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Cofinal Σ1
1 and Π1

1 subsets of ωω

by

Gabriel D e b s and Jean Saint Raymond (Paris)

Abstract. We study properties of Σ1
1 and Π1

1 subsets of ωω that are cofinal relative
to the orders ≤ (≤?) of full (eventual) domination. We apply these results to prove that
the topological statement “Any compact covering mapping from a Borel space onto a
Polish space is inductively perfect” is equivalent to the statement “∀α ∈ ωω , ωω ∩ L(α)
is bounded for ≤?”.

This work is a continuation of [3], in which we studied the validity of the
following statement for two separable metric spaces X and Y :

A(X,Y ): “Any compact covering mapping f : X → Y is inductively
perfect”.

We recall that if f : X → Y is a continuous mapping then f is said to
be:
• compact covering if any compact subset of Y is the direct image of

some compact subset of X;
• perfect if the inverse image of any compact subset of Y is a compact

subset of X;
• inductively perfect if there exists a subset X ′ of X such that the re-

striction of f to X ′ is a perfect mapping onto Y .

Notice that, as we showed in [3], the study of these notions can easily be
reduced to the case where all the spaces are zero-dimensional, hence subsets
of ωω or 2ω.

Obviously, any inductively perfect mapping is compact covering: If K is
any compact subset of Y then the set H = X ′ ∩ f−1(K) is compact and
clearly f(H) = K. The converse statement, that is, A(X,Y ), is false in
general but holds under some regularity assumptions on X or Y . The main
known results in this direction are the following:
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0.1. In ZFC , A(X,Y ) holds:

(a) if X is Polish, and then Y is also Polish;
(b) if Y is σ-compact.

0.2. Assume that “all Σ1
1 games are determined”. Then A(X,Y ) holds:

(a) if X is Π1
1 (i.e. coanalytic) and Y is Σ1

1 (i.e. analytic), and then Y
is Borel ;

(b) if X and Y are Π1
1;

(c) if X is Borel , and then Y is Borel of the same Borel class as X.

0.3. Assume that “the constructible reals are uncountable”. Then A(X,Y )
might not hold :

(a) even if Y is Polish;
(b) even if X and Y are Π1

1.

The statement 0.1(a) was proved several years ago (with different formu-
lations) by Christensen [2] and Saint Raymond [8] independently, and was
motivated by a problem on the complexity of the hyperspace K(X) of all
compact subsets of a space X (see 1.4 below). On the other hand, 0.1(b) is
a quite recent result due to Ostrovskĭı [7], also to Just and Wicke [4] in the
(nontrivial) case where Y is countable, and was motivated by a problem of
Michael on countable topological spaces. All the other results, in 0.2 and
0.3, are from [3], to which we refer the reader for a more detailed discussion.

One of the main problems which were not settled in our previous work,
and which was first considered by Ostrovskĭı in [7], is to decide whether the
following statement A(∆1

1):

A(X,Y ) ∀X Borel, ∀Y
(in which one can equivalently replace “∀Y ” by “∀Y Σ1

1”), or the weaker
statement A(∆1

1,∆
1
1):

A(X,Y ) ∀X Borel, ∀Y Borel,

holds in ZFC. Indeed, none of the counter-examples constructed in [3] ex-
cludes the validity of such absolute statements. Moreover, such possibilities
were strengthened by some other results of [3].

In fact, we prove that this is not the case. For example, in the universe
L there exists a compact covering mapping from an Fσ subset X of ωω onto
Y = ωω which is not inductively perfect. This counter-example ameliorates
far away all the previous ones. Notice that by 0.1(a) and 0.1(b) above, the
complexity of the Borel sets X and Y is the best possible. However, this
construction will not be obtained in a direct and explicit way, but as a
consequence of the general study we make of A(X,Y ). More precisely, we
prove that the following statements are equivalent:
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(1) A(X,Y ) ∀X Π1
1, ∀Y Pσ,

(2) A(X,Y ) ∀X Borel, ∀Y Polish,
(3) A(X,Y ) ∀X Pσ, ∀Y Polish,

where by “Pσ” we mean “an Fσ subset of some Polish space”.
We also prove an equivalent reformulation of A(X,Y ) in terms of prop-

erties of cofinal subsets of the following ordered spaces:

(ωω,≤), (ωω,≤?), (K(X), ⊂)

where the orders ≤ (of full domination) and ≤? (of eventual domination) on
ωω are defined by:

x ≤ y ⇔ ∀n, x(n) ≤ y(n),

x ≤? y ⇔ ∃m, ∀n ≥ m, x(n) ≤ y(n),

and the hyperspace K(X) of all compact subsets of the space X is endowed
with the Hausdorff topology (see 1.4 below) and ordered by the inclusion ⊂.
In the sequel the notions of “bounded” and “cofinal” in ωω are to be under-
stood relative to the order ≤. When these notions are considered relative to
the order ≤? we use the terms: “?-bounded” and “?-cofinal”.

Thus we prove that (1)–(3) above are also equivalent to each of the
following:

(4) Any Π1
1 cofinal subset of ωω contains a Σ1

1 cofinal subset.
(5) Any Π1

1 ?-cofinal subset of ωω contains a Σ1
1 ?-cofinal subset.

(6) Any Π1
1 cofinal subset of K(ωω) contains a Σ1

1 cofinal subset.

But the full set-theoretical strength of all these statements is given by
their equivalence to

(0) ∀α ∈ ωω, the set ωω ∩ L(α) is ?-bounded in ωω.

Other equivalences, that we do not detail here, can also be found in the
paper. For example, in (4)–(6) above one can replace “Π1

1” by “Σ1
2”, and

(or) “Σ1
1” by “closed”.

Surprisingly, for many couples of these statements we do not have a
direct proof of their equivalence, though they are syntactically very close.
The simplest case is (4)⇔(5), or (4)⇔(6), for which the only proofs we have
pass through (0).

However, we were not able to decide whether all these statements are
also equivalent to the initially considered A(∆1

1) or A(∆1
1,∆

1
1), although

some of the results we prove suggest that these two assertions might rather
be related to the following one, stronger than (0):

∀α ∈ ωω, the set ωω ∩ L(α) is countable.

The paper is organized as follows: In Section 1 we fix basic notations
and terminology. In Section 2 we give positive results (in ZFC) about Σ1

1
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cofinal subsets in “nice” ordered spaces (E,≺) (such as (ωω,≤), (ωω,≤?),
(K(ωω),⊂)). The main result ensures that:

If A is a Σ1
1 cofinal subset of E then:

(a) A contains a closed cofinal subset.
(b) There exists a continuous mapping f : E → A satisfying x ≺ f(x)

for all x ∈ E.

In Sections 3 and 4 we give necessary and sufficient conditions for the
validity of (0) which will relate this statement to properties of cofinal Π1

1
sets. In these sections we assume that the reader is familiar with the effective
descriptive set theory and the basic classical properties of L (for example,
as presented in [6]): representation of Σ1

2 sets, description of the largest Π1
1

thin set, absoluteness arguments, . . . We apply these results in Section 5
to prove the equivalence between (0) and (3)–(5). In Section 6 we go back
to compact covering mappings and prove the equivalence between (0) and
(1)–(3). This section is totally independent of the previous ones, and all the
arguments used there are purely topological.

1. Descriptive properties

1.1. Classical descriptive classes. By a descriptive class we mean a class
of subsets of Polish spaces which is closed under taking inverse images under
continuous mapppings between Polish spaces. The classes that we consider
in this work are the following classical ones:

• Σ0
2: the class of all Fσ subsets,

• Π0
2: the class of all Gδ subsets,

• ∆1
1: the class of all Borel subsets,

• Σ1
1: the class of all analytic subsets,

• Π1
1: the class of all coanalytic subsets,

• Σ1
2: the class of all PCA (projection of coanalytic) subsets.

Let Γ be any of the previous classes, except Σ0
2. When, for a space

X, we say that “X is in Γ”, we mean that X can be (homeomorphically)
embedded in some Polish space P as a Γ subset of P . It is a well known
and fundamental fact that this notion is absolute, in the sense that it does
not depend on the particular Polish space P nor on the embeddding. For
example, it is a classical fact that “X is Π0

2” is equivalent to “X is Polish”.
However, this does not apply to the class Σ0

2, and we shall use the notation
Σ0

2 only when working in some explicitly fixed Polish space.
When the Polish space is ωω we shall also consider the effective classes:

∆1
1, Σ1

1 , Π1
1 , Σ1

2 , Π0
2 , Σ0

2 .
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1.2. The class Pσ of σ-Polish spaces

Theorem 1.2.1. For a separable metrizable space X , the following are
equivalent :

(i) X is Fσ in some Polish space.
(ii) X is the union of a countable family of closed Polish subspaces.

(iii) X is the difference of two Fσ sets in some Polish space.
(iv) Whenever X is embedded in some metrizable space E, it is the dif-

ference of two Fσ sets in E.

(iv)⇒(iii) and (i)⇒(ii) are obvious, and (iii)⇒(i) follows from the classi-
cal fact that a Gδ subset of a Polish space is also Polish. Let us prove that
(ii)⇒(iv).

Let E be some metrizable space, X ⊂ E, and (Fn) be a countable cov-
ering of X by Polish closed subsets of X. If we denote by Fn the closure of
Fn in E, we have Fn = X ∩ Fn. Moreover, A =

⋃
n Fn is Σ0

2 in E, and
since Fn is Polish, En = Fn \X = Fn \ Fn is Σ0

2 in Fn, hence in E. If we
put B =

⋃
nEn, then B is Σ0

2 in E, and we have X = A \ B. Hence X is
the difference of two Fσ sets in E.

In this paper we make use of the following conventions:

• If the space X is Σ0
2 for any embedding in any Polish space, then

obviously X is σ-compact and we write “X is Kσ”.
• If the space X is Σ0

2 for some embedding in some Polish space, then
we say that X is σ-Polish and write “X is Pσ”.

These conventions, which will lighten the statement of some results, are
not universal. In particular, they are not consistent with [3] where we used
the notation D2(Kσ) for the class Pσ.

1.3. Perfect mappings. We recall that a continuous mapping f between
metrizable spaces X and Y is said to be perfect if the inverse image of every
compact subset of Y is compact in X. It is well known that any perfect
mapping is closed. Let us also recall the following well known result:

Theorem 1.3.1. If P is a Polish space, then there exist a closed subset
E of ωω and a perfect mapping f from E onto P.

If d is any complete metric on P , it is easy to construct inductively a
family (Ps)s∈ω<ω of closed subsets of P such that:

(i) P∅ = P ,
(ii) Ps_n ⊂ Ps and diam(Ps) ≤ 1/|s|,

(iii) (Ps_n)n is a locally finite covering of Ps.
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Then it is easily checked that E = {α ∈ ωω :
⋂
s≺α Ps 6= ∅} = {α ∈ ωω :

∀s ≺ α, Ps 6= ∅} is a closed subset of ωω, and that the function f defined by

{f(α)} =
⋂
s≺α

Ps

is continuous from E onto P and perfect.

Corollary 1.3.2. Let E be a Borel subset of some Polish space P. Then
there exist a Borel subset E0 of ωω and a perfect mapping f from E0 onto E.

Since there exist a closed subset F of ωω and a perfect mapping g from
F onto P , we can put E0 = g−1(E) and f = g|E0 . Then f is continuous
from the Borel subset E0 of ωω onto E, and for every compact subset K
of E, f−1(K) = g−1(K) is compact since g is perfect. Thus f is also perfect.

1.4. Hyperspaces. Given a space X we very often consider the hyperspace
K(X) of all compact subsets of the space X endowed with the Hausdorff
topology, that is, the coarsest topology on K(X) for which the subset K(A) is
open (closed) when A is open (closed). We recall some of the basic properties
that we shall use:

• If X is Π1
1 then K(X) is Π1

1.
• If X is Π0

2 then K(X) is Π0
2.

• If K(X) is Σ1
1 then X (hence K(X)) is Π0

2.

The first two results follow from elementary complexity computations. The
last one is the result of Christensen and Saint Raymond we mentioned in
the introduction, and which follows from 0.1(a).

2. Σ1
1 cofinal sets

2.0. Ordered spaces. In this paper “order” is used in the sense of “partial
pre-order”.

(a) If (E,≺) is an ordered space we identify the relation ≺ with its graph
G ⊂ E×E. In particular, if Γ is some descriptive class and G ∈ Γ we simply
say that ≺ is in Γ . Notice that since E is the domain of ≺, if (the graph of)
≺ is ∆1

1 then E is automatically Σ1
1; if moreover the space E is also ∆1

1, we
say that (E,≺) is a ∆1

1 ordered space.

(b) Let (E,≺) be an ordered space.

(1) An element a is said to be dominated by an element b if a ≺ b.
(2) A subset A is said to be bounded if all its elements are dominated by

some element: ∃x ∈ E, ∀y ∈ A, y ≺ x.
(3) A subset A is said to be cofinal (in E) if any element in E is dominated

by some element in A: ∀x ∈ E, ∃y ∈ A, x ≺ y.
(4) A domination function is a mapping f : E → E such that x ≺ f(x)

for all x ∈ E. The range of a domination function is obviously cofinal, and
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by the axiom of choice any cofinal set contains the range of some domination
function.

(5) The following notions play a crucial role in this paper. Fix some
family F of mappings from E into itself. We say that the subset A of E
admits an F domination function if A contains the range of some domination
function f ∈ F . When E is a topological space and F is the set all continuous
transformations of E, we also say that A is continuously cofinal.

(c) Although many of the results we prove are stated for abstract ordered
spaces, we mainly apply these results to the spaces

(ωω,≤), (ωω,≤?), (K(X),⊂)

considered in the introduction, to which we refer as the canonical examples.
The main property of these examples is that the bounded subsets have a
simple topological characterization, that we now recall.

It is clear that a subset of ωω is bounded (for ≤) iff it is contained in
some compact subset of ωω. This is also true in (K(X),⊂): Notice that if A
is a compact subset of K(K) then

⋃
A is a compact subset of X, hence A is

bounded; and conversely, if A is bounded and dominated by some element
K ∈ E then A is a subset of the compact set K(K).

It is also a classical fact that a subset of ωω is ?-bounded (i.e. bounded
for ≤?) iff it is contained in some σ-compact subset of ωω.

Theorem 2.1. Let (E,≺) be a ∆1
1 ordered space in which any compact

subset is bounded.

(a) Any Σ1
1 cofinal subset of E admits a Borel domination function of

first Baire class.
(b) If moreover E is zero-dimensional , then any Σ1

1 cofinal subset of E
admits a continuous domination function.

P r o o f. We first show how to derive (a) from (b). Let A be a cofinal
subset of E. Fix a perfect mapping ϕ from a ∆1

1 subset E0 of ωω onto E
(see Corollary 1.3.2), and consider on E0 the order ≺0 defined by

x ≺0 y ⇔ ϕ(x) ≺ ϕ(y).

Then (E0,≺0) is a zero-dimensional ∆1
1 ordered space in which also any

compact subset is bounded. Let A0 = ϕ−1(A), which is clearly a Σ1
1 cofinal

subset of E0; then by (b), there exists a continuous domination function
f0 : E0 → A0. Since ϕ : E0 → E is perfect it admits a Borel section
ψ : E → E0 of first Baire class, and one checks that f = ϕ ◦ f0 ◦ ψ is a first
Baire class domination function on E with range in A.

Now we come to the proof of (b). We can and do assume that E is a
subspace of ωω. We fix a topological embedding i of ωω × ωω onto a Π0

2
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subset H of 2ω, and a closed subset F in ωω × ωω such that

x ∈ A⇔ ∃α, (x, α) ∈ F.
Consider the game G where Players I and II choose alternately: an integer
(chosen by Player I), then 0 or 1 (chosen by Player II). In a run of this game
the players construct thus an element (x, ε) in ωω × 2ω; and Player II wins
the run iff

x 6∈ E or (ε ∈ H, i−1(ε) = (y, α), (y, α) ∈ F, x ≺ y)

This game is clearly Borel, hence determined.
A winning strategy for Player II in this game defines a continuous map-

ping x 7→ ε from ωω intoH which by composition with i−1 gives a continuous
mapping x 7→ (y, α) from ωω into ωω×ωω such that y ∈ A whenever x ∈ E;
and if f denotes the first component of this mapping x 7→ y, then the re-
striction of f to E is clearly a continuous domination function with range
in A.

Hence by determinacy all we have to show is that Player I has no winning
strategy in this game. So suppose for contradiction that he has a winning
strategy σ. Since Player II is constructing an element in 2ω, the set K of all
x answered by Player I in all runs compatible with σ is a compact subset of
ωω, and since σ is winning, K necessarily is a subset of E, hence bounded
for ≺; and since A is cofinal, we can find b ∈ A such that x ≺ b for all
x ∈ K. Fix then β in ωω such that (b, β) ∈ F and consider the run of G
where Player II plays i(b, β) and Player I follows σ. In this run Player I
constructs an element a ∈ K, and since a ≺ b, Player II wins; and this gives
the contradiction.

Corollary 2.2. Let (E,≺) be a ∆1
1 ordered space in which the bounded

subsets are exactly the relatively compact subsets. Then any Σ1
1 cofinal subset

of E contains a closed (in E) cofinal subset.

P r o o f. Let A be a fixed Σ1
1 cofinal subset of E.

Assume first that E is zero-dimensional. Then by Theorem 2.1(b) there
exists a continuous domination function f : E → E with range in A. If K
is any compact subset of E then by the assumption on ≺, K is bounded by
some element a ∈ E, and it follows that f−1(K) is also bounded by a; then
by the assumption on ≺, f−1(K) is relatively compact, hence compact since
f is continuous. This shows that f is a perfect mapping, and in particular
its range f(E) is a closed subset of E.

For the general case we proceed as in the previous proof, by fixing a
perfect mapping ϕ from a ∆1

1 subset E0 of ωω onto E and defining A0 and
≺0 as above. Applying the result of the zero-dimensional case we can find a
closed cofinal subset F0 of E0 and contained in A0, and it is immediate to
check that F = ϕ(F0) is a closed cofinal subset of E contained in A.
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Remarks 2.3. (a) It is clear that in Theorem 2.1(a) one cannot drop
the zero-dimensional hypothesis. For example, Z is cofinal in E = R for the
natural ordering, but any continuous mapping from E = R to Z is constant.

(b) It follows from 2.0(c) that the three canonical orders (ωω,≤),
(ωω,≤?), (K(X),⊂) satisfy the hypothesis

(H): “Any compact subset is bounded”

considered in Theorem 2.1. But only (ωω,≤) and (K(X),⊂) satisfy the
stronger hypothesis

(H̃): “The bounded subsets are exactly the relatively compact subsets”

considered in Corollary 2.2.

Theorem 2.4. Let (E,≺) denote one of the ordered spaces (ωω,≤),
(ωω,≤?), (K(X),⊂) with X Polish. For a subset A of E the following are
equivalent :

(i) A contains a Σ1
1 cofinal subset.

(ii) A is continuously cofinal.
(iii) A contains a closed cofinal subset.

P r o o f. As we mentioned in Remark 2.3(b) the orders ≤ and ⊂ satisfy
(H̃) and the equivalences follow from Theorem 2.1 and Corollary 2.2.

Also, the order <? satisfies (H) so (i)⇒(ii) follows from Theorem 2.1.
Since (iii)⇒(i) is obvious we only need to prove (ii)⇒(iii). Let f be a contiu-
ous ?-domination function on ωω. For any finite sequence s ∈ ω<ω consider
the closed set

Fs = {x ∈ ωω : s ≺ f(x) and ∀n ≥ |s|, x(n) ≤ f(x)(n)}.
Then the restriction of f to Fs is again a perfect mapping and so As =
f(Fs) is a closed subset of ωω. Since ωω =

⋃
s Fs, the set A =

⋃
sAs (the

range of f) is ?-cofinal. It follows that one of the closed sets As is ?-cofinal:
otherwise, for any s we can find xs ∈ ωω which is not ?-dominated by any
element of As, and if x is any element of ωω ?-dominating all the xs then x
would not be ?-dominated by any element of A.

Remark 2.5. We do not know whether in Theorem 2.1 the ∆1
1 hypothesis

on the order can be relaxed and replaced by Σ1
1. We were able to do this for

orders ≺ on ωω which satisfy the following hypothesis:

(H0): “The order ≺ is coarser than the canonical order ≤”,

that is:

x ≤ y ⇒ x ≺ y.
Notice that this condition is stronger than (H) and is meaningless when
the base space E is not ωω. Fix any filter F on ω and define an order ≤F
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on ωω by

x ≤F y ⇔ {n ∈ ω : x(n) ≤ y(n)} ∈ F .
Clearly, the canonical orders ≤ and ≤? can be defined according to this
scheme by taking for F the trivial filter {ω} in the case of ≤, and the
Fréchet filter in the case of ≤?. It is clear that such an order always satisfies
(H0). Moreover, the relation ≤F has the same descriptive complexity as F .
In particular, if the filter F is Σ1

1 then the following result applies to ≤F .

Theorem 2.6. Let ≺ be a Σ1
1 order on ωω which is coarser than the

canonical order ≤. Then any Σ1
1 cofinal subset for ≺ is continuously cofinal.

P r o o f. The scheme of the proof is essentially the same as the previous
one. We fix a topological embedding j of ωω × ωω × ωω × ωω onto a Π0

2
subset H of 2ω, a closed subset F of ωω × ωω, and a closed subset R of
ωω × ωω × ωω such that

(x ∈ A⇔ ∃α, (x, α) ∈ F ) and (x ≺ y ⇔ ∃α′, (x, y, α′) ∈ R).

Consider the game G′ where, as in G, Player I chooses an integer, and
Player II chooses 0 or 1. In a run of G′ the players construct again an
element (x, ε) in ωω × 2ω; and Player II wins the run iff

ε ∈ H, j−1(ε) = (x′, y, α, α′), x ≤ x′, (y, α) ∈ F, (x′, y, α′) ∈ R.
This game is Σ0

2, hence determined.
As for the game G, a winning strategy for Player II in G′ defines a

continuous mapping x 7→ (x′, y, α, α′) from ωω into ωω×ωω×ωω×ωω with
x ≤ x′, x′ ≺ y and y ∈ A; and by the hypothesis that ≺ is coarser than ≤
we also have x ≺ y. Then the second component of this mapping x 7→ y is
a continuous domination function with range in A.

Also, if σ is a strategy for Player I in G′ then the set of all responses of
σ is a compact subset K in ωω. Then K is bounded for ≤ and hence for ≺
by some element b′ ∈ ωω, and since A is cofinal for ≺ we can find b ∈ A
such that b′ ≺ b; so the hypothesis that ≺ is coarser than ≤ implies that
x ≺ b for all x ∈ K. One can finish the argument as in the previous proof by
fixing β and β′ in ωω such that (b, β) ∈ F and (b′, b, β′) ∈ R, and then by
considering the run where Player II plays j(a, b, α, β) and Player I follows
σ, to show that σ is not winning.

The results of this section extend clearly to larger classes of sets than
Σ1

1, if one assumes enough determinacy. For example, assuming Det(Σ1
1),

one can prove that if E is a Π1
1 zero-dimensional space and≺ is an order on E

for which any compact subset is bounded, then any Σ1
2 cofinal subset of E

is continuously cofinal. In fact, one can easily check that the game defined
in the proof of Theorem 2.1 is then Σ1

1, hence determined. In particular,
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assuming Det(Σ1
1), if X is a Π1

1 subset of ωω then any Σ1
2 cofinal subset of

K(X) is continuously cofinal.

3. A Π1
1 cofinal subset in ωω with no Σ1

1 cofinal subset

Theorem 3.1. Suppose that the set ωω∩L is not ?-bounded in ωω. Then
there exists a Π1

1 cofinal subset of ωω containing no Σ1
1 ?-cofinal subset.

P r o o f. We fix some recursive embedding j : ωω → 2ω and define a
mapping ϕ : ωω × ωω → ωω by

ϕ(x, y)(n) = 2x(n) + j(y)(n)

for all n ∈ ω. One checks easily that ϕ is also a recursive embedding. How-
ever, with respect to cofinality and ?-cofinality of sets, ϕ behaves very much
like the canonical projection π : ωω × ωω → ωω onto the first factor ωω:

Fact 3.1.1. For any subset A of ωω × ωω we have the following equiva-
lences:

(a) (ϕ(A) is cofinal in ωω)⇔ (π(A) is cofinal in ωω),
(b) (ϕ(A) is ?-cofinal in ωω)⇔ (π(A) is ?-cofinal in ωω).

P r o o f. Suppose that ϕ(A) is cofinal. Then for all x ∈ ωω there exists
(y, z) ∈ A such that 2x ≤ 2y + j(z), hence x ≤ y and y ∈ π(A).

Conversely, suppose that π(A) is cofinal. Then for all x ∈ ωω there
exists (y, z) ∈ A such that x ≤ y, hence x ≤ y ≤ ϕ(y, z) = y′, so x ≤ y′ and
y′ ∈ ϕ(A).

The proof of (b) is similar.

Denote by C the largest Π1
1 thin subset of ωω × ωω. We recall that

C = {(x, y) ∈ ωω × ωω : (x, y) ∈ L
ω

(x,y)
1
}.

Fact 3.1.2. π(C) = ωω ∩ L.

P r o o f. The inclusion ⊂ follows from the classical fact that C ⊂ L.
Conversely, let x ∈ ωω ∩L, and fix some ξ < ω1 such that x ∈ Lξ. Consider
now the largest Π1

1 thin subset of ωω, that is, the set

C1 = {y ∈ ωω : y ∈ Lωy1 },
and fix a point y in C1 \Lξ; such a point exists since C1 ∈ L, Lξ is countable
in L and C1 is uncountable in L. Thus y ∈ Lωy1 and since y 6∈ Lξ we have
ξ < ωy1 . Hence x ∈ Lωy1 and (x, y) ∈ Lωy1 ⊂ Lω(x,y)

1
; so x ∈ π(C).

Let

B = {(x, y) ∈ ωω × ϕ(C) : ¬(y ≤? x)}.
Fact 3.1.3. π(B) = ωω.
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P r o o f. By the previous Fact we have L ` “π(C) = ωω”, so by Fact 3.1.1
we also have L ` “ϕ(C) is cofinal in ωω”. That is,

∀x ∈ ωω ∩ L, ∃y ∈ ϕ(C), x ≤ y
and from the assumption that ωω∩L is not ?-bounded in ωω, it follows that
ϕ(C) is not ?-bounded in ωω, which means that π(B) = ωω.

End of the proof of Theorem 3.1. Let A = ϕ(B); then the set A is Π1
1 ,

and cofinal by Fact 3.1.1. Again by this Fact, to show that A contains no
Σ1

1 ?-cofinal subset, it is enough to show that for any Σ1
1 subset B′ of B,

the set π(B′) is not ?-cofinal in ωω.
Fix such a B′. Since ϕ(C) is thin, B′ is of the form B′ =

⋃
nB
′
n ×{yn}.

Consider a point y in ωω which ?-dominates all points yn. We now prove
that y cannot be ?-dominated by any point from π(B′), which will show that
π(B′) is not ?-cofinal in ωω. So suppose that y ≤? x for some x ∈ B′n. Then
we would have yn ≤? y ≤? x and this contradicts the fact that (x, yn) ∈ B.

It is clear that the previous construction is uniform and one can prove
the following parametrized version:

Theorem 3.2. Suppose that for some α ∈ ωω the set ωω ∩ L(α) is not
?-bounded in ωω. Then there exists a Π1

1 (α) cofinal subset of ωω containing
no Σ1

1 ?-cofinal subset.

4. When any Σ1
2 cofinal set contains Σ1

1 cofinal sets

Theorem 4.1. Assume that for all α ∈ ωω the set ωω∩L(α) is ?-bounded
in ωω. Let E be a Polish space endowed with some Borel order ≺ for which
any compact subset is bounded. Then any Σ1

2 cofinal subset of E contains a
Σ1

1 cofinal subset.

As in the proof of Theorem 2.1 we can reduce the general case to the
particular one where E = ωω, and for the latter we shall prove the following
effective version:

Theorem 4.2. Assume that for some α the set ωω ∩ L(α) is ?-bounded
in ωω. Let E denote the set ωω endowed with some ∆1

1(α) order ≺ for which
any compact subset is bounded. Then any Σ1

2(α) cofinal subset of E contains
a Σ1

1 cofinal subset.

P r o o f. Since all the arguments are uniform we suppose that α = 0.
Let A be a Σ1

2 cofinal subset of E. We prove that A is continuously cofinal
(this formally stronger statement is in fact equivalent to the conclusion by
Theorem 2.1). We fix in L a tree T on ω × ω1 satisfying

x ∈ A ⇔ ∃α ∈ ωω1 , (x, α) ∈ [T ].
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Consider the following game G in which the moves of each player are indexed
by ω separately:

• Player I starts the run. At move n he chooses an integer kn. Thus in
a run Player I defines an infinite sequence x = (kn) ∈ ωω, to which we refer
as the sequence constructed by Player I.
• At each of his moves Player II has two possibilities: He can either pass

or choose an element (m, ξ) ∈ ω × ω1. Thus in a run Player II defines a
(finite or infinite) sequence (jn) in ω giving an increasing enumeration of
the moves where he did not pass. If (mn, ξn) denotes the choice he made at
move jn, then we refer to the (finite or infinite) sequence (y, α) = (mn, ξn)
as the sequence constructed by Player II. Notice that the sequence (y, α) is
infinite iff infinitely many times Player II did not pass.

Player II wins the run iff

(y, α) is an infinite branch of T , and x ≺ y.

These conditions define clearly a Borel, hence determined, game on ω× ω1.

Fact 4.2.1. If Player II has a winning strategy in G then the set A is
continuously cofinal in ωω.

P r o o f. As in the proof of Theorem 2.1 a winning strategy for Player II
in G defines a continuous mapping x 7→ (y, α) ∈ [T ], with x ≺ y; and its first
component x 7→ y is a continuous domination function with range in A.

Fact 4.2.2. In the game G Player I has no winning strategy belonging
to L.

P r o o f. Let σ ∈ L be an arbitrary strategy for Player I. If x ∈ ωω is a
sequence constructed by Player I in a run compatible with σ, we say that x
is the response by σ in this run.

Fix a? ∈ ωω such that x ≤? a? for all x ∈ ωω ∩ L; such an a? exists
by hypothesis. Let a∅ be the response by σ in the run where Player II has
passed at each move. Finally, let a′ be the supremum for the canonical order
≤ of the pair {a∅, a?}. By asssumption on ≺, we can find in E an element
which dominates the compact set {x ∈ ωω : x ≤ a′}; and since A is cofinal
in E we can find such an element in A. So we fix b ∈ A such that

∀x ∈ ωω, (x ≤ a′ ⇒ x ≺ b)
and then we fix β ∈ ωω1 such that (b, β) ∈ [T ].

Our plan is to define a run of the game G (not necessarily in L) compat-
ible with σ, in which Player II will construct the infinite sequence (b, β) and
Player I will construct a sequence a ≤ a′. By the choice of b we will have
a ≺ b and such a run would be won by Player II, proving that the strategy
σ is not winning.
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Let us say that a run of the game G is compatible with (b, β) if the
sequence constructed by Player II in this run is an initial segment of (b, β),
possibly infinite and hence equal to (b, β). Denote by U the set of all finite
runs u of G of even length and satisfying the following conditions:

(1) u = ∅, or at the last move in u Player II did not pass.
(2) u is compatible with σ.
(3) u is compatible with (b, β).

Let u ∈ U have length 2p. For all q > p we define the finite run u(q) ∈ U
of length 2q and extending u, as follows: At all the moves strictly between
p and q Player II passes; at the (last) move q of u(q), Player II chooses
(b(0), β(0)) if u = ∅, otherwise if at the move p he chose (b(n− 1), β(n− 1))
then at the move q he chooses (b(n), β(n)). We also define the infinite run ũ
extending u, compatible with σ, in which Player II has passed at all moves
after p, and denote by σ(ũ) the response by σ in this infinite run; notice
that since σ ∈ L, both ũ and σ(ũ) are in L. Finally, if v = u(q) then for
simplicity we denote ṽ by ũ(q).

By the continuity of the strategy σ, for any u ∈ U we have σ(ũ) =
limq σ(ũ(q)). In particular, the set Au = {σ(ũ(q)) : 2q > |u|} is relatively
compact in ωω, and so admits a supremum au relative to the canonical
order ≤. Since Au ∈ L we have au ∈ ωω ∩ L, hence au ≤? a? ≤ a′ and so

au ≤? a′.
Notice that a∅ introduced at the beginning of the proof is just σ(∅̃), the
response by σ to the run in which Player II passed at all moves. On the
other hand, a∅ is the supremum of all responses by σ in all runs in which
Player II passed at all moves but one, at which he played (b(0), β(0)). Thus
a∅ ≤ a∅ ≤? a′ but in general these elements are different. However, by the
choice of a′ we also have

a∅ ≤ a′.
We now define by induction on n ∈ ω a sequence (un) in U and a sequence

(qn) in ω as follows:

(0) u0 = ∅ and q0 = 0.
(1) ∀j > qn+1, aun(j) ≤ a′(j).
(2) un+1 = u

(qn+1)
n .

Condition (0) defines (u0, q0). Suppose that (un, qn) is defined. Then
by the previous remarks we can find qn+1 satisfying (1); moreover, we can
assume that 2qn+1 > |un| so that we can define un+1 by (2).

Let u be the unique infinite run such that un ≺ u for all n, and let a
be the response by σ in u, which, by definition of U , is compatible with σ.



Cofinal Σ1
1 and Π1

1 subsets of ωω 175

Then

∀j ≤ q1, a(j) = a∅(j) ≤ a′(j)
and, by condition (1) above, for all n ∈ ω we have

∀j ∈ [qn+1, qn+2), a(j) = σ(ũn+1)(j) = σ(ũ(qn+1)
n )(j) ≤ aun(j) ≤ a′(j).

Thus u is a run compatible with σ and it also follows from the definition
of U that in this run Player II has constructed the infinite sequence (b, β) ∈
[T ], whereas Player I has constructed a. Since a ≤ a′, we have a ≺ b and
the run is won by Player II. This finishes the proof of Fact 4.2.2.

It is clear that Theorem 4.2 is an immediate consequence of 4.2.1 and
4.2.2 and the following Fact:

Fact 4.2.3. In the game G , the winning Player has a winning strategy
in L.

We recall that the game G is determined in the universe, since it is
Borel. What is meant by the statement of the previous Fact is that one of
the players has a strategy belonging to L and winning in the universe. Such
an absoluteness property, which is standard for closed games (on any set κ),
or for ∆1

1 games on ω, deserves some justification here since G is not of one
of these forms.

To prove Fact 4.2.3 we need to reformulate the game G in a more
standard way: A run in G will now be viewed as an infinite sequence
(x, y, z, α) ∈ (ω × ω × 2× ω1)ω, where:

• x(n) ∈ ω is the integer chosen by Player I at his nth move.
• If Player II did not pass at his nth move, then z(n) = 1 and (y(n), α(n))

∈ ω × ω1 is the element chosen by Player II at this move.
• If Player II passed at his nth move, then x(n) = y(n) = z(n) = 0.

Notice that in this new representation the sequence (y, α) is always in-
finite, and the sequence constructed by Player II in such a run is just the
(finite or infinite) subsequence of (y, α) corresponding to the indices n for
which z(n) = 1, wheras x is, as before, the sequence constructed by Player I.
In this setting Player II wins the run iff

(y, α) ∈ [T ′] and (x, y, z) ∈ B
where T ′ ∈ L is a tree on ω × ω1 that one can extract simply from T ; and
B is the ∆1

1 set of all (x, y, z) ∈ (ω× ω× 2)ω such that x ≺ y, and z(n) = 1
for infinitely many indices n. The main point in this condition is that the
definition of the Borel set B involves only the coordinates in ωω.

Now it is clear that Fact 4.2.3 is a particular case of the following general
result, by which the proof of Theorem 4.2 is completed.
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Proposition 4.3. Let κ be an ordinal , T ∈ L a tree on κ× ω, and B a
∆1

1 subset of ωω. Let Γ be the Borel game on κ×ω in which the win set for
Player II is the set A = [T ]∩ (κω ×B). Then in Γ one of the players has a
winning strategy in L.

For κ and κ′ two ordinals, S a tree on κ × κ′ and r ∈ κω we denote by
S(r) the tree on κ′ defined by

∀n ∈ ω, ∀t ∈ κ′n, (t ∈ S(r) ⇔ (r|n, t) ∈ S).

Lemma 4.4. Let κ and κ′ be two ordinals, and S ∈ L be a tree on κ×κ′.
Let J denote one of the players I or II , let Γ be the game on κ defined by

∀r ∈ κω, (Player J wins the run r) ⇔ (The tree S(r) is well founded)

and let ΓL be the game in L defined by the same win condition for Player J.
Then any strategy for Player J which is winning in the game ΓL is still
winning in the game Γ .

P r o o f. Denote by J′ the opponent Player of J. For any strategy σ for
Player J in Γ consider the tree

Sσ = {(r, r′) ∈ S : r is a finite run compatible with σ}.
Then σ is not winning in Γ iff there exists an infinite run r compatible
with σ and won by J′, and by the win condition this means that the tree
S(r) is not well founded. Since the run r is compatible with σ we have
S(r) = Sσ(r). Thus σ is not winning in Γ iff the tree Sσ(r) is not well
founded, or equivalently,

(σ is winning in Γ ) ⇔ (The tree Sσ is well founded).

If moreover σ ∈ L then Sσ ∈ L and the previous equivalence stated in L
gives

(σ is winning in ΓL) ⇔ (The tree Sσ is well founded in L).

The conclusion of the lemma follows from the absoluteness of the formula
“The tree Sσ is well founded”.

Proof of Proposition 4.3. We show that Γ is of the form considered in
Lemma 4.4 with J = I and J = II, by defining two suitable trees SI and SII

in L satisfying the hypothesis of the lemma.
Fix first in L two trees T1 and T2 on ω×ω such that for x ∈ ωω we have

(x ∈ B ⇔ ∃y ∈ ωω, (x, y) ∈ [T1]) and (x 6∈ B ⇔ ∃b ∈ ωω, (x, y) ∈ [T2]).

Fix in L a one-to-one mapping ξ 7→ sξ from κ \ {0} onto (κ × ω)<ω \ T .
Finally, for any finite sequence t, denote by t? and t? the left and right shift
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on t defined by

|t?| = |t?| = |t| − 1,

t?(j) = t(j) ∀j < |t| − 2,

t?(j) = t(j + 1) ∀j < |t| − 2.

Now we define SI and SII by

SI = {(u, v, w) ∈ (κ× ω × ω)<ω : (u, v) ∈ T and (v, w) ∈ T1}
and

SII = {(u, v, w) ∈ (κ× ω × κ)<ω : (w(0) = 0 ⇒ (v?, w?) ∈ T2)

and (w(0) = ξ > 0 ⇒ (sξ is compatible with (u, v))}.
We use the following easily checked Fact:

Fact 4.3.1. For (u, v) ∈ (κ× ω)ω we have:

((u, v) ∈ A) ⇔ (∃w ∈ ωω, (u, v, w) ∈ SI),

((u, v) 6∈ A) ⇔ (∃w ∈ κω, (u, v, w) ∈ SII).

Applying this Fact we have:

(Player I wins the run r) ⇔ (The tree SI(r) is well founded),

(Player II wins the run r) ⇔ (The tree SII(r) is well founded).

Consider now the game ΓL in L in which the win condition for Player II
is defined by the first equivalence. Then by absoluteness the win condition
for Player II is also defined by the second equivalence. Thus we can apply
Lemma 4.4 for both players.

It also follows from the previous observations that the win set for Player II
in ΓL is the set A∩L = [T ]∩ (ωω1 ×B), and the game ΓL is also Borel in L
(by absoluteness of the relation “B is a Borel subset of ωω”), hence ΓL is
determined in L. So there exists a winning strategy for one of the players
in ΓL, and applying Lemma 4.4 for this player we see that this strategy is
also winning in Γ .

We have the following extension for Σ1
1 orders on ωω satisfying the hy-

pothesis (H0) introduced in 2.5:

Theorem 4.5. Assume that the set ωω ∩L is ?-bounded in ωω. Let ≺ be
a Σ1

1 order on ωω which is coarser than the canonical order ≤. Then any
Π1

1 cofinal subset for ≺ contains a Σ1
1 cofinal subset.

P r o o f. As for Theorem 2.4 the proof is an adaptation of the arguments
of the proof of the previous result. Fix in L a tree T on ω × ω1 and a tree
S on ω × ω × ω such that
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(x ∈ A ⇔ ∃α ∈ ωω1 , (x, α) ∈ [T ]) and

(x ≺ y ⇔ ∃α′ ∈ ωω, (x, y, α′) ∈ [S])

and define the game G′ in which, similarly to G,

• Player I constructs an infinite sequence x ∈ ωω.
• Player II has the possibility either to pass, or to choose an element

(m′,m, ξ, ξ′) ∈ ω × ω × ω1 × ω1, constructing thus a (finite or infinite)
sequence (x′, y, α, α′) ∈ (ω × ω × ω1 × ω1)ω.

Player II wins the run iff the sequence (x′, y, α, α′) is infinite and

(y, α) ∈ [T ], x ≤ x′, (x′, y, α′) ∈ [S].

This game is also Borel, and even Σ0
2, and the three Facts about the game G,

established in the proof of Theorem 4.2 above, still hold for the game G′.
The proofs are essentially the same for the first and third Fact. Only the
proof of the second Fact requires minor modifications. We leave the details
to the reader.

5. The size of some sets of constructible reals

Theorem 5.1. Let (E,≺) denote one of the ordered spaces (ωω,≤),
(ωω,≤?), (K(ωω),⊂). Then, for every α ∈ ωω, the following are equivalent :

(i) The set ωω ∩ L(α) is ?-bounded in ωω.
(ii) Any Σ1

2(α) cofinal subset of E contains a closed cofinal subset.
(iii) Any Π1

1 (α) cofinal subset of E contains a Σ1
1 cofinal subset.

P r o o f. (i)⇒(ii). Apply Theorems 4.2 and 2.4.
(ii)⇒(iii). Obvious.
(iii)⇒(i). We argue by contradiction; so suppose non-(i), that is, the set

ωω ∩ L(α) is not ?-bounded in ωω. By Theorem 3.1 there exists a Π1
1 (α)

cofinal (for ≤) subset A of ωω which contains no Σ1
1 ≤?-cofinal subset. In

particular, the same Π1
1 (α) set A is cofinal with no Σ1

1 cofinal subset; and
is also ≤?-cofinal with no Σ1

1 ?-cofinal subset. This proves non-(iii) when ≤
is one of the canonical orders ≤ or ≤? on ωω.

For any x ∈ ωω let θ(x) = {y ∈ ωω : y ≤ x}. Then the mapping
θ : ωω → K(ωω) is clearly a one-to-one ∆1

1 embedding of ωω onto a cofinal
subset of K(ωω). Moreover, θ is increasing for these ordered spaces. It then
follows that the set θ(A) = {θ(x) : x ∈ A} is also a Π1

1 (α) cofinal subset
of K(ωω) with no Σ1

1 cofinal subset. This proves non-(iii) when (E,≺) =
(K(ωω),⊂).

Theorem 5.2. Let (E,≺) denote one of the ordered spaces: (ωω,≤),
(ωω,≤?), (K(X),⊂) with X a Polish non-Kσ space. Then the following are
equivalent :
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(i) For all α ∈ ωω the set ωω ∩ L(α) is ?-bounded in ωω.
(ii) Any Σ1

2 cofinal subset of E contains a closed cofinal subset.
(iii) Any Π1

1 cofinal subset of E contains a Σ1
1 closed subset.

P r o o f. When (E,≺) is one of the ordered spaces (ωω,≤), (ωω,≤?),
(K(ωω),⊂), the result follows from Theorem 5.1 by relativization.

Suppose that (E,≺) is (K(X),⊂) with X a general Polish non-Kσ space.
Then, as in the previous proof, (i)⇒(ii) follows from Theorems 4.1 and 2.4,
and (ii)⇒(iii) is obvious. We now prove (iii)⇒(i).

Notice that since the Polish space X is not Kσ, by the Hurewicz Theorem
we can find in X a closed subset X ′ homeomorphic to ωω. Consider then
the mapping Φ : K(X) → K(X ′) defined by Φ(K) = K ∩ X ′. Since Φ is
increasing and onto, it is easy to check that the direct image under Φ of
any cofinal subset of K(X) is a cofinal subset of K(X ′). We now show that
the inverse image under Φ of any cofinal B subset of K(X ′) is also a cofinal
subset of K(X). Let

A = Φ−1(B) = {K ∈ K(X) : K ∩X ′ ∈ B}.
Then for any K ∈ K(X) we can find K ′ ∈ B such that K ∩X ′ ⊂ K ′ ⊂ X ′,
hence

(K ∪K ′) ∩X ′ = (K ∩X ′) ∪ (K ′ ∩X ′) = K ′.
Since K ′ ∈ B this shows that K ′′ = K ∪K ′ ∈ A; but obviously K ⊂ K ′′.

So suppose non-(i). Then by the case X = ωω we can find a Π1
1 cofinal

subset B of K(X ′) with no Σ1
1 cofinal subset. Since Φ is clearly Borel, A =

Φ−1(B) is Π1
1, and by the previous remarks A is also cofinal in K(X) and

contains no Σ1
1 cofinal subset. This proves non-(iii) in the general case.

Remark 5.3. If in the previous statement the Polish space X is Kσ, we
still have (i)⇒(ii)⇒(iii). But (iii)⇒(i) is false. For example, if X is compact
then (iii) always holds since any cofinal subset contains a cofinal subset
which is a singleton, namely {X}!

5.4. Closed sets with code in L. Let F be a closed subset of ωω. By a
code for F we mean any tree T on ω such that F = [T ]; if such a tree T
exists in L (i.e. if T ∈ L) then we say that F has a code in L. We discuss
here briefly the main properties of this notion that we shall use.

Notice that if F has a code in L then the canonical (in fact, minimal)
code

Σ(F ) = {s ∈ ω<ω : F ∩Ns 6= ∅}
is also in L. This is shown by standard absoluteness arguments from the
following equivalence:

s ∈ Σ(F ) ⇔ the tree T ∩ Σs is not well founded

where Σs denotes the tree of all sequences extending s.
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Obviously, if F ∈ L then Σ(F ) ∈ L, hence F has a code in L. But unless
V = L there are closed sets not in L having a code in L. For example, the
whole space ωω and the compact set 2ω have codes in L. A large class of
such closed sets is given by the following:

If F is Σ1
1(α) for some α ∈ ωω ∩ L, then F has a code in L.

In fact, in this case Σ(F ) is clearly a Σ1
1(α) subset of ω<ω and by classical

results Σ(F ) ∈ L(α) = L. In particular,

If F is Σ1
1 then F has a code in L.

For any subset A of ωω we denote by KL(A) the set of all compact
subsets of A with code in L. Thus by the previous remarks

K(A) ∩ L ⊂ KL(A)

but unless V = L the previous inclusion is always strict.

Theorem 5.5. The following are equivalent :

(i) The set ωω ∩ L is ?-bounded in ωω.
(ii) For any Π0

2 subset A of ωω, there exists a countable subset C of
K(A) such that

∀K ∈ KL(A), ∃K ′ ∈ C, K ⊂ K ′.
(iii) For any Σ0

2 subset A of ωω, there exists a Kσ subset B of A such that

∀K ∈ KL(A), K ⊂ B.
(iv) For any Σ1

1 subset A of ωω, there exists a Kσ subset B of A such that

A ∩ L ⊂ B.
P r o o f. (i)⇒(ii). Suppose first that A = ωω. Fix a ∈ ωω such that

ωω ∩ L is ?-dominated by a. For any s ∈ ω<ω let as denote the element of
ωω defined by

as(j) =
{
s(j) if j < |s|,
as(j) = a(j) if j ≥ |s|.

Then the subset

C0 = {{x ∈ ωω : x ≤ as} : s ∈ ω<ω}
of K(ωω) clearly satisfies (ii).

For the general case, fix a ∆1
1 perfect mappping ϕ from some Π0

1 subset
F of ωω onto A and let

C = {ϕ(K ∩ F ) : K ∈ C0}.
Then for any K ∈ K(A) with code T , the compact set ϕ−1(K) also has a
code ∆1

1(T ). In particular, if K ∈ KL(A) then ϕ−1(K) ∈ KL(ωω); and one
easily derives property (ii) for C from the same property for C0.
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(ii)⇒(iii). Suppose A =
⋃
An with all the An’s Π0

1 . For all n let Cn be
a countable subset of K(An) satisfying (ii) for the Π0

2 set An, and consider
the Kσ subset

B =
⋃
n

(⋃
Cn
)

of A. Since each An has a code in L, for any K ∈ KL(A) the compact set
K ∩An also has a code in L, hence K =

⋃
nK ∩An ⊂ B.

(iii)⇒(iv). First notice that applying (iii) to A = ωω we can find a Kσ

set B0 such that ωω ∩ L ⊂ B0 ⊂ ωω.
If A is any Σ1

1 subset of ωω, fix a continuous ∆1
1 mapping ϕ in L from

ωω onto A, and let B = ϕ(B0), which is also a Kσ set. Then by absoluteness
of the statement

∀y ∈ A, ∃x ∈ ωω, y = ϕ(x)
we have

A ∩ L = ϕ(ωω ∩ L) ⊂ ϕ(B0) = B ⊂ A
and B is clearly Kσ.

(iv)⇒(i). Since KL(ωω) contains all singletons from ωω∩L, applying (iv)
to A = ωω we see that ωω ∩ L is contained in some Kσ subset of ωω and
hence is ?-bounded.

Remarks 5.6. (a) If we suppose that “The set ωω ∩L is countable” then
(ii)–(iv) hold for any subset A of ωω without any descriptive hypothesis
on A. In fact, in this case the set KL(ωω) is also countable, hence we can
realize (ii) with C = KL(A) and (iii) with C =

⋃ C, which is Kσ, whereas
(iv) is obvious by taking B = A∩L, which is now countable. But as we shall
see through the following remarks, any minor strengthening of (ii), (iii) or
(iv) implies that “The set ωω ∩L is countable” and hence that (ii)–(iv) hold
for any A.

(b) Assume that (iv) holds for any Π1
1 subset A of ωω ∩ L. Let A be

the largest thin Π1
1 subset of 2ω and B ⊂ A as in (iv). Since A ⊂ L, in

this case we find that A = B is Kσ hence countable, as A is thin. But it
is a classical fact that such a set A is in one-to-one correspondence (even
in L) with 2ω ∩ L, which is then also countable. And since there is a ∆1

1
embedding j of ωω into 2ω, ωω ∩ L = j−1(2ω ∩ L) is countable as well.

(c) Assume that (ii) holds for A = Q, some ∆1
1 (homeomorphic) copy in

ωω of the set of all rational numbers, and fix a countable family C satisfy-
ing (ii). Since the set KL(Q) is Π1

1 complete, for any Π1
1 set A0 ⊂ 2ω ∩ L

there exists a ∆1
1 continuous mapping Φ : 2ω → KL(ωω) such that for all α,

α ∈ A0 ⇔ Φ(α) ∈ A0.

Moreover, since A0 ⊂ L, for any α ∈ A0 the compact set Φ(α) is ∆1
1(α) hence

has a code in L; so there exists C ∈ C such that Φ(α) ⊂ C. Conversely, such
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an inclusion obviously implies by the hypothesis on Φ that α ∈ Q. Thus

α ∈ A0 ⇔ ∃C ∈ C, Φ(α) ⊂ C.
This shows that any Π1

1 subset A0 of 2ω ∩L is Kσ, hence by (b) above that
ωω ∩ L is countable.

(d) If A is a ∆1
1 subset of ωω which is a Pσ space, then it follows from

general structural results (see [5]) that one can write A = A′ ∩A′′ where A′

is Π0
2 (α) and A′′ is Σ0

2(α) for some α ∈ ωω ∩ L. Then one can easily adapt
the arguments of Theorem 5.5 to show that (ii) implies that condition (iii)
holds for any set A satisfying the hypothesis above. But we shall see that
this is the exact limit for extending (iii). We recall that a typical subset of
ωω×ωω which is not a Pσ space is given by the complement of the product
P × Q, where P ⊂ ωω is a copy of the space ωω with empty interior and Q
is as above a copy of the rationals.

(e) Assume that (iii) holds for some set A which is a ∆1
1 (homeomorphic)

copy of the space ωω × ωω \ P×Q above. Then by the proof of Théorème 6
in [9] for any Π1

1 set A0 ⊂ 2ω ∩ L there exists a ∆1
1 lower semi-continuous

mapping Φ : 2ω → KL(ωω) such that for all α,

α ∈ A0 ⇒ Φ(α) ⊂ A,
α 6∈ A0 ⇒ Φ(α) \A dense in Φ(α).

Fix a Kσ set B such that A∩L ⊂ B ⊂ A, and let B =
⋃
nKn where all the

Kn’s are compact. Again for any α ∈ A0 the compact set Φ(α) has a code
in L; so Φ(α) ⊂ B =

⋃
nKn ⊂ A and by Baire’s Category Theorem there

exist n and s such that ∅ 6= Ns ∩ Φ(α) ⊂ Kn. On the other hand, if α 6∈ A0

then for all n the set Φ(α) \Kn ⊃ Φ(α) \A is dense in Φ(α). Thus

α ∈ A0 ⇔ ∃n, s, ∅ 6= Ns ∩ Φ(α) ⊂ Kn.

This again shows that any Π1
1 subset A0 of 2ω ∩L is Kσ, hence that ωω ∩L

is countable.

6. Compact covering and inductively perfect mappings. We recall
the following notation for two separable metric spaces X and Y :

A(X,Y ): “Any compact covering mapping f : X → Y is inductively
perfect”.

One can easily check that a mapping f : X → Y is compact covering
(inductively perfect) iff the projection mapping from the graph of f (viewed
as a subspace of Y × X) is compact covering (inductively perfect); this
reduces the general study of these notions to the particular case of projection
mappings.
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6.1. Projection mappings. A projection mapping is a mapping πX : X →
Y where X is a subset of some product space Y × Z, πX is the restriction
to X of the canonical projection π and Y = π(X) = πX(X).

If X and Y are two classes of spaces, by a projection from X onto Y we
mean a projection mapping with domain in X and range in Y.

(a) Reducing to zero-dimensional projections. It follows from the previous
remark that if the classes X and Y satisfy

(?) ∀X ∈ X , ∀Y ∈ Y, ∀Z a closed subset of X × Y, Z ∈ X
then the following are equivalent:

(i) A(X,Y ) ∀X ∈ X , ∀Y ∈ Y.
(ii) Any compact covering projection from X onto Y is inductively

perfect.

If moreover X and Y are descriptive classes then it follows from the
the proof of [3], Theorem 3.1 that (i) and (ii) above are also equivalent
to the statements obtained by restricting in (i) and (ii) all spaces to be
zero-dimensional.

(b) Inductively perfect projections. Notice that in the study of a πX for
X ⊂ Y ×Z, we can always assume that the space Z is compact. In this case
the following observation, which follows easily from the definitions, is very
convenient and will be constantly used in the rest of this section to verify
that a projection mapping is inductively perfect:

If Z is compact then πX is perfect if and only if X is closed in Y × Z.

(c) Strongly compact covering projections. We say that the projection
mapping πX : X → Y is strongly compact covering if for any compact
subset K of Y there exists z ∈ Z such that K × {z} ⊂ X.

Observe that this notion is meaningless for mappings which are not pro-
jection mappings. As we shall see this strengthening of “compact covering”
is linked to the following strengthening of “inductively perfect”.

Let X ⊂ Y × Z and consider X̃ ⊂ Y ×K(X) defined by

X̃ = {(y,H) ∈ Y ×K(X) : y ∈ π(H)}.
Then one can easily check that

πX is compact covering ⇔ π
X̃

is strongly compact covering,

πX is inductively perfect ⇔ π
X̃

is inductively perfect.

(d) Continuous sections. By a section of a mapping f : X → Y we mean
a mapping g : Y → X such that

∀y ∈ Y, f(g(y)) = y.
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It is clear that if f has a continuous section then f is inductively perfect;
but the converse is false.

The following variation of Ostrovskĭı’s Theorem can be proved in a to-
tally similar way as the original result (see [7] or [4]).

Theorem 6.2. Any strongly compact covering projection onto a σ-com-
pact space admits a continuous section.

Theorem 6.3. For a Π1
1 zero-dimensional space Y , the following are

equivalent :

(i) Any strongly compact covering projection from a Π1
1 space onto Y

has a continuous section.
(ii) For any cofinal Π1

1 subset A of K(Y ) there exists a continuous
mapping f : Y → A satisfying y ∈ f(y) for all y ∈ Y .

P r o o f. (i)⇒(ii). Take A as in (ii) and consider the Π1
1 set

X = {(y,H) ∈ Y ×A : y ∈ H}.
If K is any compact subset of Y , then since A is cofinal there exists H ∈ A
such that K ⊂ H, so K × {H} ⊂ X and f(K × {H}) = K. This proves
that the projection mapping πX is strongly compact covering, hence by (i)
it admits a continuous section which clearly provides a continuous mapping
f : Y → A satisfying (ii).

(ii)⇒(i). Let πX : X → Y be a strongly compact covering projection of
X a Π1

1 subset of Y × Z onto Y . We want to prove that πX is inductively
perfect. By Theorem 6.2 above we may and do assume that Y is not σ-
compact. In particular, its Cantor second derivative Y ′′ is not compact. So
fix an infinite partition (Un) of Y ′′ into clopen (in Y ′′) nonempty sets. Then
there is a partition (Yn) of Y into clopen (in Y ) subsets of Y such that
Un = Y ′′ ∩ Yn. Pick in each Un some point an, and an infinite, one-to-one
sequence (a(k)

n )k∈ω of points of Yn ∩ Y ′ converging to an. Then the set

F = {a(k)
n : k, n ∈ ω} ∪ {an : n ∈ ω}

is a closed subset of Y with empty interior.
Consider the mappings ν : K(Y ) → ω and Fn : 2ω → K(Y ) for n ∈ ω

defined by
ν(K) = min{n : ∀m ≥ n, K ∩ Ym = ∅},
Fn(ε) = {a(k)

n : k ∈ ω with ε(k) = 1} ∪ {an}
and define the mapping Φ : K(Y )× 2ω → K(Y ) by

Φ(K, ε) = K ∪ Fν(K)(ε).

Notice that for all (K, ε) we have

K ⊂ Φ(K, ε) ⊂ K ∪ F.
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Fact 6.3.1. Φ is a homeomorphism from K(Y )×2ω onto a cofinal subset
of K(Y )

P r o o f. Since Fn is clearly a homeomorphism from 2ω onto a compact
subset of K(Y ) and ν is locally constant, Φ is continuous. Moreover, if K ′ =
Φ(K, ε) then ν(K ′) is locally constant and the same holds for N = ν(K) =
ν(K ′)− 1; hence

ε = F−1
N (K ′ ∩ YN ) and K = K ′ ∩

⋃

n≤N
Yn.

This shows that Φ is one-to-one and since the Yn’s are clopen it follows from
the last formula that Φ−1 is also continuous.

We can obviously suppose that the projection of X ⊂ Y × Z on the
second factor is the whole space Z, in particular that Z is a Σ1

2 space. Fix
then a Π1

1 subset E of 2ω and a continuous mapping ϕ : E → Z onto Z,
and consider the Π1

1 set

A = {K ′ = Φ(K, ε) ∈ K(Y ) : ε ∈ E and K × {ϕ(ε)} ⊂ X}.
Since πX is strongly compact covering, it follows from the inclusion K ⊂
Φ(K, ε) that A is a cofinal subset of K(Y ).

Let f : Y → A be a continuous mapping as in (ii); we now define a
continuous mapping g : Y → Z which is a section of πX . Let y ∈ Y and
f(y) = K ′ ∈ A; put K ′ = Φ(K, ε) with ε ∈ E, and define g(y) = ϕ(ε) ∈ Z
and H(y) = K. Since Φ is a homeomorphism it is clear that the mappings
g : Y → Z and H : Y → K(Y ) are continuous, and all we have to prove is
that (y, g(y)) ∈ X for all y ∈ Y .

Notice that for all y ∈ Y we have, with the previous notations,

y ∈ f(y) = H(y) ∪ Fν(K)(ε);

in particular, y ∈ H(y) if y ∈ Y \ F . Hence by the density of Y \ F for
all y ∈ Y we have y ∈ H(y); but since H(y) × {g(y)} ⊂ X it follows that
(y, g(y)) ∈ X.

Theorem 6.4. The following are equivalent :

(i) A(X,Y ) ∀X Π1
1, ∀Y Polish.

(ii) Any strongly compact covering projection from a Π1
1 space onto any

Polish space has a continuous section.
(iii) For any Polish space Y and any cofinal Π1

1 subset A of K(Y ) there
exists a continuous mapping f : Y → A satisfying y ∈ f(y) for all y ∈ Y .

(iv) For any Polish space Y and any cofinal Π1
1 subset A of K(Y ) there

exists a continuous mapping F : K(Y ) → A satisfying K ⊂ F (K) for all
K ∈ K(Y ).
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P r o o f. (iv)⇒(iii) is obvious and (iii)⇒(ii) follows from Theorem 6.3.
(ii)⇒(i). Let Y be a Polish space and πX be a compact covering pro-

jection from a Π1
1 space X ⊂ Y × Z onto Y , with Z compact. Consider

the set

X̃ = {(y,H) ∈ Y ×K(X) : y ∈ π(H)}.
If K is any compact subset of Y and H a compact subset of X such that
π(H) = K then obviously K × {H} ⊂ X̃. Hence the projection mapping
π
X̃

is strongly compact covering, so by (ii), π
X̃

has a continuous section
g : Y → K(X). Then it is clear that the subset

H = {(y, z) ∈ Y × Z : z ∈ g(y)}
of X is closed in Y × Z and that π(H) = Y .

(i)⇒(iv). Let Y be a Polish space and A be some Π1
1 cofinal subset of

K(Y ). Consider the Π1
1 set

X = {(K,K ′) ∈ K(Y )×A : K ⊂ K ′}.
It is easy to see that the projection mapping πX is compact covering (even
strongly) onto K(Y ), which is also Polish, hence by (i), πX is inductively
perfect. Let H ⊂ X be a closed subset of K(Y )×K(Y ) with total projection
on the first factor K(Y ); then the projection of H on the second factor is
a Σ1

1 subset of A which is also cofinal. The conclusion then follows from
Theorem 2.4.

Theorem 6.5. The following are equivalent :

(i) A(X,Y ) ∀X Π1
1, ∀Y Pσ.

(ii) A(X,Y ) ∀X Π1
1, ∀Y Polish.

(iii) A(X,Y ) ∀X ∆1
1, ∀Y Polish.

(iv) A(X,Y ) ∀X Pσ, ∀Y Polish.

P r o o f. Obviously, (i)⇒(ii)⇒(iii)⇒(iv). We shall not prove (iv)⇒(i) di-
rectly, but by showing (iv)⇒(ii)⇒(i), and we start with the second implica-
tion, which is simpler than the first.

(ii)⇒(i). Since the classes X = Π1
1 and Y = Pσ satisfy condition (?) of

6.1(a), it is enough to prove (i) for zero-dimensional projections.
So let πX : X → Y (X ⊂ Y ×Z) be a compact covering mapping where

X is a Π1
1 space, and Y = π(X) a Pσ space. We embed the spaces Y and Z

in 2ω. Then there exists a Π0
2 subset Ỹ of 2ω containing Y as a Σ0

2 subset.
Consider now the projection mapping π

X̃
associated with the set

X̃ = X ∪ (Ỹ \ Y )× 2ω.

Then clearly X̃ is Π1
1 and π(X̃) = Ỹ is Polish. Moreover, since X = X̃ ∩

(Y × Z), to prove that πX is inductively perfect it is enough to prove that
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π
X̃

is inductively perfect, so by (ii) it is enough to prove that π
X̃

is compact
covering.

So let K be any compact subset of Ỹ . Then Y0 = K ∩ Y is σ-compact;
moreover, the projection πX0 fromX0 = X∩(Y0×2ω) onto Y0 is still compact
covering. Hence by Ostrovskĭı’s Theorem πX0 is inductively perfect, and we
can find a subset H0 of X0 of total projection π(H0) = Y0 which is closed
in Y0 × 2ω.

Let H1 denote the closure of H0 in K×2ω; since H0 is closed in Y0×2ω

it follows that
H1 ⊂ H0 ∪ [(K \ Y0)× 2ω],

hence H1 ⊂ X̃. Let K1 = π(H1); since K1 ⊃ K∩Y we have K \K1 ⊂ Ỹ \Y ,
hence

(K \K1)× 2ω ⊂ X̃.
Consider now

H = {(y, z) ∈ K × 2ω : ∀z′ ∈ 2ω, d((y, z),H1) ≤ d((y, z′),H1)}
where d(a,A) denotes the distance from the point a to the set A for some
fixed metric on 2ω × 2ω. It is clear that H is a compact subset of K × 2ω

with π(H) = K; moreover, H ∩ (K1×2ω) = H1 so that H ⊂ X̃. This shows
that πX is compact covering and finishes the proof of (i).

(iv)⇒(ii). As in the previous implication, by 6.1(a) it is enough to prove
(ii) for zero-dimensional projections.

So let πX : X → Y (with X ⊂ Y × Z) be a projection mapping where
X is a Π1

1 space, Y = π(X) a zero-dimensional Polish space that we embed
as a Π0

2 subset of ωω, and Z a zero-dimensional compact space. We define
another zero-dimensional projection π

X̃
: π

X̃
→ Ỹ (with X̃ ⊂ Ỹ × Z̃) where

X̃ is a Pσ space and Ỹ is Polish such that:

(a) If πX is compact covering then π
X̃

is compact covering.
(b) If π

X̃
is inductively perfect then πX is inductively perfect.

This will clearly prove the implication. Notice that Y is a subspace of Ỹ
as in the previous implication, but X is not in any sense the restriction of
X̃ to Y ; in fact, Z̃ 6= Z.

(1) Definition of Ỹ and Z̃. We let

Z̃ = 2ω × 2ω and Ỹ = Y ∪ Y ?
where Y ? is a countable set that we define below, together with the topology
on Ỹ .

For this we need to fix some notations. As usual, we denote by π the
projection from Z̃ onto the first factor. Let

F = {E ∈ K(Z̃) : π(E) = 2ω}



188 G. Debs and J. Saint Raymond

and for all n let

En =
{
E ∈ F : ∃T ⊂ 2n × 2n, E =

⋃

t∈T
Nt

}
.

Then E =
⋃
n En is just the set of all clopen subsets of Z̃ = 2ω × 2ω with

total projection on the first factor; notice in particular that E is dense in F .
We now define

Y ? = {(s,E) ∈ Σ(Y )×K(Z̃) : E ∈ E|s|}
where Σ(Y ) denotes the canonical tree of Y viewed as a closed subset of ωω.
We endow Ỹ with the unique topology τ satisfying:

• The restriction of τ to Y is the discrete topolgy.
• For any y ∈ Y ⊂ ωω a basis of neighbourhoods for y in Ỹ is given by

the family (Vs)s≺y where

Vs = {y′ ∈ Y : s ≺ y′} ∪ {y? = (s′, E) ∈ Y ? : s ≺ s′}.
It is then easy to embed homeomorphically Ỹ onto a closed subset of

ωω × ωω sending Y onto Y × {0}. In particular, Ỹ is a Polish space and Y

is a closed subset of Ỹ .

(2) Definition of X̃. We fix an embedding j of the Polish space K(Y ×Z)
onto a Π0

2 subset of 2ω which is the first factor of Z̃. If j(H) = u ∈ 2ω then
we simply say that u is the code of the compact set H ⊂ Y ×Z. Notice that
the set of all (y, u) satisfying

y ∈ Y, u is the code of H ∈ K(Y × Z), y ∈ π(H)

is a Π0
2 subset G0 of Y × 2ω.

Moreover, since X is a Π1
1 subset of Y × 2ω we see that the set A =

2ω \ j(K(X)) is Σ1
1, and we can fix a Π0

2 subset G of 2ω × 2ω such that

u ∈ A ⇔ ∃v ∈ 2ω, (u, v) ∈ G,
or equivalently,

u is the code of H ∈ K(X) ⇔ ({u} × 2ω) ∩G = ∅.
We define

X̃ =
(

(G0 × 2ω) ∪
⋃

y?=(s,E)∈Y ?
{y?} × E

)
\ (Y ×G).

Clearly, X̃ is a subset of Ỹ × Z̃ which is the difference of two Π0
2 subsets,

hence a Pσ space.

(3) If πX is compact covering then π
X̃

is compact covering. Let K̃ be
a compact subset of Ỹ . Since Y is closed in Ỹ we see that K = K̃ ∩ Y is
a compact subset of Y , hence there exists a compact subset H of X such
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that π(H) = K. Let u ∈ 2ω be the code of H; then for all y ∈ K we have
(y, u) ∈ G0, and since H ⊂ X we see that (u, v) 6∈ G for all v ∈ 2ω; so

K × {u} × 2ω ⊂ X.
Moreover, it follows from the definition of X̃ that

∀y? ∈ Y ?, ∀u ∈ 2ω, ∃v = ϕ(y?, u) ∈ 2ω, (y?, u, ϕ(y?, u)) ∈ X̃.
Then let

H̃ = (K × {u} × 2ω) ∪
⋃

y?∈K∩Y ?
{(y?, u, ϕ(y?, u))}.

It is clear that H̃ is a compact subset of X̃ and that π(H̃) = K̃.

(4) If π
X̃

is inductively perfect then so is πX . Let F̃ be a subset of X̃
with total projection onto Ỹ , and which is closed in Ỹ × Z̃, and define

F = {(y, z) ∈ Y × Z : ∃u a code of some compact set H ⊂ Y × Z
such that (y, z) ∈ H and ∀v ∈ 2ω, (y, u, v) ∈ F̃}.

Notice that if (y, u, v) ∈ F̃ ⊂ X̃ then necessarily u is the code of a
(unique) compact set H and that H ⊂ X. From this remark one can easily
derive that F ⊂ X, and that F is closed in Y × Z. Hence to prove that πX
is inductively perfect we only need to show that π(F ) = Y .

So fix y in Y and consider

F̃ (y) = {(u, v) ∈ 2ω × 2ω : (y, u, v) ∈ F̃},
which is a compact subset of Z̃.

Fact 6.5.1. ∀E ∈ F , E ∩ F̃ (y) 6= ∅.
P r o o f. We can choose a sequence (En) such that E = limnEn and

for all n, En ∈ En. Let sn = y|n so that y?n = (sn, En) ∈ Y ?, and y =
limn y

?
n. Since π(F̃ ) ⊃ Y ? we can pick for all n some (un, vn) ∈ F̃ (y?n); then

(y?n, un, vn) ∈ X̃, hence by definition of Y ? we also have (un, vn) ∈ En. Then
any cluster point of the sequence (un, vn) will be in E ∩ F̃ (y); hence this set
is nonempty.

Fix u ∈ 2ω such that

F̃ (y) ⊃ {u} × 2ω.

Such a u exists for otherwise the open set 2ω×2ω \ F̃ (y) would have a total
projection on the first factor, hence would contain a clopen set E0 with
total projection, that is, E0 ∈ F with E0 ∩ F̃ (y) = ∅, thus contradicting the
previous fact.
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It then follows from the definition of X̃ that u is the code of a compact
set H ⊂ Y × Z and that

({u} × 2ω) ∩G = ∅
hence by the definition of G we have in fact H ⊂ X. It also follows from the
definition of X̃ that (y, u) ∈ G0, so y ∈ π(H) and we can find z ∈ Z such
that (y, z) ∈ H, hence z ∈ F (y).

7. Conclusion and open questions. For any two descriptive classes
X and Y consider the following statements:

A(X ,Y): “For any X ∈ X and any Y ∈ Y, any compact covering
mapping f : X → Y is inductively perfect”.

A?(X ,Y): “For any X ∈ X and any Y ∈ Y, if X ⊂ K(Y ) is cofinal
then there exists a continuous mapping f : Y → X such
that y ∈ f(y)”.

A??(X ,Y): “For any X ∈ X and any Y ∈ Y, if X ⊂ K(Y ) is cofinal
then there exists a continuous mapping F : K(Y ) → X
such that T ⊂ F (T )”.

We restrict ourselves to the case where the classes X and Y are zero-
dimensional and satisfy the condition considered in 6.1:

(?) ∀X ∈ X , ∀Y ∈ Y, ∀Z a closed subset of X × Y, Z ∈ X .

We recall that under these assumptions we have (see 6.1)

A(X ,Y) ⇔ Any compact covering projection from X onto Y
is inductively perfect.

Also, under the same assumptions the proof of Theorem 6.2 shows that

A?(X ,Y) ⇔ Any strongly compact covering projection from X onto Y
has a continuous selection.

The remarks in 6.1(a) show that if X is Π0
2 or Π1

1 then

A?(X ,Y) ⇒ A(X ,Y).

More generally, this implication holds for any class X such that κ(X ) ⊂ X ,
where

κ(X ) = {K(X) : X ∈ X}.
But there is no general condition on the classes X and Y which ensures the
converse of the last implication.

The comparison of A? and A?? is clearer. In fact,

A?(X , κ(Y)) ⇒ A??(X ,Y) ⇒ A?(X ,Y).
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The second implication is obvious. For the first one let X ∈ X , Y ∈ Y,
and suppose that X ⊂ K(Y ) is cofinal. Consider the set X̃ = {H ∈ K(Y ) :⋃
H ∈ X}. Since the mapping H 7→ ⋃

H is continuous from K(Y ) into Y
we have X̃ ∈ X ; moreover, since X is cofinal in K(Y ), for any H ∈ K(Y )
we can find K ∈ X such that

⋃
H ⊂ K. Then one easily checks that

H ⊂ K(K) ∈ X̃, which proves that X̃ is cofinal in K(Y ). So there exists a
continuous mapping f̃ : K(Y ) → X̃ satisfying K ∈ f̃(K) for all K, and we
define the mapping F : K(Y )→ X by F (K) =

⋃
f̃(K). This F is continuous

and satisfies K ⊂ F (K) for all K.
In particular, if κ(Y) ⊂ Y (so if Y is Π0

2 or Π1
1) then

A??(X ,Y) ⇔ A?(X ,Y).

We can now summarize the main results of the paper through the fol-
lowing diagram:

Det(Σ1
1)⇒ A??(Π1

1,Π
1
1)⇒A??(Π1

1,∆
1
1) ⇒ A??(Π1

1,Π
0
2)

m ⇓ m
A?(Π1

1,Π
1
1) ⇒A?(Π1

1,∆
1
1) ⇒ A?(Π1

1,Π
0
2)

⇓ ⇓ m
A(Π1

1,Π
1
1) ⇒ A(Π1

1,∆
1
1) ⇒ A(Π1

1,Π
0
2)

m m
⇓ A(∆1

1,∆
1
1) ⇒ A(∆1

1,Π
0
2)

m
∀α, ωω ∩ L(α) is countable ⇒ ∀α, ωω ∩ L(α) is ?-bounded

In the following comments we consider the diagram as a matrix where
Det(Σ1

1) is column 0. The implication Det(Σ1
1) ⇒ A??(Π1

1,Π
1
1) is just Re-

mark 2.7. The other horizontal implications are obvious. In the first column
the last implication A(Π1

1,Π
1
1)⇒ “∀α, ωω∩L(α) is countable” is the result

0.3(b) mentioned in the introduction (see [3], Theorem 7.2); the other fol-
low from the remarks at the beginning of this section. In the second column
the only nontrivial implication is A(∆1

1,∆
1
1) ⇒ A(Π1

1,∆
1
1), which can be

proved by exactly the same method as (iv)⇒(ii) in Theorem 6.5. Finally,
the equivalences of the last column relate Theorems 5.2, 6.4, 6.5, which also
give the equivalence with A(∆1

1,Pσ) and A(Pσ,Π0
2).

We finish by some informal remarks on the plausibility of the missing
arrows in this diagram. These remarks are based on some unsuccessful at-
tempts to complete the picture.

(1) First consider the subdiagram constituted only by the statements
involving A, A?, A??, thus excluding Det(Σ1

1) and the statements about the
size of the ωω ∩ L(α)’s.
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It might be possible that the statements in each column are equivalent
(this is already the case for the third column). One cannot even exclude
that all the statements of the first two columns might be equivalent. But it
seems highly improbable that any statement from the second (and a fortiori
the first) column could be equivalent to the statements of the third column.
Still between all these possible equivalences the less expected one is between
A??(Π1

1,∆
1
1) and A?(Π1

1,∆
1
1). In any case we are convinced that no proof of

any of these possible equivalences can be direct, but has to go through some
extra statement such as some assumption on the size of the ωω ∩L(α)’s, or
even Det(Σ1

1).

(2) But a more interesting result would be to obtain any new comparison
between “∀α, ωω∩L(α) is countable” and one of the A, A?, A?? statements
considered above, although one cannot exclude the possibility that some of
these statements (at least A??(Π1

1,Π
1
1)) could be equivalent to Det(Σ1

1).
The most interesting implication would be “∀α, ωω ∩ L(α) is countable

⇒ A(∆1
1,∆

1
1)”, for which we have some evidence. Notice that the converse

of this implication is also open.
Another challenging statement is A??(Π1

1,Q) where Q denotes the space
of all rational numbers. Notice that as for A(X,Q) one can prove in ZFC
that A?(X,Q) holds for all X (see for example the proof of A(X,Q) in [3]);
but it is quite clear that this should not be the case for A??(X,Q) and not
even for A??(Π1

1,Q).

Post Scriptum. 1. Recently we were able to prove the following impli-
cations:

A(∆1
1,∆

1
1) ⇒ “∀α, ωω ∩ L(α) is countable” ⇔ A?(Π1

1,Π
0
3),

A??(Π1
1,∆

1
1) ⇒ Det(Σ1

1),

and even

A??(Π1
1,Q) ⇒ Det(Σ1

1),

which answers some of the questions raised in Section 7.
2. We are grateful to S. Todorčević who informed us about the papers [10]

by Spinas and [1] by Brendle, Hjorth and Spinas concerning some properties
of ?-cofinal sets (dominating sets in their terminology).

In fact, their results are formally incomparable with the results of the
present paper. For example, Theorem 1.1 of [1] implies Corollary 2.2 above in
the particular case of the order ≤?, but on the other hand, in this restricted
context the conclusion of Theorem 1.1 is more precise but meaningless in
the general context of a Borel ordering. However, even in the case of the
order ≤?, one cannot derive the main result (Theorem 4.5 above) from
Theorem 2.2 of [1].



Cofinal Σ1
1 and Π1

1 subsets of ωω 193

References

[1] J. Brendle, G. Hjorth and O. Spinas, Regularity properties for dominating pro-
jective sets, Ann. Pure Appl. Logic 72 (1995), 291–307.

[2] J. P. R. Chr i s tensen, Necessary and sufficient conditions for the measurability of
certain sets of closed sets, Math. Ann. 200 (1973), 189–193.

[3] G. Debs and J. Sa int Raymond, Compact covering and game determinacy,
Topology Appl. 68 (1996), 153–185.

[4] W. Just and H. Wicke, Some conditions under which tri-quotient or compact-
covering maps are inductively perfect , ibid. 55 (1994), 289–305.

[5] A. Louveau, A separation theorem for Σ1
1 sets, Trans. Amer. Math. Soc. 260

(1980), 363–378.
[6] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[7] A. V. Ostrovsk i ı̆, On new classes of mappings associated with k-covering map-

pings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, no. 4, 24–28 (in Russian);
English transl.: Moscow Univ. Math. Bull. 49 (1994), no. 4, 29–23.
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