of T (p, x). An action of Zd is determined by d commuting
basis transformations T (1,0,...,0), . . . , T (0,...,0,1). The action is free if µ{x :
T p(x) = x for some p 6= e} = 0. All our actions will be free by definition or
construction.

The action of T on (X,B, µ) is measure preserving if for every p ∈ Zd

and all A ∈ B, µ(T pA) = µ(A). The action is nonsingular if for every p ∈ Zd

and all A ∈ B, µ(T pA) > 0 if and only if µ(A) > 0. Further, T is ergodic

if for all measurable sets A, if T pA = A for all p ∈ Zd then µ(A) = 0 or
µ(Ac) = 0. It is properly ergodic if it is ergodic and no orbit of a single point
a.e. covers the whole space X . As our measures are nonatomic, our ergodic
actions are properly ergodic.

A set W ∈ B with µ(W ) > 0 is wandering under the action T if for all
p, q ∈ Zd with p 6= q, we have µ(T pW ∩ T qW ) = 0. An action is conservative
if it has no wandering sets. A setW is weakly wandering on a sequence {pi} of
elements of Zd if for allm,n ∈ Z with m 6= n, we have µ(T pmW ∩T pnW ) = 0.
A set W which is weakly wandering on a sequence {pi} of elements of Zd is
exhaustive if

µ
(

X −
∞
⋃

i=0

T piW
)

= 0.

We say that the set W is properly exhaustive if the sequence {pi} is not
generated by a single element, i.e., there is no p ∈ Zd such that pi = nip for
some sequence ni ∈ Z. We will frequently write e.w.w. for exhaustive weakly
wandering.

If the action has some element p that is ergodic as a Z-action, by [JK]
there will be an e.w.w. set for the action of p, and trivially for the Z2-action;
however, this set will not be properly exhaustive for the Z2-action. For the
examples below we construct properly e.w.w. sequences.

If T is a nonsingular action, for any x ∈ X and any p ∈ Zd, we let

ωp(x) =

(

d(µ ◦ T p)

dµ

)

(x).

The notion of ratio set was introduced by Krieger [Kri], who proved its basic
properties. The ratio set of an action T , denoted by r(T ), is the set

r(T ) = {t ∈ [0,∞) : ∀ε > 0, ∀A with µ(A) > 0,

∃p ∈ Z
d such that µ(A ∩ T−pA ∩ {x : ωp(x) ∈ Nε(t)}) > 0},

where Nε(t) = {s ≥ 0 : |s − t| < ε}. Krieger showed (cf. [Kri], [HO]) that
the ratio set of an ergodic action is invariant under change to an equivalent
measure, and r(T ) \ {0} must be a multiplicative subgroup of R+. This
allows four possibilities:
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1. r(T ) = {1},

2. r(T ) = {0, 1},

3. r(T ) = {0} ∪ {λk : 0 < λ < 1, k ∈ Z},

4. r(T ) = R+.

The first possibility is called type II and these are actions that admit an
equivalent sigma-finite invariant measure; if the invariant measure is infinite
it is type II∞, otherwise type II1. The others are types III0, IIIλ and III1,
respectively.

Given a nonsingular transformation T , an L∞ eigenvalue is a complex
number λ such that for some nonnull function f in L∞, f(Tx) = λf(x) a.e.
Since the L∞ norms of f and f ◦ T are equal, eigenvalues must have modu-
lus 1. If T is ergodic then |f | must be constant a.e. Further, T is said to be
weakly mixing if for every finite measure preserving ergodic transformation
(Y, ν, S), (X × Y, µ× ν, T × S) is ergodic. These notions for the case of non-
singular transformations were studied in [ALW], where it is shown that T
is weakly mixing if and only if T is ergodic and its only L∞ eigenvalue is 1.
We say that a transformation T has L∞ continuous spectrum if it is ergodic
and its only L∞ eigenvalue is 1.

The following lemma is well known for finite measure preserving trans-
formations, but we include a proof for the general case.

Lemma 2.1. Let T be a nonsingular transformation. If T has continuous

L∞ spectrum, then for all n ∈ N, T n has continuous L∞ spectrum.

P r o o f. Suppose that there exists a function f ∈ L∞ such that f ◦ T n =
λf , where |f | = 1 and |λ| = 1. Set F = f · f ◦ T · . . . · f ◦ T n−1. Since
F ◦ T = λF , it follows that λ = 1. It remains to prove that T n is ergodic.
Suppose the contrary. Then it is easy to see that there is a measurable subset
A so that X is the disjoint union of A, TA, . . . , T r−1A for some r < n. We
set H =

∑r−1
k=0 α

kχTkA, where α = e2πi/r and χTkA is the characteristic
function of T kA. Since H ◦ T = αH , we have α = 1, a contradiction.

If the basis transformations of a Zd-action are weakly mixing then by
Lemma 2.1 they are totally ergodic and by the same proof as in [AS] any
d-dimensional subgroup of Zd acts ergodically.

If T × T is ergodic then it is clear that T must have continuous L∞

spectrum. However, in the infinite measure preserving and nonsingular cases
the converse is not true [ALW], [AFS]. A nonsingular transformation T is
said to have infinite ergodic index if for all k, the Cartesian product of k
copies of T is ergodic; it follows that all products are also conservative.
Kakutani and Parry [KP] constructed the first examples of infinite measure
preserving transformations with the kth Cartesian product ergodic but the
(k + 1)st not ergodic, and of infinite ergodic index. Infinite conservative
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index is defined in an analogous way. After the first version of this paper was
written (which contained the proof of Theorem 4.3 but not of Theorem 4.9),
a stronger condition was introduced in [DGMS]. An action T of a group G is
said to be power weakly mixing if for all g1, . . . , gr ∈G \ {e}, T g1 × . . .× T gr

is ergodic. Clearly, any power weakly mixing transformation has infinite
ergodic index. An infinite measure preserving transformation that is power
weakly mixing is constructed in [DGMS]. Recently, it has been shown that
there exists an integer action that has infinite ergodic index but is not power
weakly mixing [AFS2].

A nonsingular transformation T is said to be partially rigid if there exists
an η > 0, an increasing sequence rn, and a constant R > 0 such that for all
sets A of finite measure, lim infn→∞ µ(T rnA ∩A) ≥ ηµ(A) and ωT rn (x) < R
a.e. In [AFS], it was shown that if T and S are partially rigid under the
same sequence rn then T × S is partially rigid under rn, and that partially
rigid transformations are conservative. As remarked in [AFS], it follows that
if T is partially rigid then it has infinite conservative index.

We use the following notation for certain squares in the integer lattice:

SQ(h) = {(a, b) : a, b ∈ Z, 0 ≤ a < h and 0 ≤ b < h}.

Given a nonnegative integer h, a grid G of length h is a collection of h2

disjoint intervals in R+ indexed by SQ(h)-elements. (All intervals in this
paper are assumed left closed and right open.) Thus a bijection LocG : G →
SQ(h) is implicit. For an interval I ∈ G, we call LocG(I) the location of I,
and define G(i, j) = Loc−1

G (i, j). A grid G partially defines transformations
T (1,0) and T (0,1) in the following way. Given an interval I ∈ G with location
(i, j), define T (1,0) on I to be the (orientation preserving) affine map that
sends I to the interval with location (i+1, j); if no such interval exists T (1,0)

remains undefined. Similarly, let T (0,1) take an interval I to the interval with
location (i, j + 1); again if no interval exists T (0,1) remains undefined.

Let G and H be two grids of length g and h respectively. Given nonne-
gative integers a and b such that max{a+ g, b + g} < h, we say the subgrid
G′ defined by G′(i, j) = H(a + i, b + j), for 0 ≤ i < g and 0 ≤ j < g, is
a copy of G in H located at (a, b), if G′(i, j) ⊂ G(i, j) for 0 ≤ i < g and
0 ≤ j < g, and

T (1,0)(G′(i, j)) = G′(i + 1, j), T (0,1)(G′(i, j)) = G′(i, j + 1).

We denote the location (a, b) by LocH(G′).

3. A Z2 skyscraper. In this section we define a simple family of actions
which exhibits sequences on which [0, 1) is properly exhaustive and weakly
wandering. This Z2-action is analogous to the Hajian–Kakutani skyscraper
[HK2] since it sweeps out all the spacers in each grid before proceeding to the
next grid.
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Weakly wandering sets for integer actions were introduced in [HK1] by
Hajian and Kakutani who showed, among other things, that ergodic in-
finite measure preserving transformations admit weakly wandering sets of
positive measure. In [HK2], Hajian and Kakutani constructed an exam-
ple of an ergodic infinite measure preserving transformation with an exhau-
stive weakly wandering set of finite measure. The sequence under which the
set is exhaustive has interesting arithmetical properties and this has been
studied e.g. in Eigen–Hajian–Kakutani [EHK]. In [JK], Jones and Krengel
showed that every ergodic infinite measure preserving integer action ad-
mits a weakly wandering set that is exhaustive, though possibly of infinite
measure. In [HI], Hajian and Ito showed that an arbitrary group of meas-
urable nonsingular transformations admits an equivalent finite invariant
measure if and only if it does not admit a weakly wandering set of positive
measure. It remains an open question whether every ergodic infinite meas-
ure preserving Zd-action admits a properly exhaustive weakly wandering
set.

3.1. Construction. To define the basis transformations T (1,0) and T (0,1)

we first construct inductively a sequence of grids Gn of length hn. Let h0 = 1
and G0 = {[0, 1)}. Given Gn, we set hn+1 = 4hn and divide each interval

interal I ∈ G into four equal parts: I =
⋃3

i=0 Ii enumerated from the left
to the right. Now set LocGn+1(I0) = LocGn

(I), LocGn+1(I1) = LocGn
(I) +

(0, hn), LocGn+1(I2) = LocGn
(I) + (hn, 0), and LocGn+1(I3) = LocGn

(I) +
(hn, hn). Finally, we consider the elements of SQ(hn+1) which do not yet
have intervals assigned to them; to these we assign a spacer , a new interval
chosen from R+ of the same length as the previous ones. We choose each
spacer interval so that it is disjoint from all previously chosen spacers and
from [0, 1), and that it abuts on the previously chosen spacer (or, if it is the
first spacer, so that it abuts on the unit interval).

The construction is a process of “cutting and tiling”, analogous to the
“cutting and stacking” with which rank one Z-actions are constructed. It
is easy to see that the number of intervals in a grid Gn is 42n, and that
the length of each interval is 1/4n. Thus the measure of the union of the
intervals within that grid, which we denote by G∗

n, is 4n. Thus, as n → ∞,
G∗

n → X = R+.

Next, we define our transformations T (1,0) and T (0,1) on a grid Gn as
explained earlier. One can check that T (1,0) and T (0,1) are defined everywhere
as n → ∞. In this section, as well as in Section 4, all grids consist of intervals
of the same length.

Theorem 3.1. The Z2-action T defined by the above construction is

measure preserving and properly ergodic. The basis transformations T (0,1)

and T (1,0) are not ergodic but are partially rigid under the same sequence
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rn = hn, hence the Cartesian products of any finite number of basis trans-

formations is conservative.

P r o o f. It is clear that intervals are sent to intervals of the same length
and since the intervals in the union of the grids generate, the action is
measure preserving.

Now we show that for any two sets A and B of positive measure, there
exists an element g ∈ Z2 such that µ(T gA ∩B) > 0. There exists a grid Gn

and intervals I, J ∈ Gn such that µ(A∩I) > 0.5µ(I) and µ(B∩J) > 0.5µ(I).
Let g = LocGn

(J)− LocGn
(I). Clearly, µ(T gA∩B) > 0. It follows that T is

ergodic. Since µ is nonatomic, T is properly ergodic and conservative.

To show that T (1,0) is partially rigid, since T (1,0) is measure preserving,
it is enough to show only the first condition (the same argument applies to
T (0,1)). Moreover, by [AFS], Lemma 1.2, it suffices to show the result on
an algebra that approximates all sets of finite measure. Let rn = hn for all
n > 0. Let A ∈ Gk be an interval for some k > 0, and let η = 1/4. Note that

in the grid Gn+1 for n > k, T (hn,0)G
(0,0)
n = G

(1,0)
n and for (i, j) ∈ SQ(4),

µ
(

G
(i,j)
n ∩ A

)

= 1
4µ(A). (The first equality is understood to mean

T (hn,0)(G(0,0)
n (LocGn+1(G

(0,0)
n ) + (i, j)) = G(1,0)

n (LocGn+1(G
(1,0)
n ) + (i, j))

for all 0 ≤ i, j ≤ hn; similar equalities later in the paper are interpreted in
the same way.)

Therefore

µ(T (hn,0)A ∩Aw
)

≥ µ(T (hn,0)(G
(0,0)
k ∩ A) ∩ (G

(1,0)
k ∩ A)) ≥ 1

4µ(A).

To show the basis transformations are nonergodic, let A = [0, 1/4) and
B = [3/4, 1). Let n > 0 be an integer. Choose the first k such that n < hk−1.
For each I ∈ Gk, I ⊂ A, we have T (n,0)I ∈ Gk and

LocGk
(T (n,0)I) = (2a+ n, 2b)

for some integers a and b. Now if J ⊂ B, J ∈ Gk then LocGk
(J) = (2c + 1,

2d + 1) for some c and d. As T (n,0)I ∈ Gk it follows that T (n,0)I ∩ J = ∅.
Also, T (0,1) is nonergodic by the symmetry of the construction.

3.2. The sequence {wi}. We use a similar technique to that in [HK2] to
construct a sequence {wi ∈ Z2 : i = 0, 1, . . .} on which the set W = [0, 1)
is properly exhaustive weakly wandering. Let w0 = (0, 0). Given i > 0, we
consider its quartic expansion:

i = 40ε0 + 41ε1 + . . .+ 4kεk,

where εj = εj(i) ∈ {0, 1, 2, 3}, for j = 0, 1, . . . , k and some k depending on i.
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Now we assign to each εj a δj as follows:

δj = δj(εj) =























(0, 0) if εj = 0,

(2, 0) if εj = 1,

(0, 2) if εj = 2,

(2, 2) if εj = 3,

Finally, define the weakly wandering sequence wi by

wi = 40δ0 + 41δ1 + . . .+ 4kδk.

Theorem 3.2. W is weakly wandering and properly exhaustive along

the sequence {wi}.

P r o o f. The proof is inductive on the hypothesis that, for n > 0, the
following two conditions hold:

(1) the sets {TwiW : 0 ≤ i < 4n} are pairwise disjoint, and

(2) G∗
n =

⋃4n−1
i=0 TwiW .

This is clearly true for n = 1. We show that (1) and (2) hold for n + 1.
Actually,

4n+1−1
⋃

i=0

TwiW =

3
⋃

j=0

T 4nδj
(

4n−1
⋃

i=0

TwiW
)

=

3
⋃

j=0

T 4nδjG∗
n = G∗

n+1,

as SQ(hn+1) =
⋃3

j=0(SQ(2 · 4n) + 44δj). To show (1), recall that µ(W ) = 1,

µ(Gn+1) = 4n+1, and T is measure preserving. Then

4n+1−1
∑

i=0

µ(TwiW ) =

4n+1−1
∑

i=0

1 = µ(G∗
n+1) = µ

(

4n+1−1
⋃

i=0

TwiW
)

.

3.3. Sets of increasing and infinite measure. In [C], Crabtree describes
exhaustive weakly wandering sets on the example of Hajian and Kakutani
[HK2] whose measures are greater than 1; in particular, he details the con-
struction of both an increasing sequence of e.w.w. sets and an infinite me-
asure e.w.w. set.

3.3.1. Properly exhaustive weakly wandering sets of increasing measure.

For any integer n, we can take W = Gn. If we let

wi = 4n(δ04
0 + δ14

1 + . . .+ δk4
k),

this is a properly exhaustive w.w. sequence for W . Thus we have the in-
creasing sequence G0, G1, . . . of e.w.w. sets; the proof that each is e.w.w. is
identical to the proof of Theorem 3.2, with each dimension scaled up by 4n.

3.3.2. An infinite measure properly exhaustive weakly wandering set.

The construction of an infinite measure weakly wandering set W∞ is in -
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ductive on n. We begin with W0 = [0, 1/2). Given Wn−1, let Wn = Wn−1 ∪
T (hn/2,0)Wn−1. Note that Wn is well defined in Gn and µ(Wn) = 2µ(Wn−1).

This construction makes translations by (hn/2, 0) and (hn/2, hn/2) in-
admissible in {wi} but admits translations by (1, hn/2) and (1, 0). We define
a sequence vi with binary coding of i:

i = 20ε0 + 21ε1 + . . .+ 2kεk,

where εj ∈ {0, 1} for j = 0, 1, . . . , k and

δj =

{

(0, 0) if εj = 0,

(0, 2) if εj = 1.

Put vi = 40δ0 +41δ1 + . . .+4kδk; the weakly wandering sequence wi is given
by

w2i = vi and w2i+1 = vi + (1, 0).

4. Infinite measure actions. In this section we first modify the finite
measure preserving staircase actions of [AS] to construct infinite measure,
measure preserving Z2-actions for which the basis transformations have infi-
nite ergodic index. It is possible to choose a sequence {cn} of cuts (as defined
below) for the staircase action of [AS] so that the resulting space has infi-
nite measure; however, in this case the sequence {cn} will be unbounded.
Our methods do not apply if lim inf cn = ∞. While one could modify the
construction on a subsequence to obtain lim inf cn < ∞, we in fact define a
new family of staircase actions that has infinite measure but with a bounded
sequence of cuts; adapting techniques from [AFS] we show that in this case
the basis transformations have infinite ergodic index. In the second part of
the section we extend this construction to the multistep actions which we
show are power weakly mixing.

4.1. Staircase actions. Given a positive integer c, a grid H is defined to
be an infinite staircase c-cut of a grid G, of length g, if G ⊂ H and H is a
grid of least size that contains (c+ 1)2 copies of G located at

(2ig + i(i− 1)/2 + ij, 2jg + j(j − 1)/2 + ij)

for (i, j) ∈ SQ(h). The copy at this location is denoted by G
(i,j)
n . The length

of H is h = 2(c+ 1)g + c(c− 1)/2 + c2.

As before, we define on the grid G two commuting transformations, T (1,0)

as the translation mapping G(i, j) onto G(i + 1, j), for 0 ≤ i < h − 1 and
0 ≤ j < h; and T (0,1) as the translation mapping G(i, j) onto G(i, j + 1), for
0 ≤ j < h− 1 and 0 ≤ i < h. Figure 1 shows an infinite staircase 3-cut.
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Gn
(0,0)

(0,1)Gn

(1,0)Gn

(1,1)Gn

(2,0)Gn

(0,2)Gn

(2,1)Gn

(1,2)Gn

(3,3)Gn

(0,3)Gn

(3,0)Gn

(1,3)Gn

(3,2)Gn

(3,1)Gn

(2,2)Gn

(2,3)Gn

Gn

Gn+1

Fig. 1. An infinite staircase 3-cut

An infinite staircase action is defined by giving a sequence of positive
numbers {cn} and a sequence of grids {Gn} such that G0 = {[0, 1)} and
Gn+1 is an infinite staircase cn-cut of Gn.

Let hn denote the length of Gn. Then h0 = 1 and

hn+1 = (2cn + 1)hn + cn(cn − 1)/2 + c2n.(1)

It is clear that T (1,0) and T (0,1) so defined commute, and that the stair-
case Z2-action is measure preserving and ergodic.

Proposition 4.1. Let T be an infinite measure staircase action with

sequence {cn} of cuts. Then T is defined on an infinite measure space.

P r o o f. It suffices to consider the worst case cn = 1 for all n. From (1) we
deduce that hn+1 > 4hn > 4n+1. If I ∈ Gn is an interval then µ(I) = 1/4n.
There are h2

n intervals in Gn, so µ(Gn) = h2
n/4

n > 4n.

If I ∈ Gn is an interval and 0 < t ≤ hn then let △(I, t), the t-triangle
under I, denote the collection of all intervals J ∈ Gn such that

LocGn
(J) = LocGn

(I)− (i, j)

where
0 ≤ i ≤ t, 0 ≤ j ≤ t, j ≤ i.
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(Depending on the location of I, sometimes it may not look like a proper
triangle.)

For concreteness, in the remainder of this section we will assume that
cn = 3 for all n, but one can verify that similar arguments work for cn ≥ 2.

Lemma 4.2. Let T be the infinite measure staircase action with ci = 3
for all i ≥ 0. Given positive integers n and t there exists an integer l = l(n, t)
> 0 such that if I and J are any two intervals in Gn with J ∈ △(I, t) then

µ(T (l,0)I ∩ J) ≥
1

16t
µ(J).

P r o o f. For all k ≥ 0, Gn+k+1 will contain 16 copies of Gn+k where for

(i, j) ∈ SQ(3 + 1), µ(G
(i,j)
n+k) =

1
16µ(Gn+k). Observe that

T (2hn+k,0)G
(0,0)
n+k = G

(1,0)
n+k ,

T (2hn+k,0)G
(1,0)
n+k = T (−1,0)G

(2,0)
n+k ,

T (2hn+k,0)G
(0,1)
n+k = T (−1,−1)G

(1,1)
n+k .

Using this idea, we set

l =
t−1
∑

k=0

2hn+k.

Let J ⊂ △(I, t) and set (x, y) = LocGn
(I) − LocGn

(J) (note that 0 ≤
y ≤ x). Define intervals Ik recursively for 0 ≤ k ≤ t. Let I0 = I. Then
µ(I0 ∩ T (x,y)J) = µ(J). Assume that Ik has been defined. If k + 1 ≤ y, let

Ik+1 = T (2hn+2k,0)(Ik ∩G
(0,1)
n+2k). Then

µ(Ik+1 ∩ T (x−(k+1),y−(k+1))J) ≥
1

16k+1
µ(J).

If y < k + 1 ≤ x, let Ik+1 = T (2hn+2k,0)(Ik ∩G
(1,0)
n+2k). Then

µ(Ik+1 ∩ T (x−(k+1),0)J) ≥
1

16k+1
µ(J).

If x < k + 1 ≤ t, let Ik+1 = T (2hn+2k,0)(Ik ∩G
(0,0)
n+2k). Then

µ(Ik+1 ∩ J) ≥
1

16k+1
µ(J).

Thus It has been defined and µ(It ∩ J) ≥ 1
16tµ(J). Also, It ⊂ T (l,0)I.

Theorem 4.3. Let T be an infinite staircase action with sequence of cuts

cn = 3. Then the basis transformations T (1,0) and T (0,1) have infinite ergodic

index.

P r o o f. Let k > 0 and S be the Cartesian product of k copies of T (1,0).
By symmetry it suffices to show that S is ergodic. Let A′ and B′ be sets of
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positive measure in the product space and let µk denote product measure.
Choose intervals Ii and Ji, i = 1, . . . , k, in some grid Gm such that for
I = I1 × . . .× Ik and J = J1 × . . .× Jk,

µk(A
′ ∩ I)

µk(I)
>

5

6
and

µk(B
′ ∩ J)

µk(J)
>

5

6
.

By taking a finer approximation in the grid Gm−1, and using the structure
of the 16 copies of Gm−1 in Gm we may assume that for each i = 1, . . . , k,

Ji ∈ △(Ii, ti) for some ti (since any interval in G
(0,0)
n is in the t-triangle

of any interval in G
(3,1)
n for some t). Let A = A′ ∩ I, B = B′ ∩ J , and

t = max{ti : i = 1, . . . , k}. Then t ≤ hm. Choose δ = 1/16t. For any n ≥ m
let

Γn =
{

1, . . . ,
n−1
∏

i=m

(ci + 1)2
}

and label the copies of Gm in Gn with integers from Γn. To find a finer
approximation within I, choose a sufficiently large n > m such that there is
a set I ′ of the form

I ′ =
⋃

u∈U ′

Iu where U ′ ⊆ Γ k
n

so that µk(I
′△A) < 1

18δ
kµk(I). Further, each Iu is of the form Iu = Iu1×. . .×

Iuk
where Iui

is in Ii and in the ui copy of Gm in Gn. Similarly, there exists
a subset V ′ ⊆ Γ k

n where J ′ =
⋃

v∈V ′ Jv so that µk(J
′ △ B) < 1

18δ
kµk(J).

Using the triangle inequality one obtains

µk(I
′ △ I) < 1

3µk(I) and µk(J
′ △ J) < 1

3µk(J).

Next we choose the “good” subintervals by letting

U ′′ =
{

u ∈ U ′ : µk(Iu \A) < 1
3δ

kµk(Iu)
}

and I ′′ =
⋃

u∈U ′′ Iu, and constructing V ′′ and J ′′ in a similar way. Now we
have

µk(I
′ \ I ′′) =

∑

u∈U ′\U ′′

µk(Iu) ≤
∑

u∈U ′\U ′′

3

δk
µk(Iu \A) ≤

3

δk
µk(I

′ \A).

Thus µk(I
′′ △ I ′) < 1

6µk(I), and

µk(I
′′ △ I) < 1

6µk(I) +
1
3µk(I) =

1
2µk(I).

Likewise, µk(J
′′ △ J) < 1

2µk(J). Thus both I ′′ and J ′′ cover more than half
of I and J respectively, and so there must exist an element w ∈ U ′′ ∩ V ′′.
By Lemma 4.2 there is an integer l = l(n, t) such that

µk(S
lIw ∩ Jw) ≥ δkµk(Jw).
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As w is in U ′′ and V ′′, it follows that

µk(S
lA ∩B) ≥ µk(S

lIw ∩ Jw)− µk((S
lIw ∩ Jw) \ (S

lA ∩B))

≥ δkµk(Jw)−
δk

3
µk(Iw)−

δk

3
µk(J2) > 0.

The proof of the next result is similar to that of partial rigidity in The-
orem 3.1.

Theorem 4.4. Let T be an infinite staircase action with the sequence

of cuts cn = 3. Then the transformations T (1,0) and T (0,1) are partially

rigid.

Remark 4.5. The previous proofs for infinite measure staircase Z2-ac-
tions can be generalized in a natural way to infinite measure staircase Zd-
actions for d > 2. We leave this as an exercise for the reader.

4.2. Multistep actions. Here we modify the infinite staircase to construct
a Z2-action that is power weakly mixing. As mentioned earlier, a power
weakly mixing infinite transformation was constructed recently in [DGMS].
It remains open whether our infinite staircase actions are power weakly mix-
ing, but we show how to modify the construction so that essentially the same
proof of infinite ergodic index yields power weakly mixing for the new ac-
tions. For clarity of exposition we do this in two steps. First, we define step
actions, then we generalize this to multistep actions and show how the same
idea in the proof of Theorem 4.3 proves that multistep actions are power
weakly mixing.

Given a positive integer c and (m,n) ∈ Z2 where m and n are positive,
a grid H is an (m,n)-step c-cut of a grid G of length g if G ⊂ H and H is a
grid of least size that contains (c+ 1)2 copies of G located at

((mi+nj)g+ i(i−1)/2+ ij, (ni+mj)g+ j(j−1)/2+ ij) for m 6= n,

((mi+nj)g+ i(i−1)/2+ ij, (ni+mj+cj)g+ j(j−1)/2+ ij) for m = n

for (i, j) ∈ SQ(c+1). We need the extra condition for the m = n case or else
G(i,j) = G(j,i). The length of H is

h =

{

((m+ n)c+ 1)g + c(c− 1)/2 + c2 for m 6= n,

((m+ n+ c)c+ 1)g + c(c− 1)/2 + c2 for m = n.

Note that an (m,n)-step c-cut is identical to an (n,m)-step c-cut. Figure 2
shows a (2, 1)-step 2-cut.
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Gn
(0,0)

(0,1)Gn

(1,0)Gn

(1,1)Gn

(2,0)Gn

(0,2)Gn

(2,1)Gn

(1,2)Gn

(2,2)Gn

0 hn 2hn 3hn 4hn 5hn 6hn

2hn

3hn

4hn

5hn

6hn

Gn hn

hn

Fig. 2. A (2, 1)-step 2-cut. The grid Gn is shown next to Gn+1 and the indexed copies
of Gn are drawn. Note that G(1,2) is located at position (4g + 2, 5g + 3), and we include
the rows of intervals to show the offset.

A step action is defined by giving an initial grid G0, a sequence {ci}
of positive numbers called the cutting sequence, and a sequence {ai}, ai =
(mi, ni), i ≥ 0, called the tiling sequence, where mi and ni are positive
integers. Then a sequence {Gi}, i ≥ 0, of grids is defined so that G0 = {[0, 1)}
and Gi+1 is an ai-step ci-cut of Gi. The length of each grid is hi.

It is clear that T (1,0) and T (0,1) so defined commute, and that the Z2-step
action is measure preserving, ergodic and defined on an infinite measure
space. It is possible to choose a tiling sequence (mi, ni) so that for each
positive (m,n), T (m,n) satisfies the corresponding equalites similar to those
in the proof of Lemma 4.2, and then the proof of Theorem 4.3 can be
adapted to show that for all (m,n) 6= (0, 0), T (m,n) has infinite ergodic
index; however, we omit the details since our emphasis is on the multistep
actions.

For the case of multistep actions, we will use the (m,n)-step 3-cuts of
the step action to define a sequence of grids to prove a generalization of
Lemma 4.2, which is Lemma 4.8 below.

Let a = ((m1, n1), . . . , (mk, nk)) ∈ Z2k. Let Gn be a grid of length gn. We
say that a grid of least size H of length h is an a-multistep cut of Gn if H is
obtained as follows: first cut Gn into k copies, denoted by G′

n,1, . . . , G
′
n,k. For

each G′
n,j where j = 1, . . . , k, cut G′

n,j into 16 copies and arrange them in a
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grid Gn,j so that Gn,j is an (mj , nj)-step 3-cut of G′
n,j and Gn,j has length

hn,j . Denote the copies of G′
n,j in Gn,j by G

(x,y)
n,j where (x, y) ∈ SQ(4).

Now let H be constructed by tiling the Gn,j ’s so that Gn,j is located at

(
∑j

i=1 hn,i−1,
∑j

i=1 hn,i−1), where hn,0 = 0. Then h =
∑k

i=1 hn,i.
One can use a simple diagonalization argument to construct a sequence

{cn} which has the following property.

Proposition 4.6. There is a sequence {cn} such that if ((α1, β1), . . .
. . . , (αk, βk)) ∈ Z2k, with αi ≥ βi and (αi, βi) 6= (0, 0), for 1 ≤ i ≤ k, then
there exists n ∈ N such that

cn = ((α1, β1), . . . , (αk, βk)).

A Z2-multistep action is defined by giving a sequence {cn} as in Propo-
sition 4.6, called the cutting sequence, and a sequence of grids {Gn} where
Gn+1 is a cn-multistep cut of Gn. Put G0 = [0, 1) and h0 = 1.

The next result follows from Proposition 4.1.

Proposition 4.7. Let T be the multistep action sequence of cuts cn as

defined above. Then T is defined on an infinite measure space.

The following lemma shows that the multistep action satisfies a much
stronger version of the triangle property.

Lemma 4.8. Let k > 0 and ((α1, β1), . . . , (αk, βk)) ∈ Z2k, with αi ≥ βi

and (αi, βi) 6= (0, 0), for 1 ≤ i ≤ k. Given positive integers n and ti,
i = 1, . . . , k, there exists an integer H = H(n, t1, . . . , tk) > 0 such that given

any intervals I1, . . . , Ik and J1, . . . , Jk in Gn so that Ji ∈ △(Ii, ti), we have

µ(TH(αi,βi)Ii ∩ Ji) ≥
1

(16k)t
µ(Ji),

where t = max{ti : 1 ≤ i ≤ k}.

P r o o f. There exists a strictly increasing sequence {rj} ⊂ N and an
infinite sequence {sj} ⊂ {cn} so that

sj = ((jα1, jβ1), . . . , (jαk, jβk)),

and Grj+1 is an sj-multistep cut of Grj . Also, note that Grj+1 contains 16k
copies of Grj and for all 1 ≤ i ≤ k,

T jhrj
(αi,βi)G

(0,0)
rj ,i

= G
(1,0)
rj ,i

,

T jhrj
(αi,βi)G

(1,0)
rj ,i

= T (−1,0)Grj ,iG
(2,0)
rj ,i

,

T jhrj
(αi,βi)G

(0,1)
rj ,i

= T (−1,−1)G
(1,1)
rj ,i

and µ(G
(a,b)
rj ,i

) = 1
16kµ(Grj ) for (a, b) ∈ SQ(4) and 1 ≤ i ≤ k.
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Let j be the smallest integer so that rj > n. Set H =
∑j+t−1

l=j lhrl . We
now define Il,i recursively using the same idea as in Lemma 4.2 to obtain
It,j with It,j ⊂ TH(αj ,βj)I, and µ(It,j ∩ J) ≥ 1

(16k)t µ(J).

Lemma 4.8 can be generalized to the cases when αi < 0 or βi < 0 by
appropriately redefining the t-triangle in each case. Now the next theorem
follows from Lemma 4.8 using the same argument as in Theorem 4.3.

Theorem 4.9. Let T be the multistep Z2-action as defined above. Then

T is power weakly mixing.

5. Nonsingular type III Zd-actions. In this section we construct er-
godic nonsingular type III free actions. The type IIIλ examples, 0 < λ < 1,
can be seen as Z2 versions of the type IIIλ Chacon transformations of [JS],
in the same way as the constructions in [PR] generalize to Z2 the classic
(finite measure preserving) Chacon transformation. It is easy to see how to
change these constructions to obtain type III1 examples. However, for the
type III0 examples we use a modification of the staircase construction.

As explained in [PR], there are several choices for the arrangement of the
spacers in a Chacon Z2-action. For the type IIIλ examples, 0 < λ ≤ 1, that
we construct, the basis transformations are not isomorphic, and we obtain
infinite ergodic index for T (1,0), while T (0,1) is not ergodic. The proof of
Theorem 5.9 follows techniques from [AFS2], where the nonsingular Chacon
transformations of [JS] are shown to be power weakly mixing (in the first
version of the present paper the authors had only shown ergodicity of the
basis transformations). One could modify our construction to a nonsingular
multistep action as before to obtain power weak mixing for T (1,0) but we omit
the details. We note that the nonsingular Chacon transformations of [JS]
were shown to have trivial centralizer, while in our examples the centralizer
contains an isomorphic copy of Z2 (we do not know if the containment is
proper).

For the III0 examples we go back to a modification of the original Z2-
staircase of [AS] and so have to use an unbounded sequence {cn} of cuts, and
hence only obtain weak mixing for the basis transformations; our method
to show ergodicity of products does not seem to apply to an unbounded
sequence of cuts, and in this case we only show that the basis transformations
are weakly mixing.

5.1. A nonsingular type IIIλ Chacon Z2-action. We let G0 = {[0, 1)},
h0 = 1, 0 < λ < 1. Assume Gn has been defined. Gn+1 is the grid of length
hn+1 = 3hn + 1 that contains 9 copies of Gn so that for (i, j) ∈ SQ(3),

µ(G
(i,j)
n ) = αijµ(Gn) where αij = 1/(5 + 4λ) if i + j is even and λ/(5 + 4λ)
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if i+ j is odd. We arrange the copies of Gn as follows:

LocGn+1(G
(0,0)
n ) = (0, 0), LocGn+1(G

(1,0)
n ) = (hn + 1, 0),

LocGn+1(G
(2,0)
n ) = (2hn + 1, 0), LocGn+1(G

(0,1)
n ) = (0, hn + 1),

LocGn+1(G
(1,1)
n ) = (hn + 1, hn), LocGn+1(G

(2,1)
n ) = (2hn + 1, hn + 1),

LocGn+1(G
(0,2)
n ) = (0, 2hn + 1), LocGn+1(G

(1,2)
n ) = (hn + 1, 2hn + 1),

LocGn+1(G
(2,2)
n ) = (2hn + 1, 2hn + 1).

The rest of the grid is filled up with spacers chosen so that T (1,0) and T (0,1)

are measure preserving when they go from an interval in G
(i,j)
n to a spacer

in Gn+1, where (i, j) ∈ SQ(3). If the length of the spacer remains undefined
at this stage, choose its length so that T (1,1) is measure preserving from an

interval in G
(i,j)
n to the spacer (this only happens for (i, j) = (0, 0)). One

checks that there are no conflicts. We leave it to the reader to verify that this
defines an ergodic nonsingular Z2-action on a finite measure space. Finally,
the measure is normalized so that µ(X) = 1; let γ be such that

µ([0, 1)) = γ.

Figure 3 shows a step in the construction of a Chacon type IIIλ action. The
relative sizes of the intervals are not shown in this figure.

Gn
(0,0)

(0,1)Gn

(1,0)Gn

(1,1)Gn

(2,0)Gn

(0,2)Gn

(2,1)Gn

(1,2)Gn
(2,2)Gn

Gn+1

Gn

Fig. 3. A Chacon type IIIλ Z
2-action

Proposition 5.1. The nonsingular Chacon Z2-action is of type IIIλ,
0 < λ < 1.

P r o o f. Given A with µ(A) > 0, choose I in some grid Gn such that

µ(A ∩ I)

µ(I)
>

(

1−
1

2

(

λ

5 + 4λ

))

.

Let I
(i,j)
n = I∩G

(i,j)
n for (i, j) ∈ SQ(3). Then µ(I

(i,j)
n ∩A) > 1

2µ(I
(i,j)
n ) for all

(i, j). By construction, T (hn,0)I
(1,0)
n = I

(2,0)
n , so that µ(A ∩ T (−hn,0)A) > 0.
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Moreover, µ(I
(2,0)
n ) = λ−1µ(I

(1,0)
n ), and since T (hn,0) is an affine transfor-

mation from I
(1,0)
n onto I

(2,0)
n , ωT (hn,0)(x) = λ−1 for a.a. x ∈ I

(1,0)
n . Thus

λ ∈ r(T ).
Now we prove that r(T ) 6= R+. For a.a. x ∈ X , for any g ∈ G\{e}, there

exists a grid Gn where x and T gx reside in two different intervals. Call these
two intervals I0 and I1, respectively. T g is an affine map from I0 to I1, so
ωT g is a constant on I0 equal to µ(I1)/µ(I0).

Furthermore, µ(I0) and µ(I1) can be written as

µ(I0) =

(

1

5 + 4λ

)a(
λ

5 + 4λ

)b

γ = λb

(

1

5 + 4λ

)n

γ,

µ(I1) =

(

1

5 + 4λ

)c(
λ1

5 + 4λ

)d

γ = λd

(

1

5 + 4λ

)n

γ,

for some positive integers a, b, c, and d where a+ b = c + d = n. Therefore
µ(I1)/µ(I0) = λb−d. Since these ratios dictate the only possible values for
ωT g , T is of type IIIλ.

For the transformation T (1,0), let

B(1,0)
n = {I ∈ Gn : LocGn

(I) = (0, k), 0 ≤ k < hn}.

Similarly, let

B(0,1)
n = {I ∈ Gn : LocGn

(I) = (k, 0), 0 ≤ k < hn}.

Proposition 5.2. For all n≥ 1 and a.a. x ∈B
(1,0)
n , ωT (hn−1,0)(x) = 1,

ωT (1,0)(x) = 1, and ωT (0,1)(x) ∈ {λ−1, 1, λ}. Also, for a.a. x ∈ B
(0,1)
n ,

ωT (0,hn−1)(x) = 1, ωT (0,1)(x) ∈ {λ−1, 1, λ} and ωT (1,0)(x) ∈ {λ−1, 1, λ}.

P r o o f. The statement follows by induction by verifying it for G1 and
then from the nature of the construction.

Proposition 5.3. For a.a. x ∈ X, ωT (1,0)(x) ∈ {λ−2, λ−1, 1, λ, λ2} and

ωT (0,1)(x) ∈ {λ−1, 1, λ, }, and ωT (1,1)(x) ∈ {λ−2, λ−1, 1, λ, λ2}.

P r o o f. We show the T (1,0) case; the other cases are analogous. We show
by induction on n ≥ 1 that if x ∈ Gn and T (1,0)x is defined in Gn then
ωT (1,0)(x) ∈ {λ−2, λ−1, 1, λ, λ2}. The case n = 1 is clear from the definition
of G1. Now assume the induction hypothesis for n. Let x ∈ I for I ∈ Gn+1

with T (1,0)x defined in Gn+1. If for some (i, j) ∈ SQ(4), x ∈ G
(i,j)
n and

T (1,0)x ∈ G
(i,j)
n then the induction hypothesis completes the proof. Now

assume that x ∈ G
(1,j)
n and T (1,0)x ∈ G

(2,j)
n , j = 0, 1, 2; the remaining cases

are simpler or analogous. Let y = T (−hn+1,0)x and J = T (−hn+1,0)I; so y ∈

B
(1,0)
n ∩ G

(1,j)
n . By the placement of the grids, T (hn,δ)G

(1,j)
n = G

(2,j)
n (where

δ = 0 if j = 0, 2 and δ = 1 when j = 1). Also, µ(G
(2,j)
n ) = βµ(G

(1,j)
n ) where
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β ∈ {λ−1, λ}. It follows that ωT (hn,δ)(y) = µ(T (hn,δ)J)/µ(J) ∈ {λ−1, λ}.
Then

ωT (hn,δ)(y) = ωT (hn−1,0)(y)ωT (1,0)(x)ωT (0,δ) (T (1,0)x).

By Proposition 5.2, ωT (hn−1,0)(y) = 1. Also, since T (1,0)x ∈ B
(1,0)
n and δ = 0

or 1, by Proposition 5.2 again, ωT (0,δ)(T (1,0)x) ∈ {λ−1, 1, λ}. So ωT (1,0)(x) ∈
{λ−2, λ−1, 1, λ, λ2} (worst case—in fact one can argue that λ−2 does not
occur).

The idea of (implicit) use of the cocycle relation in the following proof
comes from [JS] and [AFS2].

Lemma 5.4. Let T be the Z2-action on (X,B, µ) as defined above. For

a.a. x ∈ X and all n ≥ 0, ωT (hn,0)(x) ∈ {λ−6, λ−5, . . . , λ6} and ωT (0,hn)(x) ∈
{λ−4, λ−3, . . . , λ4}.

P r o o f. First assume x ∈ Gn. Let k ≥ n be the smallest integer so that
T (hn,0)x is defined in Gk. Let G1

n be the Gn-copy in Gk, so that x ∈ G1
n.

There exists another Gn-copy, call it G2
n, so that T (hn+i,j)G1

n = G2
n and

µ(G1
n) = βµ(G2

n) where 0 ≤ i ≤ 1, −1 ≤ j ≤ 1, and β ∈ {λ−1, 1, λ}; thus
ωT (hn+i,j)(x) = β−1. Using the cocycle relation for the Radon–Nikodym
derivatives and Proposition 5.3, we get ωT (hn,0)(x) ∈ {λ−4, . . . , λ4}. Finally,
if x 6∈ Gn we note that T (i,j)x ∈ Gn for some (i, j) = (1, 0), (1, 1), or (0, 1).
Another application of the cocycle relation gives the desired result. Finally,
for the case of ωT (0,hn)(x), we note that T (0,hn+j)G1

n = G2
n, j = 0, 1.

The proof of the following corollary just uses the fact that l is the sum
of grid lengths.

Corollary 5.5. For l =
∑2t−1

i=0 hn+i, n ≥ 0 and t > 0,

λ12t ≤ ωT (l,0)(x) ≤ λ−12t and λ8t ≤ ωT (0,l)(x) ≤ λ−8t.

The next lemma shows that the basis transformation T (1,0) has the tri-
angle property. The proof is as the proof of Lemma 4.2, only that in this
case one must take into account that after each iteration the measure of the
intervals is reduced in the worst case by λ/(5 + 4λ).

Lemma 5.6. Let T be the IIIλ Chacon Z2-action as defined above. Let n
and t be positive integers. Then there exists an integer l given by

l =

2t−1
∑

k=0

hn+k

such that if I, J ∈ Gn and J ∈ △(I, t) then

µ(T (l,0)I ∩ J) ≥
λ2t

(5 + 4λ)2t
µ(J).

The lemma below follows directly from the construction of the action.
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Lemma 5.7. Let I and J be two intervals in a grid Gm and n > m. Let

Iv and Jv be any two subintervals of I and J, respectively, in the grid Gn,
such that Iv and Jv are in the same copy of Gm in Gn. If µ(I) = λkµ(J)
then µ(Iv) = λkµ(Jv).

The next proposition follows from Lemma 5.4 and the proof of Lem-
ma 5.6.

Proposition 5.8. Let T be the Chacon Z2-action given by the above

construction. Then the transformations T (1,0) and T (0,1) are partially rigid

under the sequence rn = hn and η ≥ λ/(5 + 4λ).

Theorem 5.9. Let T be the IIIλ Chacon Z2-action as defined above. The

basis transformation T (1,0) has infinite ergodic index. Furthermore, T (0,1) is

not ergodic but has infinite conservative index.

P r o o f. The proof starts (with the same notation) as the proof of The-

orem 4.3. Now choose 0 < δ < λ2t/(5 + 4λ)2t, l =
∑2t−1

k=0 hm+k as in
Lemma 5.6. By Corollary 5.5,

dµk ◦ Sl

dµk
≤ λ−12kt a.e.(2)

Let αi be such that µ(Ii) = αiµ(Ji) and α =
∏k

j=1 αi. Then µk(I) = αµk(J).

Let β = αλ−12kt. As in Theorem 4.3 there exist indices U ′′ and V ′′ and
rectangles Iu and Jv so that for all u ∈ U ′′ and v ∈ V ′′, Iu = I ′1 × . . .× I ′k is
(1−δk/(3β))-full of A and Jv = J ′

1× . . .×J ′
k is (1−δk/3)-full of B, I ′1, . . . , I

′
k

and J ′
1, . . . , J

′
k are in the same grid Gn and for each i, I ′i and J ′

i are in the
same Gm-copy in Gn, it follows that J ′

i ∈ △(I ′i, t). Also, if I ′′ =
⋃

u∈U ′′ Iu
and J ′′ =

⋃

v∈V ′′ Jv, then

µk(I
′′ △ I) < 1

2µk(I) and µk(J
′′ △ J) < 1

2µk(J).

Since these unions cover more than 1/2 of I and J respectively, by Lem-
ma 5.7 we have

µk

(

⋃

u∈U ′′

Iu △ I
)

< 1
2µk(I) and µk

(

⋃

v∈V ′′ Jv △ J
)

< 1
2µk(J).

Thus, there must exist at least one index w ∈ U ′′ ∩ V ′′. Since l is defined as
in Lemma 5.6,

µk(S
lIw ∩ Jw) > δkµ(Jw).

Also, using (3), we get

µk(S
l(Iw \A)) =

\
Iw\A

dµk ◦ S
l

dµk
dµk ≤ λ−12ktµk(Iw \A)

≤ λ−12kt δ
k

3β
µk(Iw) =

δk

3
µk(Jw).
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Therefore,

µk(S
lA ∩B) ≥ µk(S

lIw ∩ Jw)− µk((S
lIw ∩ Jw) \ (S

lA ∩B))

≥ µk(S
lIw ∩ Jw)− µk(S

lIw \A)− (SlJw \B)

≥ δkµk(Jw)−
δk

3
µk(Jw)−

δk

3
µk(Jw) > 0.

5.2. Type III1. This is a direct consequence of the previous example. In
the construction of the grids, for even n use λ1 and for odd n use λ2 such
that logλ1 and logλ2 are irrationally related.

5.3. Type III0. The process of defining the III0 staircase Z2-actions is
similar to the construction of the infinite measure preserving staircase action;
in this case the number of cuts cn is unbounded. Given a positive integer c,
a grid H is defined to be a staircase c-cut of a grid G, of length g, if G ⊂ H
and H is a grid of least size that contains (c+ 1)2 copies of G located at

(ig + i(i− 1)/2 + ij, jg + j(j − 1)/2 + ij)

for (i, j) ∈ SQ(h). The length of H is h = (c+ 1)g + c(c− 1)/2 + c2.
The cutting sequence cn is defined to be

cn =

{

22
n

for n even,

c for n odd.

Given a grid Gn, Gn+1 is a staircase cn-cut of Gn. For odd n,

µ(G(i,j)
n ) =

1

(c+ 1)2
µ(Gn) for (i, j) ∈ SQ(c+ 1).

For even n, µ(G
(0,0)
n ) = 1

2µ(Gn), and

µ(G(i,j)
n ) =

1

2

1

(cn + 1)2 − 1
µ(Gn) for (i, j) ∈ SQ(cn + 1) \ {(0, 0)}.

This creates one “thick” subgrid, the subgrid of Gn with the large pieces
of intervals, and many “thin” subgrids. Choose the length of the spacers so
that the transformations T (1,0), T (0,1) are measure preserving when they go
from an interval of Gn+1 into a spacer of Gn+1 (one checks that there are no
conflicts). This defines a nonsingular ergodic Z2-action.

Lemma 5.10. T is of type III0.

P r o o f. We first show that for any ε > 0 and µ(A) > 0 there exists
l ∈ Z2 such that µ(T lA ∩ A ∩ {x : ωl(x) < ε}) > 0. Now there exists an
interval I in some grid Gp with p even such that µ(I ∩ A) > 3

4µ(I) and

1/((22
p

+ 1)2 − 1) < ε. Let I1 = I ∩G
(0,0)
p+1 . It follows that µ(I1) =

1
2µ(I) and
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µ(I1 ∩ A) > 1
2µ(I1). There must exist another copy of I, call it I2, so that

µ(I2) =
1

2
·

1

(22p + 1)2 − 1
µ(I) and µ(I2 ∩A) >

1

2
µ(I2).

Let l = Loc(I2)− Loc(I1). Then T lI1 = I2 and µ(T lA ∩A) > 0. Since ωl(x)
is constant over intervals,

ωl(x) =
µ(I2)

µ(I1)
=

1

(22p + 1)2 − 1
< ε.

Thus 0 ∈ r(T ).
Now assume that there exists q ∈ r(T ) with q ∈ (0, 1). Let ε > 0 be such

that q − 2ε > 0 and q + ε < 1. For any A of positive measure, there exists
l ∈ Z2 so that

µ(T lA ∩A ∩ {x : ωl(x) ∈ Nε(q)}) > 0.

Consider an interval I ∈ Gp where p is even and 1/((22
p

+ 1)2 − 1) < ε. Let
I1 and I2 be subintervals of I ∈ Gp+i for some i > 0. We will show that
µ(I2)/µ(I1) 6∈ Nε(q).

Let l ∈ Z2 so that T l(I1) = I2. We may assume that µ(I1) ≥ µ(I2). So
ωl(x) ∈ [0, 1]. Let J = {m : I1 was in a thin cut of Gm} and K = {m : I2
was in a thin cut of Gm} where p ≤ m < p+ i. Then the lengths of I1 and
I2 are given by

µ(I1) =

(

1

2

)⌈i/2⌉

·
∏

j∈J

1

((22j + 1)2 − 1)
·

(

1

42

)⌊i/2⌋

,(3)

µ(I2) =

(

1

2

)⌈i/2⌉

·
∏

k∈K

1

((22k + 1)2 − 1)
·

(

1

42

)⌊i/2⌋

.(4)

Since ωl(x) = µ(I2)/µ(I1), from (3) and (4),

ωl(x) =

∏

j∈J ((2
2j + 1)2 − 1)

∏

k∈K((22k + 1)2 − 1)
.

If J = K, then ωl(x) = 1 6∈ Nε(q). Thus, there exists an even n such that

either I1 ∈ G
(0,0)
n and I2 6∈ G

(0,0)
n or I2 ∈ G

(0,0)
n and I1 6∈ G

(0,0)
n . Let N be the

largest such n. We may assume without loss of generality that N ∈ K. This
ensures that µ(I2) < µ(I1). Note that if j > N and j ∈ J , then j ∈ K by the
construction of N . In the calculation of ωl(x) these terms will cancel. Thus,

let J ′ = J \ {j ∈ J : j > N}. Using the property that (22
N

+ 1)(22
N

− 1) =
∏N

a=0 (2
2a + 1), one can verify ωl(x) < ε. Hence assuming q ∈ f(T ) and

q ∈ (0, 1) results in a contradiction, and so T is type III0.

Theorem 5.11. For the type III0 Z2-action defined above, the transfor-

mations T (1,0) and T (0,1) are weakly mixing.
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P r o o f. The proof of ergodicity of the basis transformations is omitted as
it follows the idea in the proof of Theorem 5.9; however, the proof is simpler
and does not need the estimate analogous to Corollary 5.5. It remains to
show that the only L∞ eigenvalue of T (1,0) is 1. Let f ∈ L∞ be such that
f(T (1,0)(x)) = λf(x). For all ε > 0, there is a set A of positive measure such
that

∣

∣

∣

∣

f(x)

f(y)
− 1

∣

∣

∣

∣

<
ε

3

for all x, y ∈ A. Choose an interval I in some odd grid Gn such that

µ(A ∩ I) > (1− 1/3t)µ(A).

Cut and tile Gn. Each subgrid of Gn in Gn+1 contains a piece of I that is

more than 2/3 full of A. Consider G
(0,0)
n , G

(1,0)
n , and G

(2,0)
n . Note that G

(1,0)
n

is not shifted relative to G
(0,0)
n and G

(2,0)
n is shifted only 1 unit relative to

G
(1,0)
n in the direction in which T (1,0) maps.
Thus, there must exist some x ∈ A such that

T (hn,0)(x) ∈ A and T (2hn+1,0)(x) ∈ A.

By definition of A, |λhn − 1| < ε/3, which implies

|λ2hn − 1| < |λ2hn − λhn |+ |λhn − 1| < 2ε/3.

Again using A, we get |λ2hn+1 − 1| < ε/3. Combining these two inequalities
gives

|λ− 1| < |λ2hn+1 − λ2hn | ≤ |λ2hn+1 − 1|+ |λ2hn − 1| < ε.

Thus, λ = 1.
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