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ASYMPTOTICS OF SUMS OF SUBCOERCIVE OPERATORS
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Abstract. We examine the asymptotic, or large-time, behaviour of the semigroup
kernel associated with a finite sum of homogeneous subcoercive operators acting on a con-
nected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel
is bounded by a convolution of two Gaussians whose orders correspond to the highest
and lowest orders of the homogeneous subcoercive components of the generator. Moreover
we establish precise asymptotic estimates on the difference of the kernel and the kernel
corresponding to the lowest order homogeneous component. We also prove boundedness
of a range of Riesz transforms with the range again determined by the highest and lowest
orders. Finally we analyze similar properties on general groups of polynomial growth and
establish positive results for local direct products of compact and nilpotent groups.

1. Introduction.There have been two different approaches to the
asymptotic analysis of strongly elliptic or subcoercive operators H , the first
through bounds on the corresponding semigroup kernels (see [Dav], [Rob]
or [VSC] for background information), and the second through asymptotic
expansions [NRS]. The first approach has been largely restricted to homo-
geneous operators with the aim of establishing Gaussian bounds valid for
all times. Barbatis and Davies [BaD] pointed out, however, that the kernel
of the simplest inhomogeneous operator, the sum of two distinct powers of
the Laplacian on Rd, is a convolution of Gaussians. They then established
that although the higher order term determines the short-time behaviour
the lower order term is important for the long-time distribution. Our aim is
to analyze this phenomenon for sums of homogeneous subcoercive operators
Hmi of different orders mi acting on Lie groups G of polynomial growth.
If, for example, the group G is nilpotent then we show that the kernel is
bounded by a convolution of two Gaussians, the first of order m = maxmi

and the second of order m = minmi: the short and long time behaviours
are governed by the orders m and m, respectively, and the kernel can be
bounded by a single Gaussian if, and only if, m = m, or G is compact.
The last result illustrates that asymptotic analysis through simple Gaussian
bounds is not suited to the study of inhomogeneous operators.
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The second approach to asymptotic analysis through asymptotic expan-

sions originated with the work of Nagel–Ricci–Stein [NRS] and has been

analyzed for nilpotent Lie groups in [DERS]. The method consists in con-

structing asymptotic approximates, G∞ and H∞, of G and H by a scaling

limit. In the simplest case G = G∞ the kernel of H∞ gives the leading term

in an asymptotic expansion for the kernel of H . But the situation is more

complicated for non-homogeneous groups with G 6= G∞. We show, however,

that for a general nilpotent group the leading term in the asymptotic ex-

pansion can be identified as the kernel associated with the lowest order term

Hm in H . Our argument does not require homogeneity of G and gives an

optimal estimate for the remainder in the expansion (see Theorem 2.12).

It was shown in [ERS2] that for homogeneous real symmetric second-

order operators the kernel and its derivatives satisfy good large time Gaus-

sian bounds if, and only if, the group G is a local direct product, G=K×lN ,

of a compact group K and a nilpotent group N . Then Dungey [Dun] esta-

blished that the kernels of a large class of homogeneous operators of order

four or more have good Gaussian bounds if, and only if, G = K ×lN . Hence

it appears appropriate to begin the analysis of inhomogeneous operators on

nilpotent groups N and the near nilpotent groups K ×l N .

In Section 2 we consider nilpotent groups, in Section 3 we discuss why

some of our conclusions are not necessarily valid for general groups of poly-

nomial growth and in Section 4 we analyze local products G = K×lN . Since

good asymptotic bounds for the derivatives of the kernels of second-order

operators are related to boundedness of the Riesz transforms of all orders

[ERS2] we also analyze these relationships for the inhomogeneous situation.

But then there is a range of Riesz transforms to consider, a range delineated

by the order of the singularities, local and global, of the semigroup kernel,

i.e., by the parameters m and m.

Throughout the following G denotes a connected Lie group with po-

lynomial growth, (bi-invariant) Haar measure dg and Lie algebra g. One

can associate a subelliptic right invariant distance (g, h) 7→ d′(g ;h) with a

fixed algebraic basis a1, . . . , ad′ of g. Let g 7→ |g|′ = d′(g ; e), where e is the

identity element of G, denote the corresponding modulus. Then the Haar

measure |B′(g ; ̺)| of the subelliptic ball B′(g ; ̺) = {h ∈ G : |gh−1|′ < ̺}

is independent of g. Set V (̺) = |B′(g ; ̺)|. Next, for all i ∈ {1, . . . , d′} let

Ai = dL(ai) denote the generator of left L translations acting on the classi-

cal function spaces in the direction ai. Multiple derivatives are denoted with

multi-index notation, e.g., if α = (i1, . . . , in) ∈ J(d′) =
⋃∞
k=0{1, . . . , d

′}k

then Aα = Ai1 . . . Ain and |α| = n. If p ∈ [1,∞], n ∈ N and the function

space equals Lp then we set L′
p;n =

⋂
|α|=nD(Aα). (In general we adopt the

notation of [Rob] and [ElR1].)
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Next for all r ∈ N let g(d′, r) denote the nilpotent Lie algebra with d′

generators which is free of step r. Thus g(d′, r) is the quotient of the free
Lie algebra with d′ generators by the ideal generated by the commutators of
order at least r + 1. Further let G(d′, r) be the connected simply connected
Lie group with Lie algebra g(d′, r). It is automatically a non-compact group.
We call G(d′, r) the nilpotent Lie group on d′ generators free of step r and

use the notation g̃ = g(d′, r), G̃ = G(d′, r) for brevity. Generally we add a

tilde to distinguish between quantities associated with G̃ and those associated
with G. For example, we denote the generators of g̃ by ã1, . . . , ãd′ . We also
set Lp = Lp(G ; dg) and L

p̃
= Lp(G̃ ; dg̃) and denote the corresponding

norms by ‖ · ‖p and ‖ · ‖
p̃
. Then the norm of an operator X on Lp is denoted

by ‖X‖p→p and the norm of an operator X̃ on L
p̃
by ‖X̃‖

p̃→p̃
. One sim-

ple example of this construction is for the Abelian nilpotent group G = Tn.
Then G̃ = Rn.

Let m be an even positive integer and for every multi-index α with
|α| = m let cα ∈ C. The homogeneous mth order operator

Hm =
∑

|α|=m

cαA
α,

with domain D(Hm) = L′
p;m, is defined [ElR1] to be subcoercive of step r if

the comparison operator

H̃m =
∑

|α|=m

cαÃ
α

satisfies a G̊arding inequality on L
2̃
, i.e., there exists a µ̃m > 0 such that

Re(ϕ̃, H̃mϕ̃) ≥ µ̃m
∑

|α|=m/2

‖Ãαϕ̃‖2
2̃

(1)

uniformly for all ϕ̃ ∈ C∞
c (G̃). We let µm denote the largest value of µ̃m for

which this is satisfied and refer to this as the ellipticity constant. Note that
it follows from this definition that there is a θm ∈ 〈0, π/2] such that eiθH is
subcoercive of step r for all θ ∈ 〈−θm, θm〉. It also follows, but this is less
evident, that subcoercivity of step r implies subcoercivity of step s for all
s ≤ r (see [ElR3], Corollary 3.6).

Now let {mj}1≤j≤k be a family of even positive integers with m = m1 >
. . . > mk = m. We consider inhomogeneous operators

H =
k∑

j=1

Hmj ,

again with domain D(H) = L′
p;m, and now H is defined to be strongly sub-

coercive of step r if each of the homogeneous components Hmj is subcoer-
cive of step r. The highest order m and the lowest order m of the operators
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occurring in the sum will play a key role in all subsequent estimates. Then
the operator H generates a holomorphic semigroup S with a kernel K.

2. Nilpotent groups. In this section we assume that G is a connected
nilpotent Lie group of rank r. Our first aim is to prove the following theorem.

Theorem 2.1. Assume G is a connected nilpotent Lie group with Lie

algebra of rank r and that the inhomogeneous operator H is strongly subco-

ercive of step r. The following are valid.

I. For all α ∈ J(d′) and j ∈ {1, . . . , k} one has D(H |α|/mj ) ⊆ D(Aα)
and there exists a c > 0 such that

‖Aαϕ‖2 ≤ c‖H |α|/mjϕ‖2

for all ϕ ∈ D(H |α|/mj ). In particular , for all α ∈ J(d′) there exists a c > 0
such that

‖Aαϕ‖2 ≤ c(‖H |α|/mϕ‖2 ∧ ‖H |α|/mϕ‖2)

for all ϕ ∈ D(H |α|/m) ∩D(H |α|/m).
II. For all α ∈ J(d′) there exist b, c > 0 such that

|(AαKt)(g)| ≤ c(t−|α|/m ∧ t−|α|/m)(G
(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t > 0, where G
(n)
b,t (g) = V (t)−1/ne−b((|g|

′)nt−1)1/(n−1)

. Al-

ternatively, for all α ∈ J(d′) there exist b, c > 0 such that

|(AαKt)(g)| ≤ c(t−|α|/m ∧ t−|α|/m)(V (t)−1/m ∧ V (t)−1/m)(e
(m)
b,t (g) ∨ e

(m)
b,t (g))

for all g ∈ G and t > 0, where e
(n)
b,t (g) = e−bt(|g|

′t−1)n/(n−1)

Remark 2.2. The Barbatis–Davies estimates, [BaD], Proposition 5.1,
for sums of powers of the Laplacian on Rd correspond to bounds

|Kt(x)| ≤ V (t)−1/m(e
(m)
b,t (g) ∨ e

(m)
b,t (g)).

The last statement of the theorem optimizes the large time decay of these
bounds.

Subsequently, in Theorem 2.12, we establish that the lowest order part
Hm of H determines its asymptotic behaviour by deriving good large t esti-

mates on the difference Kt−K
(m)
t , where K(m) is the kernel of the semigroup

generated by Hm. Despite the fact that Kt approaches K
(m)
t asymptotically

it is not usually bounded by a Gaussian of order m, or any other order,
uniformly for all t. This statement is made precise in Proposition 2.15.

The proof of Theorem 2.1 will be given in a series of lemmas, propositions
and corollaries which give extra detail on the asymptotics. For example,
Proposition 2.11 gives several alternative formulations of the kernel bounds.
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The first useful observation is that subcoercivity combined with nilpo-
tency implies the strong G̊arding inequality.

Lemma 2.3. If Hm is a homogeneous subcoercive operator of step r and

order m with ellipticity constant µm then

Re(ϕ,Hmϕ) ≥ µm
∑

|α|=m/2

‖Aαϕ‖22

for all ϕ ∈ L′
2;m(G ; dg).

P r o o f. Let ∆m =
∑

|α|=m/2(A
α)∗Aα on L2(G) and ∆̃m be the compa-

rable operator on L2(G̃). If µ ∈ 〈0, µm〉 then the G̊arding inequality (1) for

H̃m on L2(G̃) implies that Re(H̃m− µ∆̃m) ≥ 0. Thus the semigroup genera-

ted by H̃m − µ∆̃m is contractive. But then it follows from the transference
arguments of [ERS1], Theorem 2.1 and Lemma 3.2, that the semigroup ge-
nerated by Hm − µ∆m is also contractive. Hence Re(Hm − µ∆m) ≥ 0 and
the lemma follows.

It follows straightforwardly from this lemma that there are µ, µ > 0
such that the strongly subcoercive, inhomogeneous operator H satisfies the
estimates

Re(ϕ,Hϕ) ≥ µ
∑

|α|=m/2

‖Aαϕ‖22 + µ
∑

|α|=m/2

‖Aαϕ‖22(2)

for all ϕ ∈ L′
2;m(G ; dg). We call (2) the strong G̊arding inequality for the

(inhomogeneous) operator H .

The main idea in the subsequent analysis of the inhomogeneous opera-
tor H is the introduction of a second comparison system consisting of k
copies of the original system weighted in such a way that H is a weighted
homogeneous operator. To this end we introduce a family c1, . . . , ckd′ of ele-
ments of g which contains k copies of the algebraic basis a1, . . . , ad′ . Then for
l ∈ {1, . . . , kd′} we consider the elements cl of g with weights wl defined by
c(j−1)d′+i = ai and w(j−1)d′+i = m/mj for i ∈ {1, . . . , d′} and j ∈ {1, . . . , k}.
The weighted length ‖α‖ of the multi-index α = (l1, . . . , ln) ∈ J(kd′) is de-
fined by ‖α‖ =

∑n
p=1 wlp . Then with these definitions one can write H in

the form

H =
∑

‖α‖=m

bαC
α.

The component Hmj of H is expressed in terms of the jth copy of the
algebraic basis a1, . . . , ad′ and although it has unweighted order mj it has
weighted order m. Thus H is homogeneous with respect to the weighted
structure with weighted order m.
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Next consider the nilpotent Lie algebra g̃k which is free of (unweighted)
step r and with generators c̃1, . . . , c̃kd′ . Thus if α = (l1, . . . , ln) then the
(unweighted) order of the commutator

c̃[α] = [c̃l1 , [. . . [c̃ln−1 , c̃ln ] . . .]]

is defined to be n and all commutators in g̃k of order greater than or equal
to r + 1 are assumed to vanish. Thus g̃k is the quotient of the free Lie
algebra with kd′ generators c̃l, with weights wl, by the ideal generated by
the commutators of unweighted order at least r + 1. Note that the maps
γ̃t(c̃l) = twl c̃l, with t > 0, extend to dilations on g̃k. (Cf. [ElR4], Example

2.7.) Let G̃k denote the connected simply connected homogeneous Lie group

with Lie algebra g̃k and | · |′ the modulus on G̃k associated with the algebraic
basis c̃1, . . . , c̃kd′ and weights w1, . . . , wkd′ .

One can now define the natural extension H̃ of H to the spaces Lp(G̃k) by

H̃ =
∑

‖α‖=m

bαC̃
α.

The operator H̃ is again homogeneous with weighted order m and the next
lemma states that it is a subcoercive operator on L2(G̃k).

Lemma 2.4. If the inhomogeneous operator H is strongly subcoercive of

step r then the homogeneous weighted operator H̃ is weighted subcoercive on

L2(G̃k), i.e., there is a µ > 0 such that H̃ satisfies the G̊arding inequality

Re(ϕ̃, H̃ϕ̃) ≥ µ
∑

‖α‖=m/2

‖C̃αϕ̃‖2
2̃

uniformly for all ϕ̃ ∈ C∞
c (G̃k).

P r o o f. The lemma is a weighted version of Lemma 3.10 of [ElR3], using
[ElR4], Theorem 9.2.IV, instead of [ElR3], Theorem 3.3.III.

The operator H can now be analyzed by examining the homogeneous

operator H̃ on the free group G̃k and then projecting down to G as in [ERS1].
The projection technique requires the introduction of an appropriate homo-
morphism from g̃k to g. There exists a unique Lie algebra homomorphism
Λ : g̃k → g such that Λ(c̃l) = cl for all l ∈ {1, . . . , kd′} and this lifts to a

homomorphism π : G̃k → G by the exponential map. Explicitly,

π = exp ◦Λ ◦ ẽxp−1

where ẽxp : g̃k → G̃k and exp : g → G. For any finite measure µ̃ on G̃k let

π∗(µ̃) denote the image measure on G. Then the map π∗ : M(G̃) → M(G)
is also contractive (see [ERS1], Section 2).

Using transference techniques one can next prove the first statement of
Theorem 2.1.
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Proof of Theorem 2.1.I. We follow the reasoning of [ERS1], Section 4.
First for all β ∈ J(kd′) introduce the regularized transforms

R̃β;ν,ε = C̃β(νI + H̃)−‖β‖/m(I + εH̃)−N

with ε > 0 and N a suitably large positive integer. The factor (I + εH̃)−N

reduces the singularity of the kernels k̃β;ν,ε of these operators by the intro-
duction of a factor g̃ 7→ (|g̃|′)Nm. Therefore if N is sufficiently large the

kernels are integrable although the norms ‖k̃β;ν,ε‖1 diverge as ν ↓ 0 or ε ↓ 0.

But R̃β;ν,ε is bounded on L
2̃
= L2(G̃k) uniformly in ν and ε. In particular

‖R̃β;ν,ε‖̃2→2̃
≤ ‖C̃β(νI + H̃)−‖β‖/m‖̃

2→2̃
= ‖C̃β(I + H̃)−‖β‖/m‖̃

2→2̃

where the estimate follows from contractivity and the equality by scaling.
Now if kβ;ν,ε is the kernel of the operator

Rβ;ν,ε = Cβ(νI +H)−‖β‖/m(I + εH)−N

one has kβ;ν,ε = π∗(k̃β;ν,ε), where we identify L1-functions with complex
measures, and hence

‖Rβ;ν,ε‖2→2 = ‖LG(kβ;ν,ε)‖2→2 ≤ ‖L
G̃k

(k̃β;ν,ε)‖̃2→2̃
= ‖R̃β;ν,ε‖̃2→2̃

.

So the norm of Rβ;ν,ε is bounded uniformly in ν and ε on L2(G). Then, taking
limits as in the proof of Lemma 4.2 of [ERS1], but using Theorem 9.2.IV of
[ElR4] instead of Theorem 3.3.III of [ElR3], one deduces that D(H‖β‖/m) ⊆
D(Cβ) and

‖Cβϕ‖2 ≤ ‖C̃β(I + H̃)−‖β‖/m‖̃
2→2̃

‖H‖β‖/mϕ‖2

for all ϕ ∈ D(H‖β‖/m) and β ∈ J(kd′).
Finally let α = (i1, . . . , in) ∈ J(d′) and j ∈ {1, . . . , k}. Introduce the

multi-index β by β = ((j − 1)d′ + i1, . . . , (j − 1)d′ + in). Then D(H |α|/mj ) =
D(H‖β‖/m) ⊆ D(Cβ) = D(Aα) and

‖Aαϕ‖2 = ‖Cβϕ‖2 ≤ ‖C̃β(I + H̃)−‖β‖/m‖̃
2→2̃

‖H‖β‖/mϕ‖2

= ‖C̃β(I + H̃)−‖β‖/m‖̃
2→2̃

‖H |α|/mjϕ‖2

for all ϕ ∈ D(H |α|/mj ).

The foregoing proof has two immediate corollaries.

Corollary 2.5. For all n ∈ N and all α ∈ J(d′) with nm ≤ |α| ≤ nm
there exists a c > 0 such that

‖Aαϕ‖2 ≤ c‖Hnϕ‖2

for all ϕ ∈ D(Hn).
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P r o o f. It follows as in the proof of Lemma III.3.3 of [Rob] that there
exists a c > 0 such that

‖Aαϕ‖2 ≤ c( max
|β|=nm

‖Aβϕ‖2 + max
|γ|=nm

‖Aγϕ‖2)

for all ϕ ∈ C∞
c (G). Then the corollary follows from Theorem 2.1.I and

density.

Corollary 2.6. For all n ∈ N and j ∈ {1, . . . , k} there exists a c > 0
such that

‖Aαϕ‖2 ≤ εnmj−|α|‖Hnϕ‖2 + cε−|α|‖ϕ‖2

for all α ∈ J(d′) with |α| < nmj, ε > 0 and ϕ ∈ D(Hn).

P r o o f. This follows from the subelliptic analogue of [Rob], Lemma
III.3.3, and Corollary 2.5.

Our next aim is to prove the second statement of Theorem 2.1, the kernel
bounds, and to this end we examine the Davies perturbation

S̺t = U̺StU
−1
̺

of the semigroup S where ψ ∈ C∞
b (G) is real-valued, ̺ ∈ R and U̺ denotes

the operator of multiplication by the function e−̺ψ on L2. Following Dun-
gey [Dun] we consider a one-parameter family (ψR)R>0 of functions defined
by

ψR = RηR

where the ηR are cutoff functions of the type considered in [ERS2], Section 2.
These are a family of C∞-functions (ηR)R>0 for which there exist σ>0 and
for all multi-indices α a cα > 0 such that supp ηR ⊂ B′

R, 0 ≤ ηR ≤ 1,
ηR(g) = 1 for all g ∈ B′

σR and

‖AαηR‖∞ ≤ cαR
−|α|(3)

uniformly for R > 0 and α ∈ J(d′). (These cutoff functions exist because G
is nilpotent, [ERS2], Theorem 4.5.)

Now let H̺ denote the corresponding Davies perturbation of H ,

H̺ = U̺HU
−1
̺

where U̺ is now the operator of multiplication with e−̺ψR and, for simplicity,
we omit any notational dependence on R. Then for each n ∈ N it is clear
that Hn

̺ −Hn is a polynomial in the Ai of (unweighted) order nm− 1 with
coefficients which are polynomials in ̺ of order at most nm. But

U̺AiU
−1
̺ = Ai + ̺(AiψR) = Ai + ̺R(AiηR)(4)

and the special properties of the cutoff functions lead to the following esti-
mates.
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Lemma 2.7. There exists a c > 0 such that

|(ϕ,H̺ϕ)− (ϕ,Hϕ)| ≤ εRe(ϕ,Hϕ) + c

k∑

j=1

ε−mj+1|̺|mj‖ϕ‖22

for all ϕ ∈ C∞
c (G) uniformly for ε ∈ 〈0, 1], R ∈ 〈0,∞〉 and ̺ ∈ R with

|̺| ≥ R−1.

P r o o f. If Hj,̺ = U̺HmjU
−1
̺ then it follows as in [Dun], Proposition

4.1, using the strong G̊arding inequality (2), that for all j ∈ {1, . . . , k} there
exists a c > 0 such that

|(ϕ,Hj,̺ϕ)− (ϕ,Hmjϕ)| ≤ εRe(ϕ,Hϕ) + cε−mj+1|̺|mj‖ϕ‖22

for all ϕ ∈ C∞
c (G) uniformly for ε ∈ 〈0, 1], R ∈ 〈0,∞〉 and ̺ ∈ R with

|̺| ≥ R−1. Then the lemma follows by addition.

Corollary 2.8. There exists a c > 0 such that

Re(ϕ,H̺ϕ) ≥ 2−1Re(ϕ,Hϕ) − c(|̺|m + |̺|m)‖ϕ‖22

and

|(ϕ,H̺ϕ)| ≤ cRe(ϕ,Hϕ) + c(|̺|m + |̺|m)‖ϕ‖22

for all ϕ ∈ D(H), R ∈ 〈0,∞〉 and ̺ ∈ R with |̺| ≥ R−1.

P r o o f. This follows from Lemmas 2.3 and 2.7.

Next introduce θH by

θH = sup{θ ∈ 〈0, π/2] :

∀η∈[−θ,θ][e
iηH is a strongly subcoercive operator of step r]}.

Thus θH is a lower bound for the angle of the sector on which S is holomor-
phic.

Lemma 2.9. There exist c, ω > 0 and θ0 ∈ 〈0, θH〉 such that

‖S̺z‖2→2 ≤ eω(|̺|
m+|̺|m)|z| and ‖H̺S

̺
t ‖2→2 ≤ ct−1eω(|̺|

m+|̺|m)t

for all t > 0, z ∈ C \ {0} with |arg z| ≤ θ0, R ∈ 〈0,∞〉 and ̺ ∈ R with

|̺| ≥ R−1.

P r o o f. Let c > 0 be as in Corollary 2.8. Then for all z ∈ C with
|arg z| ≤ θ0 = 2−1θH ∧ arctan(2c)−1 and ϕ ∈ L2 one has

d

dt
‖S̺

eiθt
ϕ‖22 = −2Re(S̺

eiθt
ϕ, eiθH̺S

̺
eiθt

ϕ)

≤ −2 cos θRe(S̺
eiθt

ϕ,H̺S
̺
eiθt

ϕ) + 2|sin θ| · |(S̺
eiθt

ϕ,H̺S
̺
eiθt

ϕ)|

≤ −2 cos θ(2−1 Re(S̺
eiθt

ϕ,HS̺
eiθt

ϕ)− c(|̺|m + |̺|m)‖S̺
eiθt

ϕ‖22)

+2| sin θ|(cRe(S̺
eiθt

ϕ,HS̺
eiθt

ϕ) + c(|̺|m + |̺|m)‖S̺
eiθt

ϕ‖22)

≤ 4c(|̺|m + |̺|m)‖ϕ‖22
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for all t > 0. Hence ‖S̺z‖2→2 ≤ e2c(|̺|
m+|̺|m)|z| uniformly for all z ∈ C \ {0}

with |arg z| ≤ θ0, R ∈ 〈0,∞〉 and ̺ ∈ R with |̺| ≥ R−1. Then using the
Cauchy integral representation (see, for example, [Rob], Lemma III.4.4, or
[Dav], Lemma 2.38) one obtains bounds

‖H̺S
̺
t ‖2→2 ≤ c′t−1(1 + ω(|̺|m + |̺|m)t)eω(|̺|

m+|̺|m)t

uniformly for all ̺ ∈ R and all t > 0. The estimates of the lemma then
follow by slightly increasing the value of ω.

The following lemma is the key to estimating derivatives of the perturbed
semigroup.

Lemma 2.10. For all α ∈ J(d′) and j ∈ {1, . . . , k} there exists a c > 0
such that

‖AαS̺t ‖2→2 ≤ ct−|α|/mjeω(|̺|
m+|̺|m)t

for all t > 0, R ∈ 〈0,∞〉 and ̺ ∈ R with |̺| ≥ R−1.

P r o o f. Let n ∈ N be such that nmj > |α|. It follows by induction from
(4) that for all β ∈ J(d′) with nm ≤ |β| ≤ nm there are cβ,γ,γ1,...,γN ∈ R

such that

U̺A
βU−1

̺ ϕ−Aβϕ =
∑

cβ,γ,γ1,...,γN (̺R)
N (Aγ1ηR) . . . (A

γN ηR)A
γϕ(5)

where the sum is over all N ∈ {1, . . . , |β|}, all γ ∈ J(d′) with |γ| < |β| and
γ1, . . . , γN ∈ J+(d′) with |γ1| + . . . + |γN | + |γ| = |β|. Consider one term in
this sum. Since |γ1|+ . . .+ |γN | −N ≥ 0 and R−1 ≤ |̺| one has

|(̺R)N | · ‖(Aγ1ηR) . . . (A
γN ηR)A

γϕ‖2(6)

≤ |̺|Ncγ1 . . . cγNR
−(|γ1|+...+|γN |−N)‖Aγϕ‖2

≤ |̺||γ1|+...+|γN |cγ1 . . . cγN‖A
γϕ‖2

by (3). But by Corollary 2.6 one has bounds

‖Aγϕ‖2 ≤ ε|β|−|γ|‖Hnϕ‖2 + cε−|γ|‖ϕ‖2

uniformly for all ε > 0 and |γ| < nm. Hence

|(̺R)N | · ‖(Aγ1ηR) . . . (A
γN ηR)A

γϕ‖2

≤ |̺||β|−|γ|cγ1 . . . cγN (ε|β|−|γ|‖Hnϕ‖2 + cε−|γ|‖ϕ‖2)

for all ε > 0. Therefore taking ε = δ|̺|−1, and adding the various terms, it
follows that there is a c′ > 0 such that

‖(Hn
̺ −Hn)ϕ‖2 ≤ c′(δ‖Hnϕ‖2 + (|̺|nm + |̺|nm)δ−nm‖ϕ‖2)

for all ϕ ∈ D(Hn) and δ ∈ 〈0, 1]. Choosing δ appropriately one deduces that
there is a c′′ > 0 such that

‖Hnϕ‖2 ≤ 2‖Hn
̺ ϕ‖2 + c′′(|̺|nm + |̺|nm)‖ϕ‖2

for all ϕ ∈ D(Hn), R ∈ 〈0,∞〉 and ̺ ∈ R with |̺| ≥ R−1.
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Next it follows from Corollary 2.6 and Lemma 2.9 that there exist c, ω>0
such that

‖AαS̺t ‖2→2

≤ εnmj−|α|‖HnS̺t ‖2→2 + cε−|α|‖S̺t ‖2→2

≤ εnmj−|α|(2‖Hn
̺ S

̺
t ‖2→2 + c′′(|̺|nm + |̺|nm)‖S̺t ‖2→2)

+ cε−|α|‖S̺t ‖2→2

≤ (εnmj−|α|(2(cnt−1)n + c′′(|̺|nm + |̺|nm)) + cε−|α|)eω(|̺|
m+|̺|m)t

for all t > 0, ε > 0, R ∈ 〈0,∞〉 and ̺ ∈ R with |̺| ≥ R−1. Then the lemma
follows by setting ε = t1/mj and making an elementary estimate.

We now have sufficient preparation to prove the second statement of
Theorem 2.1, the kernel bounds.

Proof of Theorem 2.1.II. For each m,n ∈ N, t > 0 and b, ω > 0 with

m ≥ n introduce the functions G
(n)
b,t , N

(m,n)
ω,t , E

(m,n)
b,t : G→ R by

G
(n)
b,t (g) = V (t)−1/ne−b((|g|

′)nt−1)1/(n−1)

= V (t)−1/ne−bt(|g|
′t−1)n/(n−1)

,

N
(m,n)
ω,t (g) = (V (t)−1/m ∧ V (t)−1/n) inf

̺>0
e−̺|g|

′+ω(̺m+̺n)t

and

E
(m,n)
b,t (g) = (V (t)−1/m ∧ V (t)−1/n)

· (e−b((|g|
′)mt−1)1/(m−1)

∨ e−b((|g|
′)nt−1)1/(n−1)

)

=

{
(V (t)−1/m ∧ V (t)−1/n)e−bt(|g|

′t−1)m/(m−1)

if |g|′ ≥ t,

(V (t)−1/m ∧ V (t)−1/n)e−bt(|g|
′t−1)n/(n−1)

if |g|′ ≤ t.

It will be a consequence of Proposition 2.11 that N
(m,n)
ω,t (g) > 0 and that the

four functions G
(m)
b,t ∗G

(n)
b,t , G

(n)
b,t ∗G

(m)
b,t , N

(m,n)
ω,t and E

(m,n)
b,t are comparable.

We initially prove bounds for the kernel expressed in terms of N
(m,m)
ω,t .

This is accomplished in two steps. First we derive uniform bounds.
Fix j ∈ {1, . . . , k} and n ∈ N such that nm > (D′ ∨D)/2. Then nmj >

(D′ ∨D)/2. In the Sobolev inequality ([Dun], Lemma 3.1)

‖ϕ‖∞ ≤ cV (t)−1/(2mj)(‖ϕ‖2 + tn max
|β|=nmj

‖Aβϕ‖2)(7)

one replaces ϕ by AαStϕ and notes that one has bounds

‖AγStϕ‖2 ≤ c‖H |γ|/mjStϕ‖2 ≤ c′t−|γ|/mj‖ϕ‖2

for each γ ∈ J(d′) uniformly for all t > 0, by Theorem 2.1.I. It follows that
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there exists a c > 0 such that

‖AαSt‖2→∞ ≤ cV (t)−1/(2mj)(t−|α|/mj + tnt−(nmj+|α|)/mj )

= 2cV (t)−1/(2mj)t−|α|/mj .

Repeating the argument with |α| = 0 and with H∗ and S∗
t replacing H and

St yields

‖St‖1→2 = ‖S∗
t ‖2→∞ ≤ c′V (t)−1/(2mj)

for a suitable c′ > 0. Hence

‖AαS2t‖1→∞ ≤ ‖AαSt‖2→∞‖S∗
t ‖2→∞ ≤ cc′V (t)−1/mj t−|α|/mj

uniformly for all t > 0. Since this is valid for all j it follows that there is a
c > 0 such that

‖AαKt‖∞ ≤ c(t−|α|/m ∧ t−|α|/m)(V (t)−1/m ∧ V (t)−1/m)(8)

for all t > 0.

Next we extend these bounds to establish that there exist c, ω > 0 such
that

|(AαKt)(g)| ≤ c(t−|α|/m ∧ t−|α|/m)N
(m,m)
ω,t (g)(9)

for all t > 0 and g ∈ G. Again, fix j ∈ {1, . . . , k} and n ∈ N with nm >
(D′ ∨D)/2. Substituting AαS̺t ϕ for ϕ in the Sobolev inequality (7) yields

‖AαS̺t ϕ‖∞ ≤ cV (t)−1/(2mj)(‖AαS̺t ϕ‖2 + tn max
|β|=nmj+|α|

‖AβS̺t ϕ‖2)

and substituting the bounds of Lemma 2.10 gives

‖AαS̺t ‖2→∞ ≤ c′V (t)−1/(2mj)t−|α|/mjeω(̺
m+̺m)t.

Arguing by duality one obtains

‖AαS̺t ‖1→∞ ≤ cV (t)−1/mj t−|α|/mjeω(̺
m+̺m)t.

Thus there exist c, ω > 0 such that

‖AαS̺t ‖1→∞ ≤ c(V (t)−1/m ∧ V (t)−1/m)(t−|α|/m ∧ t−|α|/m)eω(̺
m+̺m)t

for all t > 0, ̺ ∈ R and R > 0 such that |̺| ≥ R−1. Then by a combination
with (3), (5) and arguing as in (6) one establishes the estimates

‖U̺A
αU−1

̺ S̺t ‖1→∞

≤ c′(V (t)−1/m ∧ V (t)−1/m)
∑

|γ|≤|α|

|̺||α|−|γ|(t−|α|/m ∧ t−|α|/m)eω
′(̺m+̺m)t

≤ c′′(V (t)−1/m ∧ V (t)−1/m)(t−|α|/m ∧ t−|α|/m)eω
′′(̺m+̺m)t.

Then in particular

|(AαKt)(g)|

≤ c′′(V (t)−1/m ∧ V (t)−1/m)(t−|α|/m ∧ t−|α|/m)eω
′′(̺m+̺m)te̺(ψR(g)−ψR(e))



SUBCOERCIVE OPERATORS 243

uniformly for all t > 0, g ∈ G, ̺ ∈ R and R > 0 such that |̺| ≥ R−1. Now
for g 6= e one sets R = |g|′ > 0 so that ψR(g) = 0 and ψR(e) = |g|′. Then

|(AαKt)(g)|(10)

≤ c(V (t)−1/m ∧ V (t)−1/m)(t−|α|/m ∧ t−|α|/m)eω(̺
m+̺m)t−̺|g|′

whenever g ∈ G and ̺ > 0 are such that |g|′ ≥ ̺−1. On the other hand, for
g ∈ G and ̺ > 0 such that |g|′ ≤ ̺−1, one has

eω
′′(̺m+̺m)t−̺|g|′ ≥ eω

′′(̺m+̺m)t−1 ≥ e−1

and thus the bounds (10) follow from the uniform bounds (8). Hence (10)
holds for all g ∈ G and ̺ > 0, and the proof of the bounds (9) is complete.

The bounds of the theorem now follow from Statement I of the next
proposition.

Proposition 2.11. Let m,n ∈ N with m ≥ n ≥ 2.

I. For all b, ω > 0 there exist b′, c, ω′ > 0 such that

N
(m,n)
ω,t ≤ E

(m,n)
b′,t ,

E
(m,n)
b,t ≤ cG

(m)
b′,t ∗G

(n)
b′,t,(11)

G
(m)
b,t ∗G

(n)
b,t ≤ cG

(n)
b′,t ∗G

(m)
b′,t ,

G
(n)
b,t ∗G

(m)
b,t ≤ cN

(m,n)
ω′,t

for all t > 0.

II. For all b > 0 there exist b′, c > 0 such that

G
(m)
b,t ≤ cG

(m)
b′,t ∗G

(n)
b′,t and G

(m)
b,t ∗G

(n)
b,t ≤ cG

(m)
b′,t

for all t ∈ 〈0, 1].

III. For all b > 0 there exist b′, c > 0 such that

G
(n)
b,t ≤ cG

(m)
b′,t ∗G

(n)
b′,t

for all t ≥ 1.

IV. For all b > 0 and ε > 0 there exists a c > 0 such that

G
(m)
b,t ∗G

(m)
b,s ≤ cG

(m)
b−ε,t+s

uniformly for all t, s > 0.

P r o o f. Without loss of generality we may assume the normalization
V (1) = 1.

First let ω ≥ 1, g ∈ G and t > 0. If |g|′ ≤ t then with ̺ =
2−1(|g|′(nωt)−1)1/(n−1) one has

−̺|g|′ + ω(̺m + ̺n)t

= −((|g|′)nt−1)1/(n−1)(nω)−1/(n−1)2−1(1−2−(n−1)n−1̺m−n−2−(n−1)n−1)

≤ −4−1(nω)−1/(n−1)((|g|′)nt−1)1/(n−1).
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Alternatively, if |g|′ ≥ t then with ̺ = 2−1(mω)−m/n(|g|′(mωt)−1)1/(m−1)

one has

−̺|g|′ + ω(̺m + ̺n)t

= − ((|g|′)mt−1)1/(m−1)(mω)−1/(m−1)2−1(mω)−m/n

× (1− δm−1m−1 − δn−1m−1(mω)(m−n)/(m−1)(|g|′t−1)−(m−n)/(n−1))

≤ − 4−1(mω)−m((|g|′)mt−1)1/(m−1),

where δ = 2−1(mω)−m/n ≤ (4ω)−1. So

N
(m,n)
ω,t (g) ≤ E

(m,n)
b′,t (g),

where b′ = 4−1(mω)−m.

Secondly, fix b > 0. Then for all g, h ∈ G one has

(|gh−1|′)m/(m−1) ≤ 2m/(m−1)((|g|′)m/(m−1) + (|h|′)m/(m−1))

≤ 2n/(n−1)((|g|′)m/(m−1) + (|h|′)m/(m−1)),

so

e
(m)
b′,t (gh

−1) ≥ e
(m)
b,t (g)e

(m)
b,t (h)

for all t > 0, where b′ = 2−n/(n−1)b,

e
(q)
b,t (g) = e−b((|g|

′)qt−1)1/(q−1)

for all q ∈ N \ {1} and e
(q)
b′,t is defined analogously. Similarly,

e
(n)
b′,t(h

−1g) ≥ e
(n)
b,t (h)e

(n)
b,t (g)

for all g, h ∈ G and t > 0.

Thirdly, if t ≥ 1 and g ∈ G then

(G
(m)
b′,t ∗G

(n)
b′,t)(g) = V (t)−1/mV (t)−1/n

\
G

dh e
(m)
b′,t (h)e

(n)
b′,t(h

−1g)

≥ V (t)−1/mV (t)−1/n
\
G

dh e
(m)
b′,t (h)e

(n)
b,t (h)e

(n)
b,t (g)

≥ V (t)−1/ne
(n)
b,t (g)V (t)−1/m

\
{h∈G:|h|′≤t}

dh e
(m)
b′,t (h)e

(n)
b,t (h).

But if |h|′ ≤ t then e
(n)
b,t (h) ≥ e

(m)
b,t (h). Moreover, t1/m ≤ t since t ≥ 1.

Therefore

(G
(m)
b′,t ∗G

(n)
b′,t)(g)

≥ V (t)−1/ne
(n)
b,t (g)V (t)−1/m

\
{h∈G:|h|′≤t}

dh e
(m)
b′,t (h)e

(m)
b,t (h)

≥ V (t)−1/ne
(n)
b,t (g)V (t)−1/m

\
{h∈G:|h|′≤t1/m}

dh e−2b((|h|′)mt−1)1/(m−1)

≥ cV (t)−1/ne
(n)
b,t (g),
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where

c = inf
s>0

V (s)−1/m
\

{h∈G:|h|′≤s1/m}

dh e−2b((|h|′)ms−1)1/(m−1)

.

An elementary estimate shows that c > 0. Similarly

(G
(m)
b′,t ∗G

(n)
b′,t)(g) = V (t)−1/mV (t)−1/n

\
G

dh e
(m)
b′,t (gh

−1)e
(n)
b′,t(h)

≥ V (t)−1/mV (t)−1/n
\
G

dh e
(m)
b,t (g)e

(m)
b,t (h)e

(n)
b′,t(h)

≥ cV (t)−1/ne
(m)
b,t (g).

Since V (1) = 1, by normalization, it follows that

E
(m,n)
b,t ≤ c−1G

(m)
b′,t ∗G

(n)
b′,t

for all t ≥ 1.

Finally, if t ≤ 1 then

(G
(m)
b′,t ∗G

(n)
b′,t)(g)

= V (t)−1/mV (t)−1/n
\
G

dh e
(m)
b′,t (gh

−1)e
(n)
b′,t(h)

≥ V (t)−1/mV (t)−1/n
\

{h∈G:|h|′≤t1/m}

dh e
(m)
b,t (g)e

(m)
b,t (h)e

(n)
b′,t(h)

≥ V (t)−1/me
(m)
b,t (g)V (t)−1/n

\
{h∈G:|h|′≤t1/m}

dh e−be
(n)
b′,t(h)

≥ e−bV (t)−1/me
(m)
b,t (g)V (t)−1/n

\
{h∈G:|h|′≤t1/n}

dh e
(n)
b′,t(h)

≥ c1e
−bV (t)−1/me

(m)
b,t (g),

where

c1 = inf
s≤1

V (s)−1/n
\

{h∈G:|h|′≤s1/n}

dh e
(n)
b′,s(h) > 0.

Obviously e
(n)
b,t (g) ≤ 1 ≤ ebe

(m)
b,t (g) for all g ∈ G with |g|′ ≤ t. Alternatively,

if |g|′ ≥ t then e
(n)
b,t (g) ≤ e

(m)
b,t (g). So

E
(m,n)
b,t ≤ c−1

1 e2bG
(m)
b′,t ∗G

(n)
b′,t

for all t ≤ 1. This completes the proof of the estimate (11).

Next fix b > 0. Since e̺|g|
′

≤ e̺|h
′|e̺|h

−1g|′ for all ̺ > 0 and g, h ∈ G it
follows that
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e̺|g|
′

(G
(m)
b,t ∗G

(n)
b,t )(g)

≤
\
G

dhG
(m)
b/2,t(h)e

(m)
b/2,t(h)e

̺|h|′G
(n)
b/2,t(h

−1g)e
(n)
b/2,t(h

−1g)e̺|h
−1g|′

≤ eω(̺
m+̺n)t

\
G

dhG
(m)
b/2,t(h)G

(n)
b/2,t(h

−1g)

≤ c(V (t)−1/m ∧ V (t)−1/n)eω(̺
m+̺n)t

for all t > 0, g ∈ G and ̺ > 0, where

c = max(sup
s>0

‖G
(m)
b/2,s‖1, sup

s>0
‖G

(m)
b/2,s‖1) <∞,

ω = max(m−1(2b−1(1 −m−1))m−1, n−1(2b−1(1− n−1))n−1)

and the e
(n)
b/2,t are as before. So

G
(m)
b,t ∗G

(n)
b,t ≤ cN

(m,n)
ω,t

for all t > 0. Since (G
(n)
b,t ∗G

(m)
b,t )(g) = (G

(m)
b,t ∗ G

(n)
b,t )(g

−1) and N
(m,n)
ω,t (g) =

N
(m,n)
ω,t (g−1) this completes the proof of Statement I.

Since

G
(m)
b,t (g) = V (t)−1/m inf

̺>0
e−̺|g|

′+ω̺mt(12)

for all t > 0 and g ∈ G, where ω = m−1(b−1(1−m−1))m−1 the estimates of
Statement II follow from those of Statement I.

The estimate of Statement III follows from the equality (12), with m
replaced by n, together with the bounds of Statement I.

Finally, if b, ε > 0 then

e̺|g|
′

(G
(m)
b,t ∗G

(m)
b,s )(g)

≤
\
G

dhG
(m)
ε,t (h)e

(m)
b−ε,t(h)e

̺|h|′G(m)
ε,s (h−1g)e

(m)
b−ε,s(h

−1g)e̺|h
−1g|′

≤ eω̺
m(t+s)

\
G

dhG
(m)
ε,t (h)G(m)

ε,s (h−1g)

≤ c(V (t)−1/m ∧ V (s)−1/m)eω̺
m(t+s)

for all t, s > 0, g ∈ G and ̺ > 0, where c = supu>0 ‖G
(m)
ε,u ‖1 < ∞ and

ω = m−1((b − ε)−1(1 − m−1))m−1. But there is a c′ > 0 such that V (t) ∨
V (s) ≥ c′V (t+ s) uniformly for all t, s > 0. So

(G
(m)
b,t ∗G

(m)
b,s )(g) ≤ c(c′)−1/m inf

̺>0
e−̺|g|

′

V (t+ s)−1/meω̺
m(t+s)

= c(c′)−1/mG
(m)
b−ε,t+s(g)

for all g ∈ G. This proves Statement IV.

This completes the proof of Theorem 2.1.II.
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The next theorem establishes that Kt converges in a strong sense to the

kernel K
(m)
t of Hm as t → ∞, but we subsequently argue that one cannot

usually expect simple Gaussian bounds for K.

Theorem 2.12. Suppose G is a connected nilpotent Lie group and k ≥ 2.
Let K and K(m) denote the kernels associated with H and Hm. Set ν =
(mk−1 −mk)/mk. Then for all α ∈ J(d′) there exist b, c > 0 such that

|(AαKt)(g)− (AαK
(m)
t )(g)| ≤ ct−νt−|α|/m(G

(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t ≥ 1.

P r o o f. First consider the case |α| < m. Let U̺ denote the multiplication
operators used in the foregoing discussion of the Davies perturbation. Since

e̺|ψ(g)−ψ(e)||(AαKt)(g)− (AαK
(m)
t )(g)| ≤ ‖U̺(A

αSt −AαS
(m)
t )U−1

̺ ‖1→∞

where S(m) is the semigroup generated by Hm it suffices to prove that

‖U̺(A
αSt −AαS(m))U−1

̺ ‖1→∞ ≤ ct−νt−|α|/mV (t)−1/meω(̺
m+̺m)t

for some c, ω > 0 and all t ≥ 1 and all ̺ ∈ R. Then the bounds in terms

of G
(m)
b,t ∗ G

(m)
b,t follow from Proposition 2.11. The foregoing estimates can,

however, be derived by use of the Duhamel formula

U̺(A
αSt −AαS

(m)
t )U−1

̺ =

t\
0

dsU̺A
αS

(m)
t−s (H −Hm)SsU

−1
̺

and the earlier kernel bounds.

The difference H − Hm is a linear combination of monomials Aβ with
mk−1 ≤ |β| ≤ m. But one has estimates

t\
0

ds ‖U̺A
αS

(m)
t−sA

βSsU
−1
̺ ‖1→∞ ≤ ct1−(|α|+|β|)/mV (t)−1/meω(̺

m+̺m)t(13)

for t ≥ 1 and all α, β ∈ J(d′) with |α| < m. These are established in two
steps. First, if s ∈ [0, t/2] then

‖U̺A
αS

(m)
t−sA

βSsU
−1
̺ ‖1→∞

≤ ‖U̺A
αS

(m)
t−sA

βU−1
̺ ‖1→∞‖S̺s‖1→1

≤ ‖U̺A
αS

(m)

(t−s)/2U
−1
̺ ‖2→∞‖U̺S

(m)

(t−s)/2A
βU−1

̺ ‖1→2‖S
̺
s‖1→1.

Each term in the product can be bounded by integration of the kernel bounds
given in Theorem 2.1.II. One finds bounds

‖U̺A
αS

(m)
t−sA

βSsU
−1
̺ ‖1→∞ ≤ c(t− s)−(|α|+|β|)/mV (t− s)−1/meω(̺

m+̺m)t

≤ c′t−(|α|+|β|)/mV (t)−1/meω(̺
m+̺m)t
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for all t ≥ 1 where the latter bound uses t− s ≥ t/2. Integration over [0, t/2]
then gives a bound of the same form as the right hand side of (13). Secondly,
for s ∈ [t/2, t] one makes the alternative estimate

‖U̺A
αS

(m)
t−sA

βSsU
−1
̺ ‖1→∞ ≤ ‖U̺A

αS
(m)
t−sU

−1
̺ ‖∞→∞‖U̺A

βSsU
−1
̺ ‖1→∞.

Integration of the kernel bounds now gives

‖U̺A
αS

(m)
t−sA

βSsU
−1
̺ ‖1→∞ ≤ c(t− s)−|α|/ms−|β|/mV (s)−1/meω(̺

m+̺m)t

≤ c′(t− s)−|α|/mt−|β|/mV (t)−1/meω(̺
m+̺m)t.

Since |α|/m < 1 this bound is integrable for s ∈ [t/2, t] and on integration
one again obtains the same form as the right hand side of (13).

Since the expression for H −Hm only contains terms with |β| ≥ mk−1 it
follows that

t\
0

ds ‖U̺A
αS

(m)
t−s (H −Hm)SsU

−1
̺ ‖1→∞ ≤ ct−(mk−1−m)/mt−|α|/meω(̺

m+̺m)t

for t ≥ 1 and the proof for |α| < m is complete.

The proof for |α| ≥ m requires a somewhat more complicated argument.
One now starts from the Duhamel formula

Stϕ− S
(m)
t ϕ =

t/2\
0

ds S
(m)

(t−s)/2(S
(m)

(t−s)/2(Hm −H))Ssϕ

+

t\
t/2

ds S
(m)
t−s ((Hm −H)Ss)ϕ.

Note that by duality the operator S
(m)

(t−s)/2(Hm −H) extends to a bounded

operator whose norm has a possible singularity at s = t. But there is no
singularity at s = 0. Similarly (Hm − H)Ss has a possible singularity at
s = 0 but there is no singularity at s = t. Next if one expands Hm −H =
∑

mk−1≤|β|≤m cβA
β and if K(m)β denotes the kernel of the operator S

(m)
t Aβ

then the Duhamel formula gives

Kt(g)−K
(m)
t (g) =

∑

mk−1≤|β|≤m

cβ

t/2\
0

ds (K
(m)

(t−s)/2 ∗K
(m)β

(t−s)/2 ∗Ks)(g)

+
∑

mk−1≤|β|≤m

cβ

t\
t/2

ds
\
G

dhK
(m)
t−s (h)(L(h)A

βKs)(g)

for all t > 0 and g ∈ G. Note that K(m)β satisfies Gaussian bounds: there

exist b, c > 0 such that |K
(m)β
t (g)| ≤ ct−|β|/mG

(m)
b,t (g) uniformly for all |β| ≤
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m, t > 0 and g ∈ G. Hence if α ∈ J(d′) then

(AαKt)(g)− (AαK
(m)
t )(g)(14)

=
∑

mk−1≤|β|≤m

cβ

t/2\
0

ds ((AαK
(m)

(t−s)/2) ∗K
(m)β

(t−s)/2 ∗Ks)(g)

+
∑

mk−1≤|β|≤m

cβ

t\
t/2

ds
\
G

dhK
(m)
t−s (h)(A

αL(h)AβKs)(g)

for all t > 0 and g ∈ G. We estimate the two terms separately. Using the
kernel estimates of Theorem 2.1.II and Proposition 2.11 for the contribution
over the interval [0, t/2] gives

t/2\
0

ds |((AαK
(m)

(t−s)/2) ∗K
(m)β

(t−s)/2 ∗Ks)(g)|

≤ c

t/2\
0

ds (t− s)−(|α|+|β|)/m(G
(m)

b,(t−s)/2 ∗G
(m)

b,(t−s)/2 ∗ (G
(m)
b,s ∗G

(m)
b,s ))(g)

≤ c1t
−(|α|+|β|)/m

t/2\
0

ds (G
(m)

b/2,t−s ∗ (G
(m)
b,s ∗G

(m)
b,s ))(g)

for all t ≥ 2 and g ∈ G. But then it follows by repeated use of Proposition
2.11 that

G
(m)

b/2,t−s ∗ (G
(m)
b,s ∗G

(m)
b,s ) ≤ c2G

(m)
b1,t−s

∗G
(m)
b1,t−s

∗G
(m)
b,s ∗G

(m)
b,s

≤ c3G
(m)
b1,t

∗G
(m)
b2,t

∗G
(m)
b,s ≤ c4G

(m)
b3,t

∗G
(m)
b3,t

∗G
(m)
b,s

≤ c5G
(m)
b3,t

∗G
(m)
b4,t+s

≤ c5G
(m)
b3,t

∗G
(m)
b5,t

uniformly for all t ≥ 2 and s ∈ 〈0, t/2]. Hence

t/2\
0

ds |((AαK
(m)

(t−s)/2) ∗K
(m)β

(t−s)/2 ∗Ks)(g)|(15)

≤ c5t
1−(|α|+|β|)/m(G

(m)
b3,t

∗G
(m)
b5,t

)(g)

for all t ≥ 2 and g ∈ G.

To bound the contribution over the subinterval [t/2, t] we proceed sim-
ilarly, although there is one new problem with the left translations. It follows
from the proof of Lemma 4.3 of [ElR3] that there is a c > 0 and for all
γ ∈ J(d′) with |α| ≤ |γ| ≤ r|α| a function fγ : G→ R such that

L(h−1)AαL(h) =
∑

|α|≤|γ|≤r|α|

fγ(h)A
γ(16)
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and |fγ(h)| ≤ c(|h|′)|γ|−|α| for all γ and h ∈ G. (Since G is nilpotent the
series expression given in [ElR3] terminates after a finite number, at most
r, of terms.) Therefore

t\
t/2

ds
\
G

dh |K
(m)
t−s (h)(A

αL(h)AβKs)(g)|

≤
∑

|α|≤|γ|≤r|α|

t\
t/2

ds
\
G

dh |K
(m)
t−s (h)| · |fγ(h)| · |(A

γAβKs)(h
−1g)|

≤ c′
∑

|α|≤|γ|≤r|α|

t\
t/2

ds
\
G

dh |K
(m)
t−s (h)|

× (|h|′)|γ|−|α|s−(|β|+|γ|)/m(G
(m)
b,s ∗G

(m)
b,s )(h−1g)

≤ c′′t−(|α|+|β|)/m
∑

|α|≤|γ|≤r|α|

t\
t/2

ds
\
G

dh |K
(m)
t−s (h)|

× (|h|′s−1/m)|γ|−|α|(G
(m)
b,s ∗G

(m)
b,s )(h−1g)

uniformly for all g ∈ G and t > 0. But for s ∈ [t/2, t] one has s−1/m ≤
(t− s)−1/m and an elementary estimate gives

|K
(m)
t−s (h)|(|h|

′s−1/m)|γ|−|α|≤cG
(m)
2b,t−s(h)(|h|

′(t− s)−1/m)|γ|−|α| ≤ c′G
(m)
b,t−s(h)

uniformly for all t ≥ 2, s ∈ [t/2, t] and γ with |α| ≤ |γ| ≤ r|α|. Thus

t\
t/2

ds |((AαK
(m)
t−s ) ∗ (A

βKs))(g)|(17)

≤ ct−(|α|+|β|)/m

t\
t/2

ds (G
(m)
b,t−s ∗ (G

(m)
b,s ∗G

(m)
b,s ))(g)

≤ c′t1−(|α|+|β|)/m(G
(m)
b′,t ∗G

(m)
b,t )(g)

uniformly for all t ≥ 2 because G
(m)
b,s can be bounded by a multiple of G

(m)
b,t

for s ∈ [t/2, t].

Combination of (14), (15), (17) and Proposition 2.11.I then gives the
desired bounds.

Corollary 2.13. If k ≥ 2 then there is a c > 0 such that

‖Kt −K
(m)
t ‖∞ ≤ ct−νV (t)−1/m and ‖Kt −K

(m)
t ‖1 ≤ ct−ν

for all t ≥ 1, where ν = (mk−1 −mk)/mk.
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P r o o f. The first statement is an immediate consequence of the estimates
of Theorem 2.12. The second follows straightforwardly by integration of the
estimates.

Remark. The following example establishes that the exponent ν in these
asymptotic estimates is optimal. Let G = Rd and Hmj = ∆mj/2, where

∆ = −
∑d
i=1 ∂

2
i . Then

Kt(x) = (2π)−d
\
Rd

dξ eix·ξe−t(|ξ|
m1+...+|ξ|mk )

and

K
(m)
t (x) = (2π)−d

\
Rd

dξ eix·ξe−t|ξ|
m

for x ∈ Rd. Thus one finds that

‖Kt −K
(m)
t ‖∞ = |Kt(0)−K

(m)
t (0)|

= (2π)−d
\
dξ e−t|ξ|

m

(1 − e−t(|ξ|
m1+...+|ξ|mk−1 ))

≥ (2π)−d
\
dξ e−t|ξ|

m

(1 − e−t|ξ|
mk−1

)

= (2π)−dt−d/m
\
Rd

dη e−|η|m(1 − e−t
−ν |η|mk−1

)

≥ (2π)−dt−d/m
\

{η:|η|mk−1≤ε}

dη e−|η|m(2−1t−ν |η|mk−1)

for t ≥ 1, where ε > 0 is chosen small enough so that 1 − e−r ≥ 2−1r holds
for all r ∈ [0, ε]. Therefore one has an estimate ‖Kt −K

m
t ‖∞ ≥ c′t−νt−d/m

for t ≥ 1. So the constant ν is optimal in this case.

Note that for self-adjoint operators the kernel is positive at the identity.

Corollary 2.14. If H and Hm are self-adjoint then there is a c > 0
such that

Kt(e) ≥ c(V (t)−1/m ∧ V (t)−1/m)

for all t > 0.

P r o o f. By [ElR5], Corollary 2.4, one has an estimate K
(m)
t (e) ≥

cV (t)−1/m for all t > 0. Combining this with the first statement of Corollary
2.13, it follows that there exist c > 0 and T > 0 such that

Kt(e) ≥ cV (t)−1/m

for all t ≥ T .
Alternatively, Kt satisfies mth order Gaussian bounds for t ≤ T . Then

by Corollary 2.2 of [ElR5] one obtains an estimate

Kt(e) ≥ c′V (t)−1/m

for t ≤ T .
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Although Corollary 2.13 indicates that Kt approaches K
(m)
t asymptoti-

cally it cannot be expected to be bounded by a Gaussian of order m uni-
formly for all t. We make this statement precise.

Proposition 2.15. Suppose n ∈ N \ {1}. The following conditions are

equivalent.

I. There exist b, c > 0 such that |Kt| ≤ cG
(n)
b,t for all t > 0.

II. n = m = m or G is compact and n ≥ m.

P r o o f. “II⇒I”. If n = m = m then Condition I follows from [ERS1],
Theorem 3.5. Alternatively, assume G is compact. Then Condition I follows
for t ≤ 1 from Theorem 2.12 and Proposition 2.11.II. Next let b, c > 0 be as
in Theorem 2.12 for |α| = 0. Then

|Kt(g)| ≤ cV (1)−1/m ≤ cV (1)−1/m|G|1/mebx
n/(n−1)

G
(n)
b,t (g)

for all t ≥ 1 and g ∈ G, where x = max{|g|′ : g ∈ G} and G is the Haar
measure of G.

“I⇒II”. For t > 0 set Lt = Kt/2 ∗ Ǩt/2, where Ǩs(g) = Ks(g
−1). Then

it follows as in Step 2 of the proof of Theorem 1.1 of [Dun] that there exists
a c > 0 such that Kt(e) ≥ cV (t)−1/n for all t > 0. On the other hand, it is
a consequence of Theorem 2.1.II and Proposition 2.11 that there is a c′ > 0
such that Lt(e) ≤ c′(V (t)−1/m ∧ V (t)−1/m) for all t > 0. These bounds are
compatible for small t if, and only if, n ≥ m. Moreover, they are compatible
for large t if, and only if, D/m ≤ D/m and this gives the two possibilities
of Condition II.

Note that the only compact nilpotent Lie groups are products of tori.

3. General groups. Let G be a Lie group of polynomial growth and H
a strongly subcoercive operator of step r. In the previous section we esta-
blished that if G is nilpotent and its Lie algebra has rank r, or less, then H
satisfies the strong G̊arding inequality (2). In particular H is accretive. But
for this nilpotency of G, or some more stringent assumption on the step of
subcoercivity, is essential. The conclusion can fail even for compact G if the
step is small.

Let G = SO(2), the compact three-dimensional group of rotations. Thus
g has a vector space basis, i.e., an algebraic basis of rank 1, of elements
a1, a2, a3 satisfying [a1, a2] = a3, [a2, a3] = a1 and [a3, a1] = a2. Then G̃ =
G(3, 1) = R3, by definition. Now consider the self-adjoint operator

H = −A2
1 −A2

2 −A2
3 + iλA3 = −A2

1 −A2
2 −A2

3 + iλ[A1, A2]

where λ ∈ R. It follows from the second expression for H that it is subco-
ercive of step 1 and homogeneous of order 2. The spectrum of H consists,
however, of a sequence of eigenvalues l(l + 1)−mλ with l ∈ N0 and m ∈ Z
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with |m| ≤ l. Thus if λ > 2 then H has negative eigenvalues and certainly
cannot satisfy a strong G̊arding inequality. In fact the multiplicity of the
negative spectrum can be made arbitrarily large by choosing λ sufficiently
large.

This example has other interesting features. If λ = 2 then H ≥ 0 but
it has two zero eigenvalues corresponding to l = 0 = m and l = 1 = m.
The first of these eigenvalues has a constant eigenfunction but the second
has a non-constant eigenfunction ϕ1. Since (ϕ1, Hϕ1) = 0 but ‖Aiϕ1‖2 6= 0
for at least one i ∈ {1, 2, 3} the strong G̊arding inequality must fail for H .
Specifically, ‖AiSt‖2→2 = O(1 ∨ t−1/2) for all t > 0 and i ∈ {1, 2, 3}. As
t→ ∞ the norms are attained by the eigenfunction corresponding to l = 1 =
m and as t → 0 their values are governed by the eigenfunctions with large
l = 2|m|.

In the next section we consider Lie groups of polynomial growth which
are a local direct product of a connected compact Lie group K and a con-
nected nilpotent Lie group N . We argue that this restriction is natural by
the results of [Dun] and [ERS2]. If H is a strongly subcoercive operator of
step r with r ∈ N satisfying the G̊arding inequality

Re(ϕ,Hϕ) ≥ µ
∑

|α|=m/2

‖Aαϕ‖22

(which is weaker than the estimate (2)) and, moreover, if the kernel K of
the semigroup generated by H satisfies Gaussian bounds

|Kt(g)| ≤ c(G
(m)
b,t ∗G

(m)
b,t )(g)

then it follows from the estimates

|(G
(m)
b,t ∗G

(m)
b,t )(g)| ≤ c′V (t)−1/me−b

′((|g|′)mt−1)1/(m−1)

and the arguments in Section 2 of [Dun] that there exists a one-parameter
family (ηR)R≥1 of cutoff functions such that (3) is valid uniformly for all
|α| ≤ m/2 and R ≥ 1. But if G is not a local direct product of a connec-
ted compact Lie group K and a connected nilpotent Lie group N then by
Theorem 4.4 of [ERS2] these cutoff functions exist if, and only if, m ≤ 2.

In the discussion of product groups the strong G̊arding inequality (2)
for H is crucial. On a general group it implies that H is maximal accre-
tive and consequently has a bounded H∞-holomorphic calculus by [ADM],
Theorem G. Therefore

|(Stϕ,HStϕ)| ≤ ct−1‖ϕ‖22

for all t > 0. Hence it follows from (2), with ϕ replaced by Stϕ, that

max
|α|=m/2

‖AαSt‖2→2 + max
|α|=m/2

‖AαSt‖2→2 ≤ c′t−1/2
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for all t > 0. Then by the usual ε, ε−1 inequalities linking the powers of the
Ai, i.e., the inequalities

max
|α|=n1

‖Aαϕ‖2 ≤ εn2−n1 max
|β|=n2

‖Aβϕ‖2 + cε−n1‖ϕ‖2(18)

which are valid for n2 > n1, ε > 0 and for all ϕ ∈ C∞
c (G), one deduces that

max
|α|=n

‖AαSt‖2→2 ≤ c(t−n/m ∧ t−n/m)

for a suitable c > 0, all n ∈ {1, 2, . . . ,m/2} and all t > 0. These latter bounds
are crucial in the discussion of product groups.

4. Local direct product groups. In this section we assume that G =
K ×l N is a local direct product of a connected compact Lie group K and a
connected nilpotent Lie group N with Lie algebra of rank r. Moreover, H is
a strongly subcoercive operator of step r and order m ≥ 4. The example in
Section 3 of a second-order operator on a compact group demonstrates that
one cannot expect to derive good asymptotic bounds on the corresponding
semigroup kernel or to deduce boundedness of the Riesz transforms without
further assumptions. Nevertheless one can characterize these properties in
simpler terms. We first consider the Riesz transforms.

Theorem 4.1. Assume H is accretive. Then each of the conditions in

the following two families , indexed by n ∈ N, is equivalent.

In. There is a σn > 0 such that

max
|α|=n

‖AαSt‖2→2 ≤ σn(t
−n/m ∧ t−n/m)

uniformly for all t > 0.

IIn. For all α ∈ J(d′) with |α| = n and all j ∈ {1, . . . , k} one has

D(Hn/mj ) ⊆ D(Aα) and there is a c > 0 such that

max
|α|=n

‖Aαϕ‖2 ≤ c‖Hn/mjϕ‖2

for all ϕ ∈ D(Hn/mj ).

Moreover , if H satisfies the strong G̊arding inequality (2) then all these

conditions are satisfied.

P r o o f. It follows from Condition IIn that

‖AαSt‖2→2 ≤ c‖Hn/mjSt‖2→2

for all α with |α| = n and all j ∈ {1, . . . , k}. But since H is maximal ac-
cretive it has a bounded H∞-holomorphic functional calculus by [ADM],
Theorem G. Consequently, ‖Hn/mjSt‖2→2 ≤ c′t−n/mj for all t > 0. Condi-
tion In follows immediately. Next In implies I1 by two applications of the
inequalities (18) with suitable choices of ε. The proof that I1 implies IIn is
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essentially a repetition of the arguments used to prove Proposition 4.1 in
[ERS2]. Some extra argument is, however, required since H is not assumed
to be self-adjoint.

First one proves the implication for a direct product K × N and then
uses structure theory to lift the result to the local direct product. The latter
argument is unchanged in the current context and one only needs to verify
the former. But on the direct product one introduces a projection P onto
the subspace of L2 formed by functions constant over K. This is defined
by averaging over the compact component, i.e., averaging over K. Then
Condition IIn is satisfied on PL2 by the results established for the nilpotent
case in Section 2. On (I − P )L2 one argues as in [ERS2], with the aid of I1,
to obtain spectral estimates

‖HN(I − P )ϕ‖2 ≥ µN‖(I − P )ϕ‖2

for some µ > 0, some N ∈ N and all ϕ ∈ D(HN ). If H is self-adjoint this
immediately implies that H restricted to (I − P )L2 has spectrum in [µ,∞〉
and hence

‖Hn(I − P )ϕ‖2 ≥ µn‖(I − P )ϕ‖2

for all n ∈ N and all ϕ ∈ D(Hn). The general case is, however, covered by
the following spectral lemma for holomorphic semigroups on Banach space.

Lemma 4.2. Let H be the generator of a bounded holomorphic semi-

group S. The following conditions are equivalent.

I. There exist M ≥ 1 and ω > 0 such that ‖St‖ ≤Me−ωt for all t > 0.

II. There exists µ > 0 such that ‖Hnϕ‖ ≥ µn‖ϕ‖ for all ϕ ∈ D(Hn) and
all n ∈ N.

III. There exists N ∈ N and ν > 0 such that ‖HNϕ‖ ≥ νN‖ϕ‖ for all

ϕ ∈ D(HN ).

P r o o f. I⇒II. It follows by integration of S that H−1 is a bounded
operator and

‖H−1‖ ≤

∞\
0

dt ‖St‖ ≤Mω−1.

Hence ‖H−n‖ ≤ (M/ω)n and II is valid with µ = ω/M .

It is evident that II⇒III so it remains to prove that III⇒I.

First since S is uniformly bounded for all n ∈ N there is a cn > 0 such
that

‖HNϕ‖ ≤ εn‖HN+nϕ‖+ cnε
−N‖ϕ‖(19)

for all ϕ ∈ D(HN+n) and ε > 0 (see the proof of Lemma III.3.3 in [Rob]).
Hence it follows from III that

‖HN+nϕ‖ ≥ (νN − cnε
−N)ε−n‖ϕ‖
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for all ϕ ∈ D(HN+n) and all ε > 0. Therefore there is a κ > 0 such that

‖HN+nϕ‖ ≥ κN‖ϕ‖

for all n ∈ {0, . . . , N − 1} and ϕ ∈ D(HN+n). Another straightforward
application of (19) leads to the further conclusion that there are σ, r > 0
such that

‖(λI −H)N+nϕ‖ ≥ σN‖ϕ‖

for all n ∈ {0, . . . , N − 1}, ϕ ∈ D(HN+n) and λ ∈ C with |λ| < r.

Secondly, let ̺(H) denote the resolvent set of H and R(λ) = (λI −H)−1

the resolvent for all λ ∈ ̺(H). If S is bounded holomorphic in the sector
∆(θ) then C \ ∆(π/2− θ) ⊆ ̺(H) and R is analytic in this set. But if
λ0 ∈ ̺(H) the Taylor series for RN around this point can be rewritten
in the form

R(λ)N =

∞∑

n=0

(
N + n− 1

n

)
(λ0 − λ)nR(λ0)

N+n(20)

=

∞∑

m=1

N−1∑

n=0

(
mN + n− 1

N − 1

)
(λ0 − λ)(m−1)N+nR(λ0)

mN+n.

But if λ0 ∈ 〈−r, 0〉 then λ0 ∈ ̺(H) and the previous estimates show that
‖R(λ0)

mN+n‖ ≤ ‖R(λ0)
N‖m−1‖R(λ0)

N+n‖ ≤ σ−mN . Therefore the series
on the right hand side of (20) converges for |λ − λ0| < σ/2 and defines an
analytic extension RN of RN into the interior of the ball Bσ/2 = {λ ∈ C :
|λ| < σ/2}.

Thirdly

St = (2πi)−1(N − 1)!t−(N−1)
\
Γ

dλ e−λt(λI −H)−N

= (2πi)−1(N − 1)!t−(N−1)
\
Γ

dλ e−λtRN (λ)

where Γ is a positively-oriented contour in ̺(H), enclosing ∆(π/2−θ), which
runs from argλ = −(π/2−θ)−ε to argλ = (π/2−θ)+ε, with ε ∈ 〈0, θ〉. This
follows from the usual Cauchy representation for S through integration by
parts. Since, by the foregoing, RN has an analytic extension to the half-plane
Reλ < 2−1σ sin θ one can deform the contour Γ so that it lies totally in the
half-plane Reλ ≥ 4−1σ sin θ. It then follows from the integral representation
that one has bounds ‖St‖ ≤Me−ωt for all t ≥ 1 with ω = 4−1σ sin θ. As S is
uniformly bounded these bounds extend to all t > 0 with an enlarged value
for M , i.e., Condition I is satisfied.

It now follows as in [ERS2] that Condition IIn is satisfied on (I − P )L2.
The result on L2 is then pieced together from the results on the two com-
ponents PL2 and (I − P )L2.
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Finally if H satisfies (2) then Condition I1 is satisfied by the discussion
at the end of Section 3.

The estimates of the second family of conditions in Theorem 4.1 can be
rephrased as a direct statement of the boundedness of appropriate Riesz
transforms if the group G is not compact. For example, combination of the
equivalent Conditions IInm/2 and IInm/2 yields bounds

max
nm/2≤|α|≤nm/2

‖AαH−n/2‖2→2 <∞

for all n ∈ N. Boundedness of the Riesz transforms is directly related to the
existence of good asymptotic bounds on the semigroup kernel. The most
straightforward statement to this effect is for self-adjoint H .

Theorem 4.3. Assume H is positive, symmetric. Then each of the con-

ditions in the following two families , indexed by n ∈ N, is equivalent to each

of the conditions in the two families in Theorem 4.1.

IIIn. There is a µn > 0 such that

(ϕ,Hnϕ) ≥ µn( max
|α|=nm/2

‖Aαϕ‖22 + max
|α|=nm/2

‖Aαϕ‖22)

for all ϕ ∈ D(Hn).

IVn. There are b, c > 0 such that for each α ∈ J(d′) with |α| = n,

max
|α|=n

|(AαKt)(g)| ≤ c(t−n/m ∧ t−n/m)(G
(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t > 0.

Moreover , if one of the equivalent conditions is satisfied then there are

b, c > 0 such that

|Kt(g)| ≤ c(G
(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t > 0.

P r o o f. Condition IInm/2 with j = 1 implies that

(ϕ,Hnϕ) ≥ µ max
|α|=nm/2

‖Aαϕ‖22

for all ϕ ∈ D(Hn). Similarly, Condition IInm/2 with j = k implies that

(ϕ,Hnϕ) ≥ µ max
|α|=nm/2

‖Aαϕ‖22

for all ϕ ∈ D(Hn). Since IIi⇔IIj for all i, j ∈ N this means that IIn⇒IIIn.
But IIIn implies I1 because

max
|α|=nm/2

‖AαSt‖2→2 ≤ ct−n/2
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and then by use of (18) one deduces that

max
1≤i≤d′

‖AiSt‖2→2 ≤ ct−1/m

for all t > 0. Similarly

max
1≤i≤d′

‖AiSt‖2→2 ≤ ct−1/m

for all t > 0. Thus Condition I1 is valid. Next IVn⇒In by integration.
Finally IIn together with the strong G̊arding inequality III1 implies IVn by
the arguments used in the nilpotent case.

It is not clear which condition on the coefficients of a non-symmetric
operator H implies that H satisfies the strong G̊arding inequality (2) on a
local direct product group.

The next theorem states that as in Theorem 4.3 the strong G̊arding
inequality (2) implies Gaussian bounds for the kernel and all its derivatives.

Theorem 4.4. If H satisfies the strong G̊arding inequality (2) then for

all α ∈ J(d′) there exist b, c > 0 such that

|(AαKt)(g)| ≤ c(t−|α|/m ∧ t−|α|/m)(G
(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t > 0.

P r o o f. The proof is as in the nilpotent case. Since (2) is valid Condition
IIn of Theorem 4.1 holds and this implies the Gaussian bounds.

One can also estimate the difference between the kernelK and its asymp-
totic limit K(m).

Theorem 4.5. Suppose both H and Hm satisfy the strong G̊arding ine-

quality (2). Let K and K(m) denote the kernels associated with H and Hm.

Suppose k ≥ 2 and set ν = (mk−1 −mk)/mk. Then for all α ∈ J(d′) there

exist b, c > 0 such that

|(AαKt)(g)− (AαK
(m)
t )(g)| ≤ ct−νt−|α|/m(G

(m)
b,t ∗G

(m)
b,t )(g)

for all g ∈ G and t ≥ 1.

P r o o f. By Theorem 4.4 both the kernels K and K(m) have Gaussian
bounds for all its derivatives. Then the proof of the theorem is almost a
repetition of the proof of Theorem 2.12, but there is one difficulty with the
decomposition (16), as there might be more terms involved. Precisely, in the
current situation one has

L(h−1)AαL(h) =
∑

|α|≤|γ|≤rs|α|

fγ(h)A
γ(21)

instead of (16), where s is the rank of the algebraic basis.
We sketch the proof of (21). One only has to consider the case where

|α| = 1 and |g|′ is bounded away from 0, by Lemma 4.3 of [ElR3]. Let K
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and N be the connected compact and nilpotent Lie groups such that G is
the local direct product of K and N , i.e., G = KN , K ∩ N is discrete and
K and N commute. If i ∈ {1, . . . , d′}, the direction ai has a unique decom-

position ai = a
(K)
i + a

(N)
i with a

(K)
i ∈ k and a

(N)
i ∈ n, where k and n are the

Lie algebras of K and N . Then

L((kn)−1)AiL(kn) = L(k−1)dL(a
(K)
i )L(k) + L(n−1)dL(a

(N)
i )L(n)

for all k ∈ K and n ∈ N , since K and N commute. Now one can separately
estimate each of the two terms on the right hand side, where the estimate
on the second term reduces to an application of (16). We omit further de-
tails.

Let G = K×N be a direct product and assume H is positive, symmetric.
Further let P be the projection onto the subspace of L2(G) formed by the
functions which are constant over K. The key observation in the derivation
of the kernel bounds is the spectral estimate

‖St(I − P )‖2→2 ≤Me−ωt(22)

for all t > 0. Now if the Haar measure on K is normalized such that |K| = 1

then the semigroup S restricted to PL2 has a kernel K̂ with

K̂t((k, n)) = K
(N)
t (n)

where K(N) is the kernel of S acting on L2(N). If (22) is valid, e.g., if the
equivalent conditions of Theorem 4.1 are satisfied, one immediately has

‖Kt − K̂t‖∞ = ‖St(I − P )‖1→∞

≤ ‖St/4‖
2
2→∞‖St/2(I − P )‖2→2 ≤ cV (t)−1/me−ωt

for suitable c, ω > 0 and all t ≥ 1. Therefore the asymptotic form of K
can be estimated by the asymptotic form of K̂. But the latter is determined
by the nilpotent component and its form has been discussed in Section 2.
Finally since K and K̂ are both bounded by a convolution of Gaussians,
of order m and m, the difference K − K̂ has a similar bound. Combining
this observation with the uniform bound on the difference one deduces that
there are c′, ω′ > 0 such that

‖Kt − K̂t‖1 ≤ c′e−ω
′t

for all t ≥ 1.
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