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The Gaussian measure on algebraic varieties

by

Ilka A g r i c o l a and Thomas F r i e d r i c h (Berlin)

Abstract. We prove that the ring R[M ] of all polynomials defined on a real algebraic

variety M ⊂ Rn is dense in the Hilbert space L2(M, e−|x|
2
dµ), where dµ denotes the

volume form of M and dν = e−|x|
2
dµ the Gaussian measure on M .

1. Introduction. The aim of the present note is to prove that the ring
R[M ] of all polynomials defined on a real algebraic variety M ⊂ Rn is dense
in the Hilbert space L2(M, e−|x|

2
dµ), where dµ denotes the volume form of

M and dν = e−|x|
2
dµ is the Gaussian measure on M . For M = Rn, the

result is well known since the Hermite polynomials constitute a complete
orthonormal basis of L2(Rn, e−|x|2dµ).

2. The volume growth of an algebraic variety and some conse-
quences. We consider a smooth algebraic variety M ⊂ Rn of dimension d
and denote by dµ its volume form. Then M has polynomial volume growth:
there exists a constant C depending only on the degrees of the polynomi-
als defining M such that for any euclidian ball Br with center 0 ∈ Rn and
radius r > 0 the inequality

vold(M ∩Br) ≤ Crd

holds (see [Brö]). Via the Crofton formulas the above inequality is a con-
sequence of Milnor’s results concerning the Betti numbers of an algebraic
variety (see [Mi1], [Mi2], in which the stated inequality is already implic-
itly contained). This estimate yields first of all that the restrictions to M
of polynomials on Rn are square-integrable with respect to the Gaussian
measure on M .
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Proposition 1. Let M be a smooth submanifold of the euclidian space
Rn. Suppose that M has polynomial volume growth, i.e., there exist constants
C and l ∈ N such that for any ball Br,

vold(M ∩Br) ≤ Crl.
Then:

1. The ring R[M ] of all polynomials on M is contained in the Hilbert
space L2(M, e−|x|

2
dµ).

2. The functions eα|x|
2

for α < 1/2 all belong to L2(M, e−|x|
2
dµ).

P r o o f. Throughout this article, denote the distance of the point x ∈ Rn
to the origin by r2 = |x|2. We shall prove that the integrals

Im(M) :=
\
M

rme−r
2
dµ <∞, m = 1, 2, . . . ,

are finite. We have

Im(M) =
∞∑

j=0

\
M∩(Bj+1−Bj)

rme−r
2
dµ

and consequently we can estimate Im(M) as follows:

Im(M) ≤
∞∑

j=0

(j + 1)me−j
2
[vol(M ∩Bj+1)− vol(M ∩Bj)]

≤
∞∑
r=0

(r + 1)me−r
2

vol(M ∩Br+1).

Using the assumption on the volume growth of M we immediately obtain

Im(M) ≤ C
∞∑
r=0

(r + 1)m+le−r
2
.

Denoting the summands of the latter series by ar, we readily see that it
converges, since

ar+1

ar
=

(r + 1)m+le−r
2−2r−1

rm+le−r2 =
(
r + 1
r

)m+l 1
e2r+1 → 0.

A similar calculation yields the result for the functions eαr
2

with α < 1/2.

3. A dense subspace in C0
∞(Sn). The aim of this section is to verify

that a certain linear subspace of C0
∞(Sn) is dense therein. Since the family

of functions we have in mind cannot be made into an algebra, we have
to replace the standard Stone–Weierstraß argument by something different.
The idea for overcoming this problem is to use a combination of the well-
known theorems of Hahn–Banach, Riesz and Bochner.
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To begin with, we uniformly approximate the function e−r
2
ei〈k,x〉 for a

fixed vector k ∈ Rn.

Lemma 1. Denote by pm(x) the polynomial

pm(x) =
m−1∑
α=0

iα〈k, x〉α/α!.

Then the sequence e−r
2
pm(x) converges uniformly to e−r

2
ei〈k,x〉 on Rn.

P r o o f. The inequality

|pm(x)− ei〈k,x〉| ≤ ‖k‖
m‖x‖m
m!

e‖k‖·‖x‖

implies (set y = ‖k‖ · ‖x‖)
sup
x∈Rn

|e−r2
pm(x)− e−r2

ei〈k,x〉| ≤ sup
0≤y

ym

m!
ey−y

2/‖k‖2 =: Cm.

Therefore, we have to check that for any fixed vector k ∈ Rn the sequence
Cm tends to zero as m → ∞. For simplicity, denote by k the length of the
vector k ∈ Rn. A direct calculation yields

Cm =
1
m!

(
k2

4
+
k

4

√
k2 + 8m

)m

× exp
(
k2

4
+
k

4

√
k2 + 8m− 1

k2

(
k2

4
+
k

4

√
k2 + 8m

)2)
.

We are only interested in the asymptotics of Cm. We will thus ignore all
constant factors not depending on m. In this sense, we obtain

Cm ≈ 1
m!

(
k2

4
+
k

4

√
k2 + 8m

)m
exp
(
k

8

√
k2 + 8m− k2 + 8m

16

)
.

The Stirling formula m! ≈ √mmme−m allows us to rewrite the asymptotics
of Cm:

Cm ≈ 1√
mmm

(
k2

4
+
k

4

√
k2 + 8m

)m
exp
(
k

8

√
k2 + 8m+

m

2

)
.

Since
lim
m→∞

(
√
k2 + 8m−

√
8m) = 0,

we can furthermore replace
√
k2 + 8m by 2

√
2m:

Cm ≈ 1√
mmm

(
k2

4
+
k

4

√
k2 + 8m

)m
exp
(
k

4

√
2m+

m

2

)
=: eC

∗
m

with

C∗m = m ln
(
k2

4
+
k

4

√
k2 + 8m

)
+

k

2
√

2

√
m+

m

2
−m ln(m)− 1

2
ln(m).
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If m is large compared with k, we can estimate ln(k2/4 + (k/4)
√
k2 + 8m)

by 1
2 ln(m) + α for some constant α:

C∗m / m

2
ln(m) + αm+

k

2
√

2

√
m+

m

2
−m ln(m)− 1

2
ln(m)

≤ −m
2

ln(m) + (α+ 1/2)m+
k

2
√

2

√
m

≤ −m
2

ln(m) +
(
α+ 1/2 +

k

2
√

2

)
m

= m

(
α+ 1/2 +

k

2
√

2
− 1

2
ln(m)

)
.

Finally, Cm = exp(C∗m) converges to zero.

We denote the full ring of polynomials on Rn by P.

Proposition 2. The linear space Σ∞ := P · e−r2
is dense in the space

C0
∞(Sn) of all continuous functions on Sn = Rn∪{∞} vanishing at infinity.

P r o o f. Suppose the closure Σ∞ of the linear space Σ∞ does not coincide
with C0

∞(Sn). Then the Hahn–Banach Theorem implies the existence of a
continuous linear functional L : C0(Sn)→ R such that

1. L|Σ∞ = 0;
2. L(g0) 6= 0 for at least one g0 ∈ C0

∞(Sn).

According to Riesz’ Theorem (see [Rud, Ch. 6, pp. 129 ff.]), L may be
represented by two regular Borel measures µ+, µ− on Sn:

L(f) =
\
Sn

f(x) dµ+(x)−
\
Sn

f(x) dµ−(x).

In particular, µ+ and µ− are finite. The first property L|Σ∞ = 0 of L implies\
Sn

e−r
2
p(x) dµ+(x) =

\
Sn

e−r
2
p(x) dµ−(x)

for any polynomial p(x). Let us introduce the measures ν± = e−r
2
µ± on the

subset Rn ⊂ Sn. Then\
Rn
p(x) dν+(x) =

\
Rn
p(x) dν−(x)

holds and remains true for any complex-valued polynomial. We may thus
choose p(x) = pm(x) as in the previous lemma:

pm(x) =
m−1∑
α=0

iα〈k, x〉α/α!.
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But then\
Sn

pm(x)e−r
2
dµ+(x) =

\
Rn
pm(x) dν+(x) =

\
Rn
pm(x) dν−(x)

=
\
Sn

pm(x)e−r
2
dµ−(x)

together with the uniform convergence of pm(x)e−r
2

to ei〈k,x〉e−r
2

implies\
Sn

ei〈k,x〉e−r
2
dµ+(x) =

\
Sn

ei〈k,x〉e−r
2
dµ−(x),

i.e., \
Rn
ei〈k,x〉 dν+(x) =

\
Rn
ei〈k,x〉 dν−(x).

Therefore, the Fourier transforms of the measures ν+ and ν− coincide. Con-
sequently, by Bochner’s Theorem (see [Mau, Ch. XIX, pp. 774 ff.]) we con-
clude that ν+ = ν− on Rn. The linear functional L : C0(Sn)→ R must thus
be the evaluation of a function at infinity:

L(f) = cf(∞),

contrary to the existence of a function g0 ∈ C0
∞(Sn) satisfying L(g0) 6= 0.

4. The main result

Theorem 1. Let the closed subset M ⊂ Rn be a smooth submanifold
satisfying the polynomial volume growth condition. Then the ring R[M ] of
all polynomials on M is a dense subspace of the Hilbert space L2(M, e−r

2
dµ).

P r o o f. Consider the one-point compactification M̂ ⊂ Sn of M ⊂ Rn.
Then Tietze’s Extension Lemma and Proposition 2 imply that

Σ∞(M̂) := R[M ] · e−r2/4

is dense in C0
∞(M̂). We introduce the measure dν = e−r

2/2dµ, where dµ is
the volume form of M . Since\

M

dν =
\
M

e−r
2/2 dµ =

\
M

(er
2/4)2e−r

2
dµ =: V <∞,

dν defines a regular Borel measure dν̂ on M̂ (by setting dν̂(∞) = 0). There-
fore, the algebra C0

∞(M̂) of all continuous functions on M̂ vanishing at in-
finity is dense in L2(M̂, dν̂):

C0∞(M̂) = L2(M̂, dν̂).
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For any function f in L2(M, e−r
2
dµ) we have\

M

|fe−r2/4|2e−r2/2 dµ =
\
M

|f |2e−r2
dµ <∞

and, therefore, fe−r
2/4 lies in L2(M̂, dν̂). Thus, for a fixed ε > 0, there

exists g ∈ C0
∞(M̂) such that\

M

|fe−r2/4 − g(x)|2e−r2/2 dµ < ε/2.

According to Proposition 2 we can find a polynomial p(x) ∈ R[M ] approxi-
mating g:

sup
x∈M̂
|g(x)− p(x)e−r

2/4|2 < ε/(2V ).

Using the inequality ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 we conclude that\
M

|f(x)e−r
2/4 − p(x)e−r

2/4|2e−r2/2 dµ < ε;

but this is equivalent to\
M

|f(x)− p(x)|2e−r2
dµ < ε.

Remark 1. In fact, the smoothness of M is not essential in the proof of
Theorem 1. By the same arguments, the main result holds for any manifold
M closed in Rn, provided that M admits a volume form such that the
condition of polynomial volume growth as formulated in Proposition 1 is
satisfied.

5. Examples and final remarks. We now give a few simple exam-
ples. Notice that we recover, of course, that the polynomials are dense in
L2(Rn, e−r2

dµ) (Hermite polynomials) or in L2(M,dµ) for any compact
submanifold (Legendre polynomials in the case M = [−1, 1]).

Example 1. Consider a revolution surface in R3 defined by two polyno-
mials f, h,




x = f(u1) cosu2,

y = f(u1) sinu2, f(u1) > 0, (u1, u2) ∈ R× [0, 2π].

z = h(u1),

Then dµ = f
√
f ′2 + h′2du1du2 and r2 = f2 + h2, and thus

R[f cosu2, f sinu2, h] is dense in

L2(R× [0, 2π], e−(f2+h2)f
√
f ′2 + h′2du1du2).
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In the special case of a cylinder, i.e. f = 1, h = u1, this reduces to the well
known fact that the ring

R[u1, cosu2, sinu2] = R[u1]⊗ R[cosu2, sinu2]

is indeed dense in the Hilbert space

L2(R× [0, 2π], e−u
2
1du1du2) = L2(R, e−u

2
1du1)⊗ L2([0, 2π], du2).

Example 2. Let F : C → C be a polynomial and consider the surface
defined by

f : C→ R3, f(z) = (x, y, |F (z)|), z = x+ iy.

Then one checks that dµ =
√

1 + |F ′|2 |dz|2 and r2 = |z|2 + |F (z)|2. Thus

R[x, y, |F (z)|] = L2(R2, e−(|z|2+|F (z)|2)
√

1 + |F ′|2 |dz|2).

Let us study the polynomial F = z2k in more detail. Here the coordinate
ring coincides with the usual polynomial ring R[x, y] in two variables, and
thus we have proved that these are dense in

L2(R2, e−(|z|2+|z|4k)
√

1 + 4k2|z|2(2k−1) |dz|2).

Example 3. We finish with a one-dimensional example: the graph M =
{(x, f(x))} of a polynomial f : R→ Rn. Then dµ =

√
1 + ‖f ′‖2 dx, and we

obtain

R[x] = L2(R, e−(x2+‖f(x)‖2)
√

1 + ‖f ′‖2 dx).

Remark 2. The main result raises an interesting analogous problem in
complex analysis which, to our knowledge, is still open. It is well known that
the polynomials on Cn are dense in the Fock or Bergman space

F(Cn) := {f ∈ L2(Cn, e−r
2
dµ) | f holomorphic}.

Furthermore, a theorem by Stoll (see [Sto1], [Sto2]) states that among all
complex-analytic submanifolds N of Cn, those with polynomial growth are
exactly the algebraic ones, and thus the only ones for which the elements
of the coordinate ring are square-integrable with respect to the Gaussian
measure. It is then common to study the space

F(N) := {f ∈ L2(N, e−r
2
dµ) | f holomorphic},

but we were not able to find any results on whether C[N ] is dense herein.

More elaborate applications of the main result to the situation where M
carries a reductive algebraic group action will be discussed in some forth-
coming works (see e.g. [Agr]). In this case, one can decompose the ring R[M ]
into isotypic components and, via Theorem 1, one obtains a decomposition
of L2(M, e−r

2
dµ) analogous to the classical Frobenius reciprocity.
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