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Strong Fubini properties of ideals

by

Ireneusz R e c ł a w (Gdańsk) and Piotr Z a k r z e w s k i (Warszawa)

Abstract. Let I and J be σ-ideals on Polish spaces X and Y , respectively. We say
that the pair 〈I, J〉 has the Strong Fubini Property (SFP) if for every set D ⊆ X×Y with
measurable sections, if all its sections Dx = {y : 〈x, y〉 ∈ D} are in J , then the sections
Dy = {x : 〈x, y〉 ∈ D} are in I for every y outside a set from J (“measurable” means being
a member of the σ-algebra of Borel sets modulo sets from the respective σ-ideal). We study
the question of which pairs of σ-ideals have the Strong Fubini Property. Since CH excludes
this phenomenon completely, sufficient conditions for SFP are always independent of ZFC.

We show, in particular, that:
• if there exists a Lusin set of cardinality the continuum and every set of reals of

cardinality the continuum contains a one-to-one Borel image of a non-meager set, then
〈MGR(X), J〉 has SFP for every J generated by a hereditary Π1

1 (in the Effros Borel
structure) family of closed subsets of Y (MGR(X) is the σ-ideal of all meager subsets of
X),
• if there exists a Sierpiński set of cardinality the continuum and every set of reals

of cardinality the continuum contains a one-to-one Borel image of a set of positive outer
Lebesgue measure, then 〈NULLµ, J〉 has SFP if either J = NULLν or J is generated by
any of the following families of closed subsets of Y (NULLµ is the σ-ideal of all subsets
of X having outer measure zero with respect to a Borel σ-finite continuous measure µ
on X):

(i) all compact sets,
(ii) all closed sets in NULLν for a Borel σ-finite continuous measure ν on Y ,

(iii) all closed subsets of a Π1
1 set A ⊆ Y .

1. Preliminaries. This paper, though self-contained, may be viewed
as a continuation of [16], where the question which pairs of σ-ideals have
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the Fubini Property was studied. Our notation and terminology is therefore
consistent with [16] and in fact in most cases follows [14].

Recall that, motivated by the classical Fubini and Kuratowski–Ulam
theorems (see [14], 8.41), we say that a pair 〈I, J〉 of σ-ideals on Polish
spaces X and Y , respectively, has the Fubini Property (FP) if for every
Borel set B ⊆ X × Y , if all its sections Bx = {y : 〈x, y〉 ∈ B} are in J , then
the sections By = {x : 〈x, y〉 ∈ B} are in I for every y outside a set from
J . By a σ-ideal on X we mean here a proper subfamily of P(X) containing
all singletons and closed under taking subsets and countable unions. We
usually (but, unlike [16], not always) assume that for any A ∈ I there is
B ∈ B(X) ∩ I with A ⊆ B, i.e., I has a Borel basis.

Relaxing the condition that B ∈ B(X×Y ) we say that the pair 〈I, J〉 has
the Strong Fubini Property (SFP) if for every D ⊆ X × Y with all sections
Dy measurable, i.e., ∀y Dy ∈ BI , where BI is the σ-algebra of Borel sets
modulo sets from I, if all sections Dx are in J , then the sections Dy are
in I for every y outside a set from J . Note that in general we cannot omit
the condition of measurability of horizontal sections of D, since we have the
following (however, see [12] and the notes after 1.11 and 1.12)

Example 1.1. Suppose I is a σ-ideal on X and κ = non(I) (see below).
Take E ⊆ X with |E| = κ; let ≤ be a well-ordering of E of order type κ and
set

D = {〈x, y〉 : y ≤ x}.
Then ∀x Dx ∈ I but {y : Dy 6∈ I} = E 6∈ I.

Also note that under CH no pair 〈I, J〉 has SFP. Indeed, let us say that
a set D ⊆ X×Y is a 0-1 counterexample to SFP for 〈I, J〉 if ∀x ∈ X Dx ∈ J
and ∀y ∈ Y Dy ∈ I∗, where I∗ = {X \A : A ∈ I}. Then we have

Example 1.2. Assume CH and, given Polish spaces X, Y , let D ⊆ X×Y
be such that ∀x ∈ X |Dx| ≤ ℵ0 and ∀y ∈ Y |X \ Dy| ≤ ℵ0. Then D is a
0-1 counterexample to SFP for any pair 〈I, J〉 of σ-ideals on X and Y ,
respectively.

Consequently, the sufficient conditions for SFP we are looking for in this
paper are always independent of ZFC.

In the next couple of facts we reformulate the definitions and present
some basic properties of the notions introduced above; we always assume
that I and J are σ-ideals on Polish spaces X and Y , respectively. The
proofs are routine and we omit them.

Lemma 1.3. For a set D ⊆ X × Y the following are equivalent :

(i) ∀x Dx ∈ J ,
(ii) ∀E 6∈ J ⋂

y∈E D
y = ∅.
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Proposition 1.4 (cf. [12], Lemma 1). The following are equivalent :

(i) 〈I, J〉 has SFP ,
(ii) if Z ⊆ Y, Z 6∈ J and {Dy : y ∈ Z} ⊆ BI \I, then there exists E ⊆ Z

with E 6∈ J such that
⋂
y∈E D

y 6= ∅.
Note that if I has a Borel basis, then in 1.4(ii) as well as in the definition

of the SFP above, we can assume that ∀y Dy ∈ B(X).

Proposition 1.5. The following are equivalent :

(i) there is no 0-1 counterexample to SFP for 〈I, J〉,
(ii) if {Dy : y ∈ Y } ⊆ I∗, then there exists E ⊆ Y with E 6∈ J such that⋂

y∈E D
y 6= ∅.

(iii) if {Cx : x ∈ X} ⊆ J∗, then there exists E ⊆ X with E 6∈ I such
that

⋂
x∈E Cx 6= ∅.

Note that SFP for 〈I, J〉 does not necessarily imply SFP for 〈J, I〉. On
the other hand, D is a 0-1 counterexample to SFP for 〈I, J〉 iff {〈y, x〉 :
〈x, y〉 ∈ (X × Y ) \D} is a 0-1 counterexample to SFP for 〈J, I〉.

We say that I and J are isomorphic and write I ≡ J if there exists a
bijection f : X → Y between X and Y such that for A ⊆ X, A ∈ I ⇔
f [A] ∈ J . If there exists such a Borel isomorphism f , then we say that
I and J are Borel isomorphic, in symbols I ≡B J . It is well known that
the σ-ideal MGR(X) of all meager subsets of X is Borel isomorphic to the
σ-ideal K = MGR(R), assuming X has no isolated points. It is also well
known that every σ-ideal of the form NULLµ for a σ-finite continuous (i.e.,
vanishing on singletons) Borel measure µ on X is Borel isomorphic to the
σ-ideal L of Lebesgue measure zero sets.

Proposition 1.6 (cf. [16], 1.4). Suppose that I ′ and J ′ are σ-ideals on
X and Y , respectively.

(i) If I ≡B I ′ and J ≡ J ′, then 〈I, J〉 has SFP if and only if 〈I ′, J ′〉
does.

(ii) If I ≡ I ′ and J ≡ J ′, then there is no 0-1 counterexample to SFP
for 〈I, J〉 if and only if there does not exist one for 〈I ′, J ′〉.

Recall that given A 6∈ I, the restriction of I to A, denoted by I|A, is the
σ-ideal on X given by

I|A = {C ⊆ X : C ∩A ∈ I}.
Note that if I has a Borel basis and A ∈ B(X), then I|A has a Borel basis
as well.

Proposition 1.7 (cf. [16], 3.8). (i) Let I be a σ-ideal on X with a Borel
basis such that I ⊆ I and let A ⊆ Y with A 6∈ J . Then SFP for 〈I, J〉 implies
SFP for 〈I, J |A〉.
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(ii) If each Z ⊆ Y with Z 6∈ J contains A 6∈ J such that the pair 〈I, J |A〉
has SFP , then so does the pair 〈I, J〉 .

The following cardinal invariants of σ-ideals will turn out to be relevant
to SFP:

• non(I) = min{κ : ∃B 6∈ I |B| ≤ κ},
• nonl(I) = min{κ : ∀A ∈ BI \ I ∃B 6∈ I B ⊆ A ∧ |B| ≤ κ},
• shr(I) = min{κ : ∀A 6∈ I ∃B 6∈ I B ⊆ A ∧ |B| ≤ κ},
• cov(I) = min{|F| : F ⊆ I ∧⋃F = R},
• covl(I) = min{|F| : F ⊆ I ∧⋃F ∈ BI \ I},
• add(I) = min{|F| : F ⊆ I ∧⋃F 6∈ I},
• cof(I) = min{|F| : F ⊆ I ∧ ∀A ∈ I ∃B ∈ F A ⊆ B}.
The notation shr(I) is taken from Kada and Yuasa [11]. Note that:

nonl(I) = min{non(I|A) : A ∈ BI \ I},
shr(I) = min{non(I|A) : A 6∈ I},

covl(I) = min{cov(I|A) : A ∈ BI \ I},
add(I) = min{cov(I|A) : A 6∈ I},
non(I) ≤ nonl(I) ≤ shr(I) ≤ cof(I) (see [11], 2.1).

It is also known that the inequality non(I) < shr(I) is consistent with ZFC
for I ∈ {L,K,K}, where K is the σ-ideal of σ-bounded subsets of the Baire
space NN (see [11], 2.9).

We say that I is ccc if there is no uncountable family of disjoint sets in
BI \ I. If I is not ccc, then SFP for 〈I, J〉 is rather unlikely to hold.

Proposition 1.8. If there is a disjoint family of cardinality non(J) con-
sisting of sets from BI \ I, then the pair 〈I, J〉 does not have SFP.

The idea behind SFP, expressed in 1.4 above, that every family of “J-
positively” many “I-positive” sets always has “J-positively” many members
with nonempty intersection, has been around for some time. Here is a sample
of results.

Proposition 1.9 (Fremlin, [7], 1Ec). Suppose that I is ccc. If covl(I) >
ω1, then the pair 〈I, [Y ]≤ω〉 has SFP.

Note. In the terminology of [7] this amounts to saying that if the mea-
surable space with negligibles (X,BI , I) is ω2-Baire, then there is no un-
countable point-countable family in BI \ I.

Proposition 1.10 (Silver, see [13]). Assume that λ < κ ≤ c are regular
uncountable cardinals such that there is a λ-saturated κ-additive ideal I
on X (this requires κ to be quasi-measurable—see [8], 9C). Then the pair
〈I, [Y ]≤λ〉 has SFP.
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Note. Silver’s lemma is more general: If I is a λ-saturated κ-additive
ideal on κ, where λ < κ are regular uncountable cardinals, then given {Cα :
α < λ} ⊆ P(κ) \ I, there is E ⊆ λ with |E| = λ so that

⋂
α∈E Cα 6= ∅

(compare 1.4 above).

Proposition 1.11 (Kunen, see [12], Proposition 3). Assume that κ ≤ c
is a regular uncountable cardinal such that there is a κ-additive measure
m : P(X) → [0, 1] and let I = {A ⊆ κ : m(A) = 0} (this requires κ to be
atomlessly-measurable—see [8]). Then the pair 〈I,NULLν〉 has SFP for any
σ-finite continuous measure ν on Y .

Note. Kunen’s theorem is more general: If I is as above then, given
Z ⊆ Y with Z 6∈ NULLν and {Cy : y ∈ Z} ⊆ P(X) \ I, there exists E ⊆ Z
with E 6∈ NULLν such that

⋂
y∈E C

y 6= ∅.
Proposition 1.12 (Kamburelis, [12], Proposition 2). Assume that κ ≤ c

is a regular uncountable cardinal and there is a κ-additive ideal I on X
such that the quotient Boolean algebra P(X)/I is isomorphic to Bλ/Kλ for
some λ, where Bλ is the σ-algebra generated by the basic open sets in 2λ and
Kλ is the σ-ideal of meager sets in 2λ. Then the pair 〈I,MGR(Y )〉 has SFP.

Note. Kamburelis’s theorem is more general in exactly the same sense
as Kunen’s theorem above.

There is a vast literature concerning strong Fubini theorems, i.e., state-
ments about the existence and equality of iterated integrals of functions
which are not necessarily measurable. This is, of course, implicitly related
to SFP for I = J = L (see [9], [6], [18], [8] and [19]). In particular, it is shown
in [19] that SFP for 〈L,L〉 follows from the Measure Extension Axiom of
Carlson (see [4]) stating that given any countable collection of subsets of R,
the Lebesgue measure can be extended to a countably additive measure
which measures all of them. SFP for 〈K,K〉 follows from a similar category
extension axiom (see [20], Theorem 3.1).

The second author learnt the strongest result in this direction from
D. H. Fremlin, who mentioned that he himself had heard about it from
H. Woodin, in the context of random real model. It amounts, modulo 2.4(ii),
to the following

Theorem 1.13 (folklore?). If shr(L) < cov(L), then for every set D ⊆
R×R with all sections Lebesgue measurable there exists a Borel set B ⊆ R×R
such that L-almost all respective sections of D and B are L-almost equal.

It is known that a model for ω1 = shr(L) < cov(L) (ω1 = shr(K) <
cov(K), resp.) is the model obtained by adding κ > ω1 many random reals
(Cohen reals, resp.) to a model of CH (see e.g. [11], 2.6, but it was already
known to Kunen and Solovay in the early 70’s).
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The main results of this paper present various conditions which imply
SFP for 〈I, J〉.

In the first part we study the conditions having the form of inequalities
between cardinal invariants of I and J . In particular, we exploit the strength
of the inequality shr(J) < cov(I). This leads to generalizations of 1.13 to
the cases where I = K or L and J is an arbitrary ccc σ-ideal with a Borel
basis (Theorems 2.14 and 2.16).

In the second part we look at conditions asserting the existence of special
sets related to I. In particular, we show that for I = K (L, resp.) if there
exists a Lusin (Sierpiński, resp.) set of cardinality the continuum and every
set of reals of cardinality the continuum contains a one-to-one Borel image
of a nonmeager (not Lebesgue measurable, resp.) set, then 〈I, J〉 has SFP
for every “reasonable” σ-ideal J provided that 〈I, J〉 has FP (Theorem 3.1).

In the final part we collect some necessary conditions for SFP and indi-
cate open problems.

Throughout the paper we assume that I and J are σ-ideals on Polish
spaces X and Y , respectively.

2. Sufficient conditions—cardinal invariants. We say that L ⊆ X
is an I-Lusin set if L is uncountable and for every A ∈ I, A∩L is countable.

The following is an easy generalization of Fremlin’s theorem 1.9.

Proposition 2.1. Suppose that I is ccc. If covl(I) > ω1 and for each
Z 6∈ J there is a J-Lusin set L ⊂ Z, then the pair 〈I, J〉 has SFP.

P r o o f. This follows from 1.7 and 1.9. It is enough to notice that if L is
an arbitrary J-Lusin set, then J |L = [Y ]≤ℵ0 |L, so 〈I, J |L〉 has SFP.

Corollary 2.2. Suppose that I is ccc. If covl(I) > ω1 and cof(J) = ω1,
then the pair 〈I, J〉 has SFP.

P r o o f. This follows from 2.1 since cof(J) = ω1 implies that each Z 6∈ J
contains a J-Lusin set.

Corollary 2.3. Suppose that I is ccc and J is generated by all Borel
subsets of a Π1

1 non-Borel set A ⊆ Y . If covl(I) > ω1, then the pair 〈I, J〉
has SFP.

P r o o f. This follows from 2.2, because each Borel subset of A is covered
by countably many constituents of A; consequently, cof(J) = ω1.

If A,B ⊆ X we say that A,B are equal modulo I, in symbols A =I B,
if the symmetric difference A4 B ∈ I. If φ(x) is a formula and {x ∈ X :
φ(x)} =I X, then we say that φ(x) holds for I-almost all x ∈ X.

Suppose that I is ccc. If A ⊆ X then by A∗I we denote the unique,
modulo I, set from BI such that A ⊆ A∗I and ∀B ∈ BI B ⊆ A∗I \ A ⇒
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B ∈ I. To see that this definition is correct, consider a maximal family of
pairwise disjoint sets in BI \I disjoint from A. If, additionally, I has a Borel
basis, then we always assume that A∗I ∈ B. In any case, if A ∈ BI , then
A∗I =I A.

The following lemma reveals the key property of the cardinal invariants
nonl(I) and shr(I) in the case I is ccc.

Lemma 2.4. Suppose that I is ccc.

(i) For every set A ∈ BI \ I there exists a set E ⊆ A such that |E| ≤
nonl(I) and E∗I =I A. In particular , there exists a set Z ⊂ X such that
|Z| ≤ nonl(I) and Z∗I = X.

(ii) For every set A ⊆ X with A 6∈ I, there exists a set E ⊆ A such that
|E| ≤ shr(I) and A∗I = E∗I .

P r o o f. This is proved by an exhaustion argument. Let κ = nonl(I)
(κ = shr(I), resp.). In each case it suffices to find E ⊆ A with |E| ≤ κ
and A \ E∗I ∈ I. So suppose that there is no such E. To reach a contra-
diction, construct inductively a sequence of subsets of A with the following
properties:

• ∀α |Cα| ≤ κ,
• ∀α Cα 6∈ I,
• ∀α, β (α 6= β ⇒ C∗Iα ∩ C∗Iβ = ∅).
At step β < ω1 let Eα =

⋃
α<β Cα and using the fact that A \ E∗Iα 6∈ I

find Cα ⊆ A \ E∗Iα with |Cα| ≤ κ and Cα 6∈ I.
The sequence 〈C∗Iα : α < ω1〉 contradicts the fact that I is ccc.

Proposition 2.5. Suppose that I is ccc. If nonl(I) < add(J), then the
pair 〈I, J〉 has SFP.

P r o o f. Let κ = nonl(I). By 2.4(i) there is Z ⊂ X such that |Z| ≤ κ
and Z∗I = X.

Take D ⊂ X × Y with ∀x Dx ∈ J and ∀y Dy ∈ BI . Let W =
⋃
x∈Z Dx.

Then W ∈ J , since κ < add(J) and we have {y : Dy 6∈ I} ⊆W . Indeed,

∀y ∈ Y \W Dy ∩ Z = ∅,
so Dy ⊂ X \ Z and consequently, since Dy ∈ BI , Dy ∈ I.

As a corollary we obtain a generalization of 3.10(iii) from [16].

Proposition 2.6. Assume Martin’s Axiom + there is a quasi-measurable
cardinal κ < c (see [7], 9G). Let A ⊆ X be a set of cardinality κ and let I
be an ω1-saturated κ-additive ideal on A. If add(J) = c and I is the σ-ideal
on X with basis consisting of Borel sets B ⊆ X such that B ∩ A ∈ I, then
the pair 〈I, J〉 has SFP.
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P r o o f. Clearly, I is ccc and nonl(I) = κ < add(J).

We now turn to the consequences of the inequality shr(J) < cov(I) which
apparently is the most important cardinal condition for SFP. Part (i) of our
next lemma belongs to the folklore.

Lemma 2.7. (i) If either non(J) < cov(I) or non(I) < cov(J), then there
is no 0-1 counterexample to SFP for 〈I, J〉.

(ii) If either shr(J) < cov(I) or non(I) < add(J), then for every Z ⊆ Y
with Z 6∈ J , there is no 0-1 counterexample to SFP for 〈I, J |Z〉.

P r o o f. (i) follows immediately from 1.5. (ii) is a direct application of
(i) to the pair 〈I, J |Z〉 where Z 6∈ J .

Given a semigroup G of Borel functions from X to X we say that I is:

• G-invariant if g−1[A] ∈ I for any g ∈ G and A ∈ I;
• G-ergodic if

⋃
g∈G g

−1[A] ∈ I∗ for any A ∈ BI \ I.

Note that the σ-ideals K and L are invariant and ergodic under the group
of rational translations.

Lemma 2.8. Suppose that there exists a countable semigroup G of Borel
functions from X to X such that the σ-ideal I is G-invariant and G-ergodic.
Then the following are equivalent :

(i) 〈I, J〉 has SFP ;
(ii) for every Z ⊆ Y , if Z 6∈ J , then there is no 0-1 counterexample to

SFP for 〈I, J |Z〉.
P r o o f. Clearly, (i)⇒(ii). To see that (ii)⇒(i), take D ⊆ X × Y with

∀x Dx ∈ J and ∀y Dy ∈ BI . Suppose that Z = {y : Dy 6∈ I} 6∈ J .
Then E =

⋃
z∈Z((

⋃
g∈G g

−1[Dz])×{z}) is a 0-1 counterexample to SFP for
〈I, J |Z〉.

Lemmas 2.7(ii) and 2.8 immediately give

Theorem 2.9. Suppose that there exists a countable semigroup G of
Borel functions such that the σ-ideal I is G-invariant and G-ergodic. If
either shr(J) < cov(I) or non(I) < add(J), then the pair 〈I, J〉 has SFP.
In particular , if I ∈ {K,L}, then shr(J) < cov(I) implies SFP for 〈I, J〉.

In the forthcoming paper [21] the second author proves that FP for 〈K, J〉
(〈L, J〉, resp.) implies that in the model obtained by adding κ > ω1 many
Cohen reals (random reals, resp.) to a model of CH we have shr(J) < cov(K)
(shr(J) < cov(L), resp.), provided that J has sufficiently good absoluteness
properties. In particular, the latter is the case when either J is a Suslin
σ-ideal (see [1], 3.7) or J is generated by a hereditary Π1

1 (in the Effros
Borel structure—see [14], 35.G) family of closed subsets of Y . A different
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approach to the consistency of SFP for 〈I, J〉 when I ∈ {K,L} will be
presented in Section 3.

The sufficient condition for SFP given in the next theorem is apparently
of a different character. However, in some important cases it will turn out
to be situated between shr(J) < cov(I) and SFP for 〈I, J〉 (see 2.13 below).

First we need a folklore-like lemma.

Lemma 2.10. Suppose that J has a Borel basis and E ⊆ Y . If P(E)
⊆ BJ , then E ∈ J .

P r o o f. Let E ∈ BJ \ J ; we will prove that P(E) 6⊆ BJ .
Shrinking E if necessary, we can assume that E ∈ B \ J . Then E is an

uncountable Borel subset of a Polish space, so it contains a set B which
is neither disjoint from nor contains an uncountable Borel subset of E (a
Bernstein set). By a classical argument, B 6∈ BJ .

Theorem 2.11. Suppose that J has a Borel basis. If for every D ⊆ X×Y ,
the conditions ∀x Dx ∈ BJ and ∀y Dy ∈ BI imply that {y : Dy ∈ I} ∈ BJ ,
then the pair 〈I, J〉 has SFP.

P r o o f. Take an arbitrary D ⊆ X × Y such that ∀x Dx ∈ J and
∀y Dy ∈ BI . Let E = {y : Dy 6∈ I}. Note that P(E) ⊆ BJ . Indeed, if
C ⊆ E, then C = {y : (D̃)y 6∈ I} where D̃ = D ∩ (X × C) has all sections
measurable. Consequently, C ∈ BJ by the hypotheses of the theorem. Hence
2.10 implies that E ∈ J .

Lemma 2.12. Suppose that J is ccc and let κ = shr(J). For any disjoint
sets A1, A2 ⊆ Y which cannot be separated by a set from BJ there are sets
E1 ⊆ A1 and E2 ⊆ A2 with |E1|, |E2| ≤ κ which cannot be separated by a
set from BJ .

P r o o f. Clearly, A1, A2 6∈ J since otherwise they could be separated by
a set from J . Now it suffices to apply 2.4(ii) and let E1 ⊆ A1 and E2 ⊆ A2

be such that |E1|, |E2| ≤ κ and A∗Ji =E∗Ji for i = 0, 1.

In view of 2.11 the following is a strengthening of 2.9 in the case J is ccc
and has a Borel basis.

Theorem 2.13. Suppose that J is ccc with a Borel basis and there exists
a countable semigroup G of Borel functions from X to X such that I is
G-invariant and G-ergodic. If shr(J) < cov(I), then for every D ⊆ X × Y ,
the conditions ∀x Dx ∈ BJ and ∀y Dy ∈ BI imply that {y : Dy ∈ I} ∈ BJ .
In particular , this implication is true for I ∈ {K,L}.

P r o o f. Take D ⊆ X × Y with ∀x Dx ∈ BJ and ∀y Dy ∈ BI . Let
A1 = {y : Dy ∈ I} and A2 = Y \A1. We want to prove that A1 ∈ BJ .
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Set D̃ =
⋃
y∈Y ((

⋃
g∈G g

−1[Dy])×{y}). Note that since I is G-invariant,
G-ergodic and |G| ≤ ℵ0 we have

∀y ∈ A1 (D̃)y ∈ I and ∀y ∈ A2 (D̃)y ∈ I∗.
By 2.12, there are sets E1 ⊆ A1 and E2 ⊆ A2 with |E1|, |E2| ≤ shr(J)

which cannot be separated by a set from BJ .
Set C =

⋃
y∈E1

(D̃)y∪⋃y∈E2
(X\(D̃)y). Since |E1∪E2| < cov(I), C 6= X;

pick x ∈ X \ C. Then E1 ∩Dx = ∅ and E2 ⊆ Dx, so Dx separates E1 from
E2. But Dx ∈ BJ and we have reached a contradiction.

We get further strengthenings when we restrict to the cases I = MGR(X)
or NULLµ for a Borel σ-finite continuous measure µ on X. Let BP =
BMGR(X) and MEASµ = BNULLµ . We also write =∗ instead of =MGR(X).

Theorem 2.14. Suppose that J is ccc and has a Borel basis. If shr(J) <
cov(K), then for every D ⊆ X×Y , the conditions ∀x Dx ∈ BJ and ∀y Dy ∈
BP imply that there exists a set B which is Borel in X × Y and such that
for J-almost all y ∈ Y the horizontal sections Dy and By are equal modulo
meager sets.

P r o o f. Let {Un : n ∈ N} be an open basis for Y . Define

B′ =
⋃
n

(Un × {y : Dy is comeager in Un}).

Then 2.13 easily implies that for each n, {y : Dy is comeager in Un} ∈ BJ ;
let Pn ∈ B(Y ) be such that {y : Dy is comeager in Un} =J Pn. Set

B =
⋃
n

(Un × Pn).

Then B ∈ B(X × Y ) and for J-almost all y we have

By =∗ (B′)y =
⋃
{Un : Dy is comeager in Un} =∗ Dy

(see [14], 8.29).

As a corollary we get a strong approximation theorem for sets with all
sections having BP.

Theorem 2.15. If shr(K) < cov(K), then for every set D ⊆ X × Y
with all sections Dx and Dy having BP there exists a Borel set B ⊆ X × Y
such that almost all respective sections of D and B are almost equal ; here
“almost” means modulo meager sets in the respective spaces.

P r o o f. By 2.14, there is a Borel set B ⊆ X × Y with By =∗ Dy

for almost all y. Let E = D 4 B. Then Ey ∈ MGR(X) for almost all y.
But by 2.9, since shr(K) < cov(K), we have SFP for 〈MGR(Y ),MGR(X)〉.
Consequently, Ex ∈ MGR(Y ) for almost all x. Thus Bx =∗ Dx for almost
all x.
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If S is a σ-algebra on a set Z and E ⊆ Z, then S|E = {A ∩ E : A ∈ S}
is the relative σ-algebra on Z.

The following result is a generalization of 1.13. The proof of (i) below is
just a refinement of the argument (modulo 2.4(ii)) the second author learnt
from D. H. Fremlin. We present it here for the sake of completeness thanks
to the kind permission of David Fremlin. A considerable simplification of the
original proof of (ii), which resulted in dropping the unnecessary assumption
non(L) < cov(L) (see [17]), was also suggested by him.

Theorem 2.16. Suppose that J is ccc with a Borel basis and µ is a
σ-finite Borel continuous measure on X. If shr(J) < cov(L), then for every
D ⊆ X × Y with ∀x Dx ∈ BJ and ∀y Dy ∈ MEASµ:

(i) the function y 7→ µ(Dy) is BJ -measurable,
(ii) there exists a set B which is Borel in X×Y and such that for J-almost

all y ∈ Y the horizontal sections Dy and By are equal modulo µ-null sets.

P r o o f. Since NULLµ ≡B L, we can assume that X = [0, 1] and µ is the
Lebesgue measure on [0, 1]. Let A be the σ-algebra of subsets of [0, 1] × Y
with all sections measurable, i.e.,

A = {A ⊆ [0, 1]× Y : ∀x Ax ∈ BJ ∧ ∀y Ay ∈ MEASµ}.
Let D ∈ A.

(i) Define g(y) = µ(Dy) for y ∈ Y . We want to prove that g is BJ -
measurable.

Claim 1. For every E ⊆ Y , if |E| < cov(L), then the function g|E is
BJ |E-measurable.

P r o o f. Write µN for the natural product measure on [0, 1]N. The Strong
Law of Large Numbers (see [8], A2X) tells us that for all y ∈ Y and for
µN-almost all z = 〈zi : i ∈ N〉 ∈ [0, 1]N,

(∗) g(y) = lim
n→∞

1
n
|{i < n : zi ∈ Dy}|.

Since |E| < cov(L) = cov(NULLµN), it follows that there is z ∈ [0, 1]N such
that (∗) holds for all y ∈ E.

Let

h(y) = lim
n→∞

1
n
|{i < n : zi ∈ Dy}| for y ∈ Y.

We have g|E = h|E, so it is now enough to prove that h is BJ -measurable.
For this purpose fix n ∈ N and let

hn(y) = |{i < n : zi ∈ Dy}| for y ∈ Y.
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We have hn(y) = |{i < n : y ∈ Dzi}|, so for any k ∈ N,

{y : hn(y) = k} =
⋃

|T |=k

( ⋂

i∈T
Dzi ∩

⋂

i∈n\T
([0, 1] \Dzi)

)
∈ BJ .

Thus for each n, hn is BJ -measurable and so is h.

Claim 2. For every function f : Y → R, if f is not BJ -measurable,
then there exists a set E ⊆ Y such that |E| ≤ shr(J) and the function f |E
is not BJ |E-measurable.

P r o o f. It clearly suffices to prove that for every C ⊆ Y , if C 6∈ BJ , then
there exists a set E ⊆ Y such that |E| ≤ shr(J) and C ∩ E 6∈ BJ |E.

So take an arbitrary C ⊆ Y with C 6∈ BJ and note that C and Y \ C
cannot be separated by a set from BJ . Hence, by 2.12, there are E1 ⊆ C
and E2 ⊆ Y \ C with |E1|, |E2| ≤ shr(J) which cannot be separated by a
set from BJ . Set E = E1 ∪ E2. It is easy to see that this works.

Finally, Claims 1 and 2 together with the condition shr(J) < cov(L)
show immediately that g is BJ -measurable.

(ii) Consider the σ-ideal

I = {C ⊆ [0, 1]× Y : Cy ∈ L for J-almost all y ∈ Y }.
We want to prove that D ∈ BI .

Define
B′ = {〈x, y〉 : x is a point of density 1 of Dy}.

By the Lebesgue Density Theorem (see [14], 17.9), ∀y µ((B′)y 4Dy) = 0,
thus B′ 4D ∈ I and it suffices to prove that B′ ∈ BI .

Note that

〈x, y〉 ∈ B′ ⇔ lim
n→∞

n

2
µ

(
Dy ∩

[
x− 1

n
, x+

1
n

])
= 1,

so it is enough to show that for any fixed h > 0 the function g given by

g(x, y) = µ(Dy ∩ [x− h, x+ h]) for x ∈ R, y ∈ Y
is BI-measurable.

To see the latter, first note that BI contains BJ ⊗B(Y ), the σ-algebra
generated by the family {A×B : A ∈ BJ , B ∈ B(Y )}. But

g(x, y) = µ((D ∩ ([x− h, x+ h]× Y ))y),

so, by (i), the function g is BJ -measurable in the second variable. Since
g is also continuous in the first variable, it follows that it is BJ ⊗ B(Y )-
measurable.

For the sake of completeness we present, as a corollary, a strong ap-
proximation theorem for functions with all sections measurable. Another
argument may be reconstructed with the help of 2.4(ii) from the proof of
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Proposition 6Kb in [8]; a more general approximation theorem is obtained
there as a consequence of the existence of an atomlessly measurable cardinal.

Theorem 2.17. Let µ and ν be σ-finite Borel continuous measures on
Polish spaces X and Y , respectively. If shr(L) < cov(L), then:

(i) for every set D ⊆ X × Y with all sections Dx and Dy measurable
there exists a Borel set B ⊆ X × Y such that almost all respective sections
of D and B are almost equal ,

(ii) for every function f : X × Y → R such that all its sections

fx : y 7→ f(x, y) : Y → R, fy : x 7→ f(x, y) : X → R
are measurable, there exists a Borel function g : X×Y → R such that almost
all respective sections of f and g are almost equal. Here “almost” means
modulo null sets in the respective spaces.

P r o o f. To prove (i) argue exactly as in the proof of 2.15 using 2.16
instead of 2.13.

(ii) follows from (i) with the help of the ordinary machinery of simple
functions.

Recall that, by the remarks following 2.9, the model for 2.14 and 2.15
(2.16 and 2.17, resp.) is the Cohen real model (random real model, resp.),
provided that J has sufficiently good absoluteness properties and the pair
〈K, J〉 (〈L, J〉, resp.) has FP. It remains, however, an open problem to find
such a ccc σ-ideal J with a Borel basis and with J 6≡B K (J 6≡B L, resp.)
(see [16] and [21]).

3. Sufficient conditions—special sets of reals. The results of this
section say roughly that for such ideals I as K and L, FP and SFP for 〈I, J〉
are consistently the same, provided J is “reasonable”.

Given σ-algebras S1 and S2 on sets Z1 and Z2, respectively, we say that
a map f : Z1 → Z2 is S1-S2-measurable if f−1[A] ∈ S1 for any A ∈ S2.

Recall that J is Σ0
α-supported if for any A ∈ I there is B ∈ Σ0

α ∩ J with
A ⊆ B.

Theorem 3.1. Suppose that :

(i) I has a Borel basis and is ccc,
(ii) the Boolean algebra BI/I is homogeneous,

(iii) there exists an I-Lusin set of cardinality the continuum,
(iv) every subset of X of cardinality the continuum contains a one-to-

one Borel image of a set not in I,
(v) there is α < ω1 such that J is Σ0

α-supported ,
(vi) for every Borel set B ⊆ X × Y we have {x : Bx ∈ J} ∈ BI .

Then, if the pair 〈I, J〉 has FP , then it also has SFP.
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P r o o f. The proof is based on the following result which is interesting
in its own right.

Lemma 3.2. If a σ-ideal I on a Polish space X satisfies conditions
(i)–(iv) above, then for every countably generated σ-algebra A of subsets of
X there exist a set Z ⊆ X with Z 6∈ I and a B(Z)-A-measurable function
ϕ : Z → X such that :

1. ∀A ∈ I ϕ−1[A] ∈ I,
2. ∀A ∈ (BI \ I) ϕ−1[A] 6∈ I.

Let us assume this temporarily and now complete the proof of the the-
orem.

Take an arbitrary D ⊆ X × Y such that ∀x Dx ∈ J and ∀y Dy ∈ BI .
Since J is Σ0

α-supported, we can cover D by a set C with ∀x Cx ∈ Σ0
α∩J .

By a result of Bing, Bledsoe and Mauldin [2], there is a countably generated
σ-algebraA of subsets ofX such that C ∈ A⊗B(Y ), the σ-algebra generated
by the family {A×B : A ∈ A, B ∈ B(Y )}.

Let Z 6∈ I and ϕ : Z → X be the objects whose existence is guaranteed
by 3.2. Consider the set E ⊆ Z × Y defined by

〈x, y〉 ∈ E ⇔ 〈ϕ(x), y〉 ∈ C.
Since ϕ is B(Z)-A-measurable and C ∈ A⊗B(Y ), we have E ∈ B(Z×Y ).

So fix a B ∈ B(X×Y ) with E = B∩ (Z×Y ). Note that ∀x Ex = Cϕ(x) ∈ J
so, by (vi) above, we can assume that Bx ∈ J for I-almost all x.

Now, by FP for 〈I, J〉 applied to B, we have {y : By 6∈ I} ∈ J . But for
each y, By⊇Ey=ϕ−1[Cy]⊇ϕ−1[Dy] and, by 3.2, Dy 6∈ I ⇒ ϕ−1[Dy] 6∈ I.
Thus

{y : Dy 6∈ I} ⊆ {y : By 6∈ I} ∈ J
and consequently, {y : Dy 6∈ I} ∈ J .

Finally, we prove 3.2.

Proof of 3.2. Enlarging A if necessary, we can assume that B(X) ⊆ A.
Moreover, since all uncountable Polish spaces are Borel isomorphic, we can
assume that X = 2N.

Let L be an I-Lusin set of cardinality c. Since I has properties (i)–(iii),
a proposition from [3] (p. 220) tells us that we can additionally assume that
|B ∩ L| = c for each B ∈ BI \ I.

Let {An : n ∈ N} be a set of generators of A; we can clearly assume that
it separates points in 2N, i.e. for any distinct points x, y ∈ 2N there is An
containing one of them but not the other.

For each n set Cn = An ∩L. Let f : L→ 2N be the Marczewski function
of the sequence 〈Cn : n ∈ N〉, i.e.

f(x)(n) = 1 ⇔ x ∈ Cn for x ∈ L.
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Set W = f [L]. Since f is one-to-one, we may define g : W → 2N by g = f−1.
Clearly, g is B(W )-A-measurable and ∀A ∈ I |g−1[A]| = |f [A ∩ L]| =
|A ∩ L| ≤ ℵ0.

Let us consider a maximal disjoint collection C of sets P ∈ B(2N) \ I
with associated Borel one-to-one functions hP : TP → W such that TP 6∈ I
and if we let ψP = g ◦ hP : TP → 2N, then

∀A ⊆ P (A ∈ B(P ) \ I ⇒ ψ−1
P [A] 6∈ I).

Clearly, |C| ≤ ℵ0 and we claim that

(∗) 2N \
⋃
C ∈ I.

For suppose otherwise, i.e., R = 2N\⋃ C 6∈ I. Then |f [R∩L]| = |R∩L| =
c, so by (iv) above, there is a set T ⊆ 2N with T 6∈ I and a Borel one-to-one
function h : T → f [R ∩ L]. Let ψ = g ◦ h : T → 2N. Consider the σ-ideal I
on 2N defined by

I = {A ⊆ 2N : ∃B ∈ B(R) (A ⊆ B ∧ ψ−1[B ∩R] ∈ I)}.
Note that I ⊆ I, since ∀A ∈ I |ψ−1[A]| ≤ ℵ0, and I is proper, since ψ−1[R] =
T 6∈ I. Since I is ccc, there is a set P ∈ B(2N) \ I such that I = I|P (see
[16], a remark preceding 3.4). Since P \ R ∈ I|P ⊆ I, we can assume that
P ⊆ R. It follows that

∀A ⊆ P (A ∈ B(P ) \ I ⇒ ψ−1[A] 6∈ I).

But then 〈P, h, T 〉 violates the maximality of C, which proves (∗).
So let C = {Pn : n ∈ N}. We can further assume that the collection

{TPn : n ∈ N} is disjoint. Indeed, it is not difficult to find a disjoint family
{Bn : n ∈ N} ⊆ B(2N) \ I. But, since the Boolean algebra BI/I is homoge-
neous, Sikorski’s theorem (see [14], 15.10) tells us that for each n there is a
Borel isomorphism φn : Bn → 2N between Bn and 2N such that

∀A ∈ B(2N) A ∈ I ⇔ φ−1
n [A] ∈ I.

Since I has a Borel basis, we can strengthen this to

∀A ⊆ 2N A ∈ I ⇔ φ−1
n [A] ∈ I.

Now we can simply replace TPn by φ−1
n [TPn ] and hPn by hPn ◦(φn|φ−1

n [TPn ]).
Let Z =

⋃
n∈N TPn and define ϕ : Z → 2N by

ϕ =
⋃

n∈N
ψPn .

We have ∀A ∈ I |ϕ−1[A]| = ℵ0, which proves part 1.
To prove part 2 take an arbitrary A ∈ BI \ I. By part 1, we can assume

that A ∈ B(2N). By (∗) above, there is n such that A ∩ Pn 6∈ I. It follows
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that

ϕ−1[A] ⊇ (ψPn)−1[A ∩ Pn] 6∈ I.
Finally, the function ϕ is B(Z)-A-measurable as the union of countably

many B(Z)-A-measurable functions.

We will now specialize the above taking into account the main results
on FP established in [16].

Theorem 3.3. Suppose that there exists a Lusin set of cardinality the
continuum and every set of reals of cardinality the continuum contains a
one-to-one Borel image of a nonmeager set. Suppose that I is ccc and Σ0

2
supported and J is generated by a hereditary Π1

1 (in the Effros Borel struc-
ture) family of closed subsets of Y . Then the pair 〈I, J〉 has SFP.

P r o o f. By Theorem 2.4 of [16], the pair 〈I, J〉 has FP. Now we apply 3.1.
Just recall that I ≡B MGR(X) (see [16], 1.3), so assumption (ii) is satisfied.
Also, for every Borel set B ⊆ X × Y we have (see [14], 35.38)

{x : Bx ∈ J} ∈ Π1
1,

which shows that (vi) holds as well.

Miller [15] proved that a model for the above is the Cohen real model
(comp. the remarks following 2.9).

Theorem 3.4. Suppose that there exists a Sierpiński set of cardinality
the continuum and every set of reals of cardinality the continuum contains
a one-to-one Borel image of a set of positive outer Lebesgue measure. Let
µ be a σ-finite Borel continuous measure on X. Then the pair 〈NULLµ, J〉
has SFP whenever J is generated by any of the following families of closed
subsets of Y :

(i) all compact sets (in this case Y is assumed to be non-σ-compact),
(ii) all closed sets in NULLν for a σ-finite Borel continuous measure ν

on Y ,
(iii) all closed subsets of a Π1

1 set A ⊆ Y .

Moreover , if ν is a σ-finite Borel continuous measure on Y , then the pair
〈NULLµ,NULLν〉 has SFP.

P r o o f. By Theorem 2.5 of [16], the pair 〈I, J〉 has FP. Since in each of
the cases (i)–(iii), J is generated by a hereditary Π1

1 family of closed subsets
of Y , the possibility of applying 3.1 can be justified in exactly the same way
as above.

The “moreover” part follows from 3.1 and the ordinary Fubini theorem.

Miller [15] proved that a model for the above is the random real model
(comp. the remarks following 2.9).
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4. Necessary conditions and concluding remarks. There is a large
gap between sufficient and necessary conditions for SFP. As a matter of
fact we have nothing to say about the latter that would go beyond obvi-
ous generalizations of the necessary conditions given by Shipman [18] for
the nonexistence of a 0-1 counterexample to SFP for 〈L,L〉 (a “general-
ized Sierpiński example” in Shipman’s terminology). We state the following
facts for the sake of completeness; the proofs are left to the reader (compare
with [18]).

Proposition 4.1. (i) If there is no 0-1 counterexample to SFP for 〈I, J〉,
then

min(non(J), non(I)) < c.

(ii) If the pair 〈I, J〉 satisfies SFP , then min(shr(J), non(I)) < c.

Proposition 4.2. If there is no 0-1 counterexample to SFP for 〈I, I〉,
then:

(i) X is not the union of any strictly increasing sequence 〈Aα : α < κ〉
of sets from I,

(ii) non(I) < c and add(I) < cov(I).

Finally, let us indicate some open questions.

(1) Does non(I) < cov(I) imply SFP for 〈I, I〉 at least for I ∈ {K,L}?
Shipman claims that for I = L the answer is “yes” (see [18], p. 480) but
he has never published a proof. Recall that by 2.9, if I ∈ {K,L} and J is
arbitrary, then SFP for 〈I, J〉 is implied by shr(J) < cov(I).

(2) Does the nonexistence of a 0-1 counterexample to SFP for 〈I, I〉, I ∈
{K,L}, imply SFP for 〈I, I〉? This is even stronger than (1). The restriction
on I is necessary: if I = K∩L, then there is no 0-1 counterexample to SFP
for 〈I, I〉 but FP for 〈I, I〉 does not hold (see [16], 3.9).

(3) Can we weaken the hypotheses of 3.1? In particular, does the exis-
tence of an I-Lusin set of cardinality the continuum, I ∈ {K,L}, plus the
negation of CH imply SFP for 〈I, I〉? This in turn is weaker than (1), since
it implies non(I) < cov(I).

(4) Is the simultaneous satisfaction of SFP for both 〈K,K〉 and 〈L,L〉
consistent with ZFC? Note that by 4.2, this would imply c > ω2 (see [6],
where a similar problem is stated).
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