SOLUTIONS WITH BIG GRAPH OF ITERATIVE FUNCTIONAL EQUATIONS OF THE FIRST ORDER

BY
LECH BARTEOMIEJCZYK (KATOWICE)

Abstract

We obtain a result on the existence of a solution with big graph of functional equations of the form $g(x, \varphi(x), \varphi(f(x)))=0$ and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution φ has some strange properties: it is dense and connected, has full outer measure and is topologically big.

1. Introduction. Let X and Y be two sets and \mathcal{R} be a family of subsets of $X \times Y$. We say that $\varphi: X \rightarrow Y$ has a big graph with respect to \mathcal{R} if the graph $\operatorname{Gr} \varphi$ of φ meets every set of \mathcal{R}. We are interested in finding conditions under which the iterative functional equation of the form

$$
\begin{equation*}
g(x, \varphi(x), \varphi(f(x)))=0 \tag{1}
\end{equation*}
$$

has a solution φ with big graph with respect to a sufficiently large family. Well known results on solutions of the Cauchy equation with big graph are due to F. B. Jones [8] (see also [11]). Observe, however, that the latter equation is not of the iterative type. What concerns iterative functional equations, solutions with big graph were obtained in [9], [2] and [4] for equations of invariant curves, in [1] for some homogeneous equations, and in [3] for the equation of iterative roots.
2. Main result. Let X and Y be two nonempty sets, let T be a set with a distinguished element 0 and let $g: X \times Y \times Y \rightarrow T, f: X \rightarrow X$ be two given functions. The set of all periodic points of f with period p will be denoted by $\operatorname{Per}(f, p)$, i.e.,

$$
\operatorname{Per}(f, p)=\left\{x \in X: f^{p}(x)=x, f^{k}(x) \neq x \text { for } k \in\{1, \ldots, p-1\}\right\} ;
$$

moreover we put

$$
\operatorname{Per} f=\bigcup_{p=1}^{\infty} \operatorname{Per}(f, p) .
$$

1991 Mathematics Subject Classification: Primary 39B12, 39B52; Secondary 26A30.
Key words and phrases: iterative functional equation, big graph.

Our general assumptions read:
$\left(\mathrm{H}_{1}\right)$ The set X is uncountable.
$\left(\mathrm{H}_{2}\right)$ For every $x \in X$ the set $f^{-1}(\{x\})$ is countable and

$$
\operatorname{card} \operatorname{Per} f<\operatorname{card} X .
$$

$\left(\mathrm{H}_{3}\right)$ For every $p \in \mathbb{N}$ and $x \in \operatorname{Per}(f, p)$ there exists $\left(y_{1}, \ldots, y_{p}\right) \in Y^{p}$ such that for every $k \in\{1, \ldots, p-1\}$ we have

$$
\begin{equation*}
g\left(f^{k}(x), y_{k}, y_{k+1}\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(x, y_{p}, y_{1}\right)=0 . \tag{3}
\end{equation*}
$$

$\left(\mathrm{H}_{4}\right)$ For every $x \in X$ and $y \in Y$ there exists a $z \in Y$ such that

$$
\begin{equation*}
g(x, y, z)=0, \tag{4}
\end{equation*}
$$

and for every $x \in X$ and $z \in Y$ there exists a $y \in Y$ such that (4) holds.
Note that if $\varphi: X \rightarrow Y$ is a solution of (1) and $x \in X$ is periodic with period p, then putting

$$
y_{k}=\varphi\left(f^{k}(x)\right)
$$

for $k \in\{1, \ldots, p\}$ we have (2) and (3). Hence $\left(\mathrm{H}_{3}\right)$ is necessary for (1) to have a solution.

Let $\pi: X \times Y \rightarrow X$ be the projection. The following is the main result of this paper.

Theorem 1. Assume $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and let \mathcal{R} be a family of subsets of $X \times Y$ such that

$$
\begin{equation*}
\operatorname{card} \mathcal{R} \leq \operatorname{card} X \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{card} \pi(R)=\operatorname{card} X \quad \text { for every } R \in \mathcal{R} . \tag{6}
\end{equation*}
$$

Then there exists a solution $\varphi: X \rightarrow Y$ of (1) with big graph with respect to \mathcal{R}.

Proof. Let \sim be the standard equivalence relation defining orbits of f, i.e. (cf. $[10$, p. 14], $[16, ~(1.1 .2)])$,

$$
x \sim y \Leftrightarrow f^{m}(x)=f^{n}(y) \text { for some } m, n \in \mathbb{N}_{0},
$$

and denote by $C(x)$ the equivalence class (orbit) of $x \in X$, i.e.,

$$
C(x)=\bigcup_{n=0}^{\infty} \bigcup_{m=0}^{\infty} f^{-n}\left(\left\{f^{m}(x)\right\}\right) .
$$

The family \mathcal{C} of all orbits is a partition of X and a function $\varphi: X \rightarrow Y$ is a solution of (1) iff so is $\left.\varphi\right|_{C}$ for every $C \in \mathcal{C}$. This allows us to define a solution of (1) by defining it on each orbit.

In the sequel we shall consider two families of orbits:

$$
\mathcal{C}_{1}=\{C \in \mathcal{C}: C \cap \operatorname{Per} f=\emptyset\}, \quad \mathcal{C}_{2}=\{C \in \mathcal{C}: C \cap \operatorname{Per} f \neq \emptyset\} .
$$

Since card $\mathcal{C}_{2} \leq$ card Per f, from the second part of $\left(\mathrm{H}_{2}\right)$ it follows that

$$
\begin{equation*}
\operatorname{card} \mathcal{C}_{2}<\operatorname{card} X \tag{7}
\end{equation*}
$$

Let γ be the smallest ordinal such that its cardinal $\bar{\gamma}$ equals that of \mathcal{R} and let $\left(R_{\alpha}: \alpha<\gamma\right)$ be a one-to-one transfinite sequence of all elements of \mathcal{R}. Using transfinite induction we shall define a sequence $\left(\left(x_{\alpha}, y_{\alpha}\right): \alpha<\gamma\right)$ of elements of $X \times Y$ such that, for all $\alpha<\gamma$,

$$
\begin{equation*}
\left(x_{\alpha}, y_{\alpha}\right) \in R_{\alpha} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{\alpha} \in\left(\bigcup \mathcal{C}_{1} \cap \pi\left(R_{\alpha}\right)\right) \backslash \bigcup\left\{C \in \mathcal{C}: x_{\beta} \in C \text { for some } \beta<\alpha\right\} \tag{9}
\end{equation*}
$$

Suppose $\alpha<\gamma$ and that we have already defined $\left(x_{\beta}, y_{\beta}\right)$ for $\beta<\alpha$. It follows from (6) and (7) that $\operatorname{card}\left(\pi\left(R_{\alpha}\right) \cap \bigcup \mathcal{C}_{1}\right)=\operatorname{card} X$ whereas $\left(\mathrm{H}_{1}\right)$ and (5) give
$\operatorname{card} \bigcup\left\{C \in \mathcal{C}: x_{\beta} \in C\right.$ for some $\left.\beta<\alpha\right\} \leq \aleph_{0} \cdot \bar{\alpha}=\max \left\{\aleph_{0}, \bar{\alpha}\right\}<\operatorname{card} X$.
Consequently, the set in (9) is nonempty; choose a point x_{α} from it. In particular, $x_{\alpha} \in \pi\left(R_{\alpha}\right)$ and so there exists a y_{α} such that (8) holds.

Now we start to define, for each $C \in \mathcal{C}$, a solution $\varphi_{C}: C \rightarrow Y$ of (1). To this end we shall decompose the orbit depending on whether it is in \mathcal{C}_{1} or in \mathcal{C}_{2}. However, we begin with the general case. Fix $x \in X$ and put

$$
\begin{aligned}
A_{-1} & =\bigcup_{k=0}^{\infty} f^{-k}(\{x\}), \quad A_{0}=\left\{f^{k}(x): k \in \mathbb{N}\right\} \\
A_{n} & =\bigcup_{k=0}^{\infty} f^{-k}\left(f^{-1}\left(\left\{f^{n}(x)\right\}\right) \backslash\left\{f^{n-1}(x)\right\}\right) \quad \text { for } n \in \mathbb{N} .
\end{aligned}
$$

Then

$$
\begin{equation*}
C(x)=\bigcup_{n=-1}^{\infty} A_{n} . \tag{10}
\end{equation*}
$$

Assume that $C(x) \in \mathcal{C}_{1}$. We show that

$$
\begin{equation*}
A_{m} \cap A_{n}=\emptyset \tag{11}
\end{equation*}
$$

for $m \neq n$. Suppose that m and n are positive integers, $m<n$ and $z \in A_{m} \cap A_{n}$. Then $f^{k+1}(z)=f^{n}(x), f^{k}(z) \neq f^{n-1}(x)$ and $f^{l+1}(z)=f^{m}(x)$,
for some nonnegative integers k, l, whence $f^{k+1}(z)=f^{n}(x)=f^{l+1+n-m}(z)$. Consequently, since z, as a member of $C(x)$, is aperiodic and so is any of its iterates, $k=l+n-m$ and $f^{n-1}(x)=f^{k+m-l-1}(x)=f^{k}(z)$, a contradiction. In the remaining cases we argue similarly. Analogously, for every $n \in \mathbb{N}$ and $k, l \in \mathbb{N}_{0}$ with $k \neq l$ we have

$$
\begin{equation*}
f^{k}(x) \neq f^{l}(x), \quad f^{-k}(\{x\}) \cap f^{-l}(\{x\})=\emptyset \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{-k}\left(f^{-1}\left(\left\{f^{n}(x)\right\}\right) \backslash\left\{f^{n-1}(x)\right\}\right) \cap f^{-l}\left(f^{-1}\left(\left\{f^{n}(x)\right\}\right) \backslash\left\{f^{n-1}(x)\right\}\right)=\emptyset \tag{13}
\end{equation*}
$$

Fix now an orbit $C \in \mathcal{C}_{1}$. If the set

$$
\begin{equation*}
C \cap\left\{x_{\alpha}: \alpha<\gamma\right\} \tag{14}
\end{equation*}
$$

is nonempty, then, according to (9), it consists of exactly one point x_{α} and we put

$$
\begin{equation*}
(x, y)=\left(x_{\alpha}, y_{\alpha}\right) \tag{15}
\end{equation*}
$$

Otherwise we choose $(x, y) \in C \times Y$ arbitrarily. In both cases $C=C(x)$ and we can use all the facts established in the preceding paragraph.

The decomposition (10) jointly with (11)-(13) allows us to define a solution $\varphi_{C}: C \rightarrow Y$ of (1) by putting

$$
\begin{equation*}
\varphi_{C}(x)=y \tag{16}
\end{equation*}
$$

and defining it on each A_{n} 's inductively using the following observation. Having a $u \in C$ and φ_{C} defined at u or at $f(u)$, according to $\left(\mathrm{H}_{4}\right)$ we can define it at the other element in such a manner that

$$
\begin{equation*}
g\left(u, \varphi_{C}(u), \varphi_{C}(f(u))\right)=0 \tag{17}
\end{equation*}
$$

Hence for every orbit $C \in \mathcal{C}_{1}$ we have a solution $\varphi_{C}: C \rightarrow Y$ of (1) such that if $x_{\alpha} \in C$, then $\varphi_{C}\left(x_{\alpha}\right)=y_{\alpha}$. But, according to (9), for every $\alpha<\gamma$ we have $C\left(x_{\alpha}\right) \in \mathcal{C}_{1}$. Consequently, by (15) and (16),

$$
\begin{equation*}
\varphi_{C\left(x_{\alpha}\right)}\left(x_{\alpha}\right)=y_{\alpha} \quad \text { for } \alpha<\gamma \tag{18}
\end{equation*}
$$

Consider now an orbit $C \in \mathcal{C}_{2}$. Thus $C=C(x)$ with $x \in \operatorname{Per}(f, p)$ for some $p \in \mathbb{N}$. In this case $A_{0}=\left\{f(x), \ldots, f^{p}(x)\right\}$ and

$$
\begin{equation*}
C(x)=\bigcup_{n=0}^{p} A_{n} \tag{19}
\end{equation*}
$$

By standard calculations the summands $A_{0}, A_{1}, \ldots, A_{p}$ of (19) are pairwise disjoint and (13) holds for $n \in\{1, \ldots, p\}$ and $k, l \in \mathbb{N}_{0}$ with $k \neq l$. A solution $\varphi_{C}: C \rightarrow Y$ of (1) may now be defined as follows. Fix a sequence $\left(y_{1}, \ldots, y_{p}\right)$ of elements of Y satisfying (2) and (3) and put

$$
\varphi_{C}\left(f^{k}(x)\right)=y_{k}
$$

for $k \in\{1, \ldots, p\}$. Then define φ_{C} on each of A_{1}, \ldots, A_{p} inductively (in such a manner that (17) holds).

Hence for every orbit C a suitable solution $\varphi_{C}: C \rightarrow Y$ of (1) has been constructed. Put $\varphi=\bigcup_{C \in \mathcal{C}} \varphi_{C}$. Clearly, φ is a solution of (1). According to (18) we also have $\varphi\left(x_{\alpha}\right)=y_{\alpha}$ for $\alpha<\gamma$, which jointly with (8) shows that φ has a big graph with respect to \mathcal{R} and ends the proof.

REmark 1. Instead of equation (1) we can consider a relation

$$
\begin{equation*}
g(x, \varphi(x), \varphi(f(x))) \in T_{0} \tag{20}
\end{equation*}
$$

where T_{0} is a fixed subset of T. Replacing, in the hypotheses $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$, every expression of the form $g(u, v, w)=0$ by $g(u, v, w) \in T_{0}$ we can obtain an analogue of Theorem 1 on existence of a solution $\varphi: X \rightarrow Y$ of (20) which has a big graph with respect to the family \mathcal{R}.

In order to apply the above analogue of Theorem 1 to the equation

$$
\begin{equation*}
\varphi(f(x))=g(x, \varphi(x)) \tag{21}
\end{equation*}
$$

with given $f: X \rightarrow Y$ and $g: X \times Y \rightarrow Y$ we make the following hypotheses.
$\left(\mathrm{H}_{3}^{\prime}\right)$ For every $p \in \mathbb{N}$ and $x \in \operatorname{Per}(f, p)$ there exists a $y \in Y$ such that for the sequence y_{0}, \ldots, y_{p-1} defined by $y_{0}=y, y_{k+1}=g\left(f^{k}(x), y_{k}\right)$, we have

$$
y_{0}=g\left(f^{p-1}(x), y_{p-1}\right)
$$

$\left(\mathrm{H}_{4}^{\prime}\right)$ For every $x \in X$ the function $g(x, \cdot)$ maps Y onto Y.
Theorem 2. Assume $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}^{\prime}\right)$ and $\left(\mathrm{H}_{4}^{\prime}\right)$ and let \mathcal{R} be a family of subsets of $X \times Y$ such that (5) and (6) hold. Then there exists a solution $\varphi: X \rightarrow Y$ of (21) with big graph with respect to \mathcal{R}.

Since many important equations, e.g., Abel's, Böttcher's, Schröder's, are of the form (21) with g depending only on the second variable, we also formulate a suitable corollary concerning the equation

$$
\begin{equation*}
\varphi(f(x))=g(\varphi(x)) \tag{22}
\end{equation*}
$$

Corollary 1. Assume $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$, let g map Y onto Y, and suppose that for every $p \in \mathbb{N}$ we have

$$
\operatorname{Per}(f, p) \neq \emptyset \Rightarrow \operatorname{Per}(g, k) \neq \emptyset \text { for some } k \mid p
$$

Let \mathcal{R} be a family of subsets of $X \times Y$ such that (5) and (6) hold. Then there exists a solution $\varphi: X \rightarrow Y$ of (22) with big graph with respect to \mathcal{R}.

The following remark gives some sufficient conditions for $\left(\mathrm{H}_{2}\right)$ to hold.
REmARK 2. If X is a real interval, then each of the following two conditions (i), (ii) guarantees that $\left(\mathrm{H}_{2}\right)$ holds:
(i) f is piecewise polynomial and the degree of each polynomial is greater than 1 ,
(ii) f is piecewise monotonic and on each monotonicity interval we have $|f(x)-f(y)|>|x-y|$ for $x \neq y$ (or $|f(x)-f(y)|<|x-y|$ for $x \neq y)$.

Using Sharkovskiì's Theorem on cycles ([16, (8.2.1)], [12, Theorem 1.1.3]) we obtain the following.

Remark 3. Let X be a real interval and f be a continuous self-mapping of X. If $\operatorname{Per}(f, 1)$ is countable and $f^{2}(x) \neq x$ for $x \in X \backslash \operatorname{Per}(f, 1)$, then Per $f=\operatorname{Per}(f, 1)$; consequently, $\operatorname{Per} f$ is countable.
3. Properties of functions with big graph. Given two topological spaces X and Y, consider the family

$$
\begin{equation*}
\{R \in \mathcal{B}(X \times Y): \pi(R) \text { is uncountable }\} \tag{23}
\end{equation*}
$$

where $\mathcal{B}(X \times Y)$ denotes the σ-algebra of all Borel subsets of $X \times Y$. The following simple observation (cf. [11, p. 289]) shows that if a function φ : $X \rightarrow Y$ has a big graph with respect to the family (23), then its graph is big from the topological point of view.

Proposition 1. Assume X is a T_{1}-space and has no isolated point. If $\varphi: X \rightarrow Y$ has a big graph with respect to the family (23), then $(X \times Y) \backslash \operatorname{Gr} \varphi$ contains no subset of $X \times Y$ of second category having the property of Baire.

Such a graph is also big from the point of view of measure theory:
Proposition 2. Assume X is a T_{1}-space and λ is a measure on $\mathcal{B}(X \times Y)$ vanishing on all vertical lines $\{x\} \times Y, x \in X$. If $\varphi: X \rightarrow Y$ has a big graph with respect to the family (23), then $(X \times Y) \backslash \operatorname{Gr} \varphi$ contains no Borel subset of $X \times Y$ of positive λ-measure.

In other words $\lambda_{*}((X \times Y) \backslash \operatorname{Gr} \varphi)=0$ and, consequently, $\lambda^{*}(B \cap \operatorname{Gr} \varphi)=$ $\lambda(B)$ for every $B \in \mathcal{B}(X \times Y)$. Here λ_{*} and λ^{*} denote the inner and outer measures, respectively, generated by the Borel measure λ; cf. [7, Sec. 14].

It is worth-while to mention that if X is a Polish space and has no isolated point then there are a lot of measures on $\mathcal{B}(X)$ vanishing on all singletons [15, p. 55, Corollary 8.1] and if μ is such a measure and ν is any measure on $\mathcal{B}(Y)$ then the product measure $\mu \times \nu$ vanishes on all vertical lines.

Assume now that X and Y are abelian Polish groups. Following J. P. R. Christensen ([5], [6, p. 115]) we say that a Borel subset R of $X \times Y$ is a Haar zero set if there exists a probability measure λ on $\mathcal{B}(X \times Y)$ such that $\lambda(R+z)=0$ for every $z \in X \times Y$. We have the following analogue of the above propositions.

Proposition 3. Assume X and Y are abelian Polish groups and X has no isolated point. If $\varphi: X \rightarrow Y$ has a big graph with respect to the
family (23), then $(X \times Y) \backslash \operatorname{Gr} \varphi$ contains no Borel subset of $X \times Y$ which is not a Haar zero set.

Finally, we return to topological properties of functions with big graph. Applying Lemmas 1 and 2 of [13] we obtain

Proposition 4. Assume that X and Y are connected topological spaces and every non-empty open subset of X is uncountable. If $\varphi: X \rightarrow Y$ has a big graph with respect to the family (23) then $\operatorname{Gr} \varphi$ is dense and connected in $X \times Y$.

Remark 4. If X and Y are Polish spaces and X is uncountable, then according to [7, Sec. 5, Exercise 9] and to the theorem of Alexandrov-Hausdorff ([14, p. 427]) we have

$$
\operatorname{card} \mathcal{B}(X \times Y) \leq \mathfrak{c}=\operatorname{card} X
$$

and card $\pi(R)=\mathfrak{c}$ for every Borel subset R of $X \times Y$ with uncountable vertical projection; in particular, the family (23) satisfies all the requirements of the theorems.

Acknowledgements. This research was supported by the Mathematics Department of Silesian University (Iterative Functional Equations program).

REFERENCES

[1] L. Bartłomiejczyk, Solutions with big graph of homogeneous functional equations in a single variable, Aequationes Math. 56 (1998), 149-156.
[2] -, Solutions with big graph of the equation of invariant curves, submitted.
[3] -, Iterative roots with big graph, submitted.
[4] -, Solutions with big graph of an equation of the second iteration, submitted.
[5] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260.
[6] J. P. R. Christensen, Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, Amsterdam, 1974.
[7] P. R. Halmos, Measure Theory, Grad. Texts in Math. 18, Springer, New York, 1974.
[8] F. B. Jones, Connected and disconnected plane sets and the functional equation $f(x)+f(y)=f(x+y)$, Bull. Amer. Math. Soc. 48 (1942), 115-120.
[9] P. Kahlig and J. Smítal, On the solutions of a functional equation of Dhombres, Results Math. 27 (1995), 362-367.
[10] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN-Polish Sci. Publ., Warszawa, 1968.
[11] -, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Prace Nauk. Uniw. Śla̧skiego 489, PWN \& Uniw. Śląski, Warszawa-Kraków-Katowice, 1985.
[12] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.
[13] W. Kulpa, On the existence of maps having graphs connected and dense, Fund. Math. 76 (1972), 207-211.
[14] K. Kuratowski and A. Mostowski, Set Theory, Stud. Logic Found. Math. 86, PWN and North-Holland, Warszawa-Amsterdam, 1976.
[15] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[16] Gy. Targonski, Topics in Iteration Theory, Vandenhoeck \& Ruprecht, Göttingen, 1981.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: lech@gate.math.us.edu.pl
revised 1 July 1999

