Extending Peano derivatives: necessary and sufficient conditions

by

Hans Volkmer (Milwaukee, Wisc.)

Abstract. The paper treats functions which are defined on closed subsets of [0, 1] and which are k times Peano differentiable. A necessary and sufficient condition is given for the existence of a k times Peano differentiable extension of such a function to [0, 1]. Several applications of the result are presented. In particular, functions defined on symmetric perfect sets are studied.

1. Introduction. Let P be a closed subset of [0,1], and let $f: P \to \mathbb{R}$ be a given real-valued function defined on P. Let k be a positive integer. We say that f is k times Peano differentiable at $x \in P$ relative to P with Peano derivatives $f_{(1)}(x), \ldots, f_{(k)}(x)$ if we can write $(f_{(0)} := f)$

$$f(x+h) = \sum_{j=0}^{k} f_{(j)}(x) \frac{h^j}{j!} + \varepsilon(x,h) \frac{h^k}{k!}$$

with

$$\varepsilon(x,h) \to 0$$
 as $0 \neq h \to 0, x+h \in P$.

This condition is empty if x is an isolated point of P. At an isolated point the Peano derivatives $f_{(1)}(x), \ldots, f_{(k)}(x)$ are arbitrarily assigned. If f is k times Peano differentiable at every point $x \in P$, then we say that f is k times Peano differentiable on P relative to P. If P is perfect, this definition is due to Denjoy [4, p. 280]. The extension to closed sets was given by Fejzić, Mařík and Weil [7].

Let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P with Peano derivatives $f_{(1)}, \ldots, f_{(k)}$. In this paper we deal with the following question: does there exist a function $F: [0,1] \to \mathbb{R}$ which is k times Peano differentiable on [0,1] and has the property that F(x) = f(x) and $F_{(j)}(x) =$

¹⁹⁹¹ Mathematics Subject Classification: Primary 26A24.

^[219]

 $f_{(j)}(x)$ for all $x \in P$ and all j = 1, ..., k? We will call such a function F a *k*-extension of f for short.

This question was raised in the very interesting papers [2, 7] which inspired the present paper. It was shown in [7] that 1-extensions always exist but examples of Buczolich [1] and Denjoy [4] show that, for every $k \ge 2$, there are k times Peano differentiable functions which do not admit a k-extension. A more general class of such examples is presented in Section 4 of the present paper.

The main result of this paper is Corollary 3.10 of Theorem 3.2 which gives a necessary and sufficient condition for the existence of k-extensions. The necessity of the condition is known from [7, Cor. 4.8]. We recall this important theorem in Section 2. In Corollary 3.8 we prove that a k times Peano differentiable function $f: P \to \mathbb{R}$ admits a k-extension if and only if its restriction to the perfect kernel of the boundary of P admits a k-extension.

As in [7] we say that a closed subset P of [0,1] belongs to the class \mathbf{P}_k if every k times Peano differentiable function $f : P \to \mathbb{R}$ admits a k-extension. Corollary 3.9 establishes that every closed set with countable boundary belongs to \mathbf{P}_k .

In Section 4 we investigate the problem whether a given symmetric perfect set specified by a sequence $\{\varepsilon_n\}$ belongs to \mathbf{P}_k . For many sequences we solve the problem but one case is still open.

2. A property of Peano derivatives. Let H be a perfect subset of [0,1]. We say that H is of *finite Denjoy index* [3, p. 138], [7, p. 392] if there exist two constants $\theta > 0$ and $\beta > 1$ such that, for every $x \in H$, there is a real sequence h_n , $n \in \mathbb{N}$, such that $0 \neq h_n \to 0$ as $n \to \infty$, $x + h_n \in H$ for $n \in \mathbb{N}$, $|h_1| \geq \theta$, and

(2.1)
$$1 < |h_n|/|h_{n+1}| \le \beta \quad \text{for all } n \in \mathbb{N}.$$

The following theorem will be used in Section 3.

THEOREM 2.1. Let H be a perfect subset of [0,1] of finite Denjoy index. Let $f : H \to \mathbb{R}$ be k times Peano differentiable on H relative to H with Peano derivatives $f_{(1)}, \ldots, f_{(k)}$. Let P be a perfect subset of H. Then there is a dense open subset E of P such that, for each $x \in E$ and $p = 1, \ldots, k-1$, $f_{(p)}$ is k-p times Peano differentiable at x relative to P with Peano derivatives $f_{(p+1)}(x), \ldots, f_{(k)}(x)$.

Theorem 2.1 is related to a result of Denjoy [4, p. 293] (which is given without proof), namely that the set E is only residual (complement of a set of first category). Theorem 2.1 is proved for H = [0, 1] in [6, Thm. 1.1.20]. In [7, Cor. 4.8] an extension theorem is used to generalize it to the case

where H is of finite Denjoy index. The author has found a more direct proof of Theorem 2.1 that is omitted here. It is of interest to have such a proof because we will show that Theorem 2.1 can be used to prove the extension theorem (Corollary 3.11).

Theorem 2.1 with H = P = [0, 1] shows that every function $f : [0, 1] \to \mathbb{R}$ which is k times Peano differentiable on [0, 1] is k times differentiable on a dense open subset of [0, 1]. This was proved by Oliver [8] in a different way.

3. A necessary and sufficient condition. The following lemma shows that we can assume without loss of generality that P is nowhere dense when we study the extension problem.

LEMMA 3.1. Let P be a closed subset of [0,1], and let $f : P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. If f restricted to the topological boundary ∂P of P has a k-extension, then so does f.

Proof. Let G be a k-extension of $f|\partial P$. The function h := f - G is k times Peano differentiable on P relative to P, and it vanishes together with its first k Peano derivatives on ∂P . Define $H : [0,1] \to \mathbb{R}$ by H(x) = h(x) for $x \in P$ and H(x) = 0 for $x \notin P$. Then H is a k-extension of h. Now G + H is a k-extension of f.

Let P be a nowhere dense closed subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Let R(f, P) be the set of all $x \in P$ for which there exists an open interval (a, b) with a < x < band $a, b \notin P$ such that $f|(a, b) \cap P$ has a k-extension. Note that R(f, P)is open relative to P and contains every isolated point of P. We also set Q(f, P) := P - R(f, P). This is a closed subset of P.

Our goal is to prove the following theorem.

THEOREM 3.2. Let P be a closed nowhere dense subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. If f satisfies the condition:

(3.1) for every nonempty closed subset P_0 of P, $R(f, P_0)$ is nonempty,

then f admits a k-extension.

For the proof a series of lemmas will be needed.

LEMMA 3.3. Let P be a closed subset of [0,1]. Let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Suppose there is a k-extension $F: [0,1] \to \mathbb{R}$ of f. For every open interval I containing P and every $\varepsilon > 0$, there is another k-extension $H: [0,1] \to \mathbb{R}$ of f such that

(3.2)
$$\max_{x \in [0,1]} |H(x)| \le \max_{x \in P} |f(x)| + \varepsilon$$

and

222

H(x) = 0 for all x outside I.

Proof. Let $A := \max_{x \in P} |f(x)|$. Define a function $G : [0,1] \to \mathbb{R}$ by G(x) = F(x) if $|F(x)| \leq A + \varepsilon$, $G(x) = A + \varepsilon$ if $F(x) > A + \varepsilon$ and $G(x) = -A - \varepsilon$ if $F(x) < -A - \varepsilon$. Then G might not be k times Peano differentiable on [0,1] any more but G agrees with F in a neighborhood of each $x \in P$. Inspection of the proof of Lemma 4.6 of [7] shows that G can be "smoothened" to a function H in such a way that it becomes a k-extension of f and still $|H(x)| \leq A + \varepsilon$ for all $x \in [0,1]$. It is clear that we can change H so that H vanishes outside I without destroying condition (3.2).

LEMMA 3.4. Let P be a closed nowhere dense subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Let A be a compact subset of R(f, P). Then f|A admits a k-extension.

Proof. For every $x \in A$, there is an open interval I containing x whose endpoints are not in P such that $f|I \cap A$ admits a k-extension. By compactness of A, finitely many of these intervals, say I_1, \ldots, I_n , cover A. We can also assume that these intervals are pairwise disjoint. By Lemma 3.3, for every $j = 1, \ldots, n$, there is a k-extension F_j of $f|I_j \cap A$ which vanishes outside I_j . Then $F_1 + \ldots + F_n$ is a k-extension of f|A.

LEMMA 3.5. Let P be a closed nowhere dense subset of [0,1]. Let Q be a nonempty closed subset of P. Then there exists a countable collection of open intervals I_n which has the following properties:

(i) the I_n are pairwise disjoint, disjoint from Q and $P_n := I_n \cap P$ is nonempty;

(ii) the length $|I_n|$ of I_n is less than the distance dist (I_n, Q) from I_n to Q;

(iii) the endpoints of I_n are not in P so that P_n is closed;

(iv) $P - Q = \bigcup_n P_n$.

Proof. Consider a complementary interval (a, b) of Q. Since P is nowhere dense, it is easy to find points $c_n, n \in \mathbb{Z}$, which are not in P such that $a < \ldots < c_{-1} < c_0 < c_1 < \ldots < b, c_n \to a$ as $n \to -\infty, c_n \to b$ as $n \to \infty$ and $dist((c_n, c_{n+1}), Q) > |c_n - c_{n+1}|$ for all n. Then let $I_n = (c_n, c_{n+1})$. If we do this for every complementary interval, the collection of all the I_n that meet P has the desired properties.

LEMMA 3.6. Let P be a closed nowhere dense subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Suppose that, for all $x \in Q(f, P)$,

(3.3)
$$f(x) = f_{(1)}(x) = \dots = f_{(k)}(x) = 0.$$

Then f admits a k-extension.

Proof. If Q := Q(f, P) is empty, then the conclusion follows from Lemma 3.4 with A = P. So let Q be nonempty. By Lemma 3.5, there are countably many open intervals I_n having the properties (i) through (iv) as given in the lemma. Let $P_n := P \cap I_n$. Since $P_n \cap Q = \emptyset$, Lemmas 3.3 and 3.4 tell us that, for every n, there is $F_n : [0, 1] \to \mathbb{R}$ such that

- (a) F_n is k times Peano differentiable on [0, 1];
- (b) $(F_n)_{(j)}(x) = f_{(j)}(x)$ for all $x \in P_n$ and all j = 0, ..., k;
- (c) F_n has support in I_n ;
- (d) $|F_n(x)| \le \max_{y \in P_n} |f(y)| + \operatorname{dist}(I_n, Q)^{k+1}$ for all x.
- Define $F: [0,1] \to \mathbb{R}$ by

$$F(x) := \sum_{n} F_n(x).$$

This is a well-defined function because the supports of the F_n are pairwise disjoint. We now show that F is a k-extension of f. Each $x \in [0,1] - Q$ has a neighborhood which meets only finitely many supports of the F_n . This proves that F is k times Peano differentiable at each $x \in [0,1] - Q$. If $x \in P - Q$, then there is n such that $x \in P_n$ and F agrees with F_n in I_n . Thus $F_{(j)}(x) = f_{(j)}(x)$ for all $j = 0, \ldots, k$.

By (3.3), all what is left to show is that $F(x)/(x-b)^k \to 0$ as $x \to b$ for every $b \in Q$. Let $b \in Q$, $\varepsilon > 0$. By assumption, there is $0 < \delta < \varepsilon$ such that (3.4) $|u-b| < \delta |u \in P \Rightarrow |f(u)| < \varepsilon |u-b|^k$

$$(3.4) |y-b| < b, y \in P \Rightarrow |f(y)| \le \varepsilon |y-b|^{*}$$

Let $x \in [0, 1]$ with $|x - b| < \delta/2$. Since there is nothing to prove if F(x) = 0, let $x \in I_n$ for some n. So

(3.5)
$$|I_n| \le \operatorname{dist}(I_n, Q) \le |x - b|.$$

If $y \in P_n$, then

$$\begin{split} |y-b| &\leq |y-x| + |x-b| \leq |I_n| + |x-b| \leq 2|x-b| < \delta.\\ \text{By (3.4), } |f(y)| &\leq \varepsilon |y-b|^k \leq \varepsilon 2^k |x-b|^k. \text{ By (d) and (3.5),}\\ |F(x)| &\leq \varepsilon 2^k |x-b|^k + |x-b|^{k+1} \leq \varepsilon (2^k+1)|x-b|^k. \end{split}$$

Since this is true for all x with $|x-b| < \delta/2$, the conclusion follows.

Let P be a closed nowhere dense subset of [0, 1], and let $f : P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. By transfinite induction, for every ordinal α , we define a closed subset $T_{\alpha} = T_{\alpha}(f, P)$ of P as follows:

- (i) if $\alpha = 0$, then $T_0 := P$;
- (ii) if $\alpha = \beta + 1$, then $T_{\alpha} := Q(f, T_{\beta})$;
- (iii) if α is a limit number, then $T_{\alpha} := \bigcap_{\beta < \alpha} T_{\beta}$.

Clearly, we have $T_{\beta} \subset T_{\alpha}$ (with equality allowed) whenever $\alpha < \beta$. Under condition (3.1), T_{β} is a proper subset of T_{α} whenever $\alpha < \beta$ and T_{α} is nonempty. In this case the Cantor-Baire stationary principle implies that there is a smallest ordinal $\mu = \mu(f, P)$ in the first or second number class for which $T_{\mu} = \emptyset$. We will use transfinite induction on μ in order to construct a k-extension of f. Let us first use an ordinary induction.

LEMMA 3.7. Let P be a closed nowhere dense subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Assume that there is a positive integer n such that $T_n = \emptyset$. Then f admits a k-extension.

Proof. The proof is by induction on n. If n = 1, then we are done by Lemma 3.4. Assume that the statement of the lemma is true for n-1 in place of n, and let P and f be given with $T_n(f, P) = \emptyset$. Define Q := Q(f, P). Then Q is a closed subset of [0,1] with $T_{n-1}(f,Q) = \emptyset$. By induction hypothesis, there is a function $G : [0,1] \to \mathbb{R}$ which is k times Peano differentiable on [0,1] and $G_{(j)}(x) = f_{(j)}(x)$ for all $x \in Q$ and $j = 0, \ldots, k$. The function f - G is k times Peano differentiable on P relative to P. This function together with its first k Peano derivatives vanishes on Q. Note that Q(f, P) =Q(f - G, P). By Lemma 3.6, there is a function $H : [0,1] \to \mathbb{R}$ which is ktimes Peano differentiable on [0,1] and $H_{(j)}(x) = f_{(j)}(x) - G_{(j)}(x)$ for all $x \in P$ and $j = 0, \ldots, k$. Now F := G + H is a k-extension of f.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Let $\mu = \mu(f, P)$ be the smallest ordinal (of the first or second number class) such that $T_{\mu}(f, P) = \emptyset$. We prove the theorem by transfinite induction on $\mu(f, P)$. We have already shown in Lemma 3.7 that the theorem is true if $\mu(f, P)$ is finite. Assume now that the theorem is true if $\mu(f, P) < \gamma$ where γ is a given ordinal in the second number class. Let P be a closed nowhere dense subset of [0, 1], and let $f : P \to \mathbb{R}$ be k times Peano differentiable on P relative to P with $\mu(f, P) = \gamma$. We have to show that f admits a k-extension. The ordinal γ cannot be a limit number. So γ is of the form $\gamma = \beta + m$, where β is a limit number and m is a positive integer. Let

$$S := T_{\beta} = \bigcap_{\alpha < \beta} T_{\alpha}.$$

Since $T_m(f, S) = \emptyset$ we know from Lemma 3.7 that f|S has a k-extension G. Define h(x) := f(x) - G(x) for $x \in P$. Note that $T_\alpha(f, P) = T_\alpha(h, P)$ for all ordinals α , and

(3.6)
$$h(x) = h_{(1)}(x) = \ldots = h_{(k)}(x) = 0$$
 for all $x \in S$.

Let x be in P-S. Then there is an ordinal $\alpha < \beta$ such that $x \notin T_{\alpha}$. Choose an open interval (a, b) disjoint from T_{α} containing x and such that $a, b \notin P$. Then $P_0 := P \cap (a, b)$ is disjoint from T_{α} . Since $T_{\alpha}(h, P_0)$ is a subset of both $T_{\alpha} = T_{\alpha}(h, P)$ and P_0 , $T_{\alpha}(h, P_0)$ is empty. By induction hypothesis, $h|P_0$ admits a k-extension which implies $x \in R(h, P)$. Since x was arbitrary in P-S, we see that P-S is contained in R(h, P) and so Q(h, P) is a subset of S. By Lemma 3.6 and (3.6), h admits a k-extension H. Then G + H is a k-extension of f.

We now draw some conclusions from Theorem 3.2.

COROLLARY 3.8. Let P be a closed subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P. Let $\partial P = A \cup B$ be the (unique) decomposition of ∂P into a perfect (or empty) set A and an at most countable set B. If f|A admits a k-extension, then so does f.

Proof. We verify that $f|\partial P$ satisfies condition (3.1). Let P_0 be a closed nonempty subset of ∂P . If P_0 has an isolated point, then this point is in $R(f, P_0)$ and $R(f, P_0)$ is nonempty. If P_0 does not have an isolated point, then P_0 is perfect and it is a subset of A. Since f|A has a k-extension, this implies $R(f, P_0) = P_0$. So condition (3.1) is satisfied, and the conclusion follows from Lemma 3.1 and Theorem 3.2.

Corollary 3.8 shows that it is sufficient to consider nowhere dense perfect sets P when we investigate the extension problem.

COROLLARY 3.9. Let P be a closed subset of [0,1] with the property that ∂P is countable. Then P belongs to the class \mathbf{P}_k .

We now obtain a necessary and sufficient condition for the existence of k-extensions.

COROLLARY 3.10. Let P be a closed subset of [0,1], and let $f: P \to \mathbb{R}$ be k times Peano differentiable on P relative to P with Peano derivatives $f_{(1)}, \ldots, f_{(k)}$. Then there exists a k-extension of f if and only if the following condition holds: in every perfect subset P_0 of ∂P there exists a point x such that, for all y in a neighborhood I of x relative to P_0 and all p = $1, \ldots, k-1, f_{(p)}$ is k-p times Peano differentiable at y relative to P_0 with Peano derivatives $f_{(p+1)}(y), \ldots, f_{(k)}(y)$.

Proof. By Theorem 2.1 with H = [0, 1], the condition is necessary for the existence of a k-extension of f. Now let the condition be satisfied. In order to show that f admits a k-extension it is enough to verify condition (3.1) for $f | \partial P$ (by Lemma 3.1 and Theorem 3.2). Let P_0 be a perfect subset of ∂P . By assumption, there is $x \in P_0$ and an open interval I containing x whose endpoints do not lie in P such that for all $y \in I \cap P_0$ and all $p = 1, \ldots, k - 1, f_{(p)}$ is k - p times Peano differentiable at y relative to P_0 with Peano derivatives $f_{(p+1)}(y), \ldots, f_{(k)}(y)$. By [7, Theorem 3.3], this implies that $f | I \cap P_0$ admits a k-extension.

By combining Theorem 2.1 with Corollary 3.10 we obtain a new proof of the main result of [7].

COROLLARY 3.11. Every perfect subset of [0,1] which has finite Denjoy index belongs to \mathbf{P}_k .

4. Extension of functions defined on symmetric perfect sets. Let $\lambda_n, n \in \mathbb{N}$, be a given sequence of positive numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$. We assume that

(4.1)
$$\mu_n := \sum_{m=n+1}^{\infty} \lambda_m < \lambda_n \quad \text{for all } n \in \mathbb{N}$$

Let P be the set of all finite or infinite subsums of the series $\sum_n \lambda_n$:

(4.2)
$$P := \Big\{ \sum_{n \in A} \lambda_n : A \in \mathbf{P}(\mathbb{N}) \Big\},$$

where $\mathbf{P}(\mathbb{N})$ denotes the power set of \mathbb{N} . The empty sum is defined as 0.

Let $T : \mathbf{P}(\mathbb{N}) \to P$ be the map defined by $T(A) := \sum_{n \in A} \lambda_n$. Then T is a measure on $\mathbf{P}(\mathbb{N})$ and P is the range of T. Condition (4.1) implies that T is one-to-one. We turn $\mathbf{P}(\mathbb{N})$ into a metric space by defining

$$d(A,B) := \sum_{n \in A \triangle B} 2^{-n}.$$

It is easy to see that T is continuous from $\mathbf{P}(\mathbb{N})$ onto P. Since $\mathbf{P}(\mathbb{N})$ is compact, this shows that P is compact and T is a topological map. It is also easy to see that P has no isolated points and so is a perfect set. The set P is called a *symmetric perfect set*.

The right end-points of complementary intervals of P are exactly the points T(A) with A finite. The left end-points of complementary intervals of P are exactly the points T(A) with $\mathbb{N} - A$ finite.

We define $\eta_n := \mu_n / \lambda_n \in (0, 1)$ and $\varepsilon_n := (1 - \eta_n) / (1 + \eta_n)$. It is easy to see that P can be obtained by successively removing middle intervals from [0, 1] of proportion ε_n in the *n*th step as described in [9, p. 205] and [5, p. 116]. The symmetric perfect set P is completely determined by the numbers η_n (or ε_n) which can be arbitrarily chosen in (0, 1). For example, in the Cantor set we have $\varepsilon_n = 1/3$, $\eta_n = 1/2$, $\lambda_n = 2 \cdot 3^{-n}$ and $\mu_n = 3^{-n}$.

We pose the problem: for which choices of sequences η_n does P belong to the class \mathbf{P}_k ?

We present two results.

THEOREM 4.1. If $\liminf \eta_n > 0$, then the symmetric perfect set P is of finite Denjoy index. Thus it belongs to \mathbf{P}_k .

Proof. By assumption, there is a > 0 such that $\eta_n \ge a$ for all $n \in \mathbb{N}$. We claim that P has finite Denjoy index with corresponding constants $\theta = \lambda_1$ and $\beta = 2/a$. Let $x = T(A) \in P$. We define $h_n := \lambda_n$ if $n \notin A$ and $h_n := -\lambda_n$

if $n \in A$. Then $x + h_n \in P$ for all n. Since $0 < \lambda_n \to 0$, we have $0 \neq h_n \to 0$. Also, $|h_1| = \lambda_1 = \theta$. Since

$$\frac{\lambda_n}{\lambda_{n+1}} = \frac{\mu_n}{\eta_n \lambda_{n+1}} = \frac{\lambda_{n+1} + \mu_{n+1}}{\eta_n \lambda_{n+1}} = \frac{1 + \eta_{n+1}}{\eta_n},$$

we obtain

$$1 < \frac{|h_n|}{|h_{n+1}|} < \frac{2}{a} = \beta$$

for all n. So P has finite Denjoy index. By Corollary 3.11, P belongs to \mathbf{P}_k .

THEOREM 4.2. Assume that $\liminf \eta_n = 0$ and $\limsup \eta_n < 1$. Let $k \ge 2$. Then the symmetric perfect set P does not belong to \mathbf{P}_k .

Proof. We will construct a function $f: P \to \mathbb{R}$ which is k times Peano differentiable on P relative to P but does not admit a k-extension. By assumption, there is $\delta > 0$ such that $1 - \eta_n \ge \delta$ for all n. Moreover, there are positive integers $n_1 < n_2 < n_3 < \ldots$ converging to infinity such that $\eta_{n_i} \to 0$. We decompose N into blocks $D_i := \{n_{i-1} + 1, \ldots, n_i\}, i \in \mathbb{N}$, where $n_0 := 0$. For each subset A of N and every $i \in \mathbb{N}$, we define j(A, i) as the number of $q \in \{1, \ldots, i-1\}$ for which $A \cap D_q$ is nonempty. We define $f: P \to \mathbb{R}$ as follows:

$$f(x) := \sum_{i=1}^{\infty} 2^{-j(A,i)} \left(\sum_{n \in A \cap D_i} \lambda_n\right)^k \quad \text{for } x = T(A).$$

We now show that f is k times Peano differentiable at a given $x \in P$ relative to P. We distinguish two cases:

FIRST CASE: x = T(A) and A is an infinite set. Let $y = T(B) \in P$, $A \neq B$. Let p be the minimal element in $A \bigtriangleup B$. Define m by $p \in D_m$. We have

(4.3)
$$|y-x| \ge \lambda_p - \mu_p = (1-\eta_p)\lambda_p \ge \delta\lambda_p.$$

Also,

(4.4)
$$|f(y) - f(x)| \le 2^{-j(A,m)} 2\mu_{p-1}^k \le 2^{-j(A,m)} 2^{k+1} \lambda_p^k.$$

From (4.3) and (4.4) we obtain

$$|f(y) - f(x)| \le 2^{-j(A,m)} 2^{k+1} \delta^{-k} |y - x|^k.$$

Now $y \to x$ implies $m \to \infty$. Since A is infinite, this in turn implies $j(A,m) \to \infty$. Hence f is k times Peano differentiable at x relative to P with the first k Peano derivatives equal to 0.

SECOND CASE: x = T(A) and A is a finite set. Let y = T(B), $A \neq B$. Since we are only interested in y close to x and A is finite, we can assume that $B \supset A$ so that y > x. Let again p be the minimal element in $A \bigtriangleup B = B - A$ and $p \in D_m$. Of course, we can assume that $A \cap D_m = \emptyset$. Write y - x = w + z with

$$w := \sum_{n \in B \cap D_m} \lambda_n \ge \lambda_p \ge \lambda_{n_m}$$

and

$$z := \sum_{q > m} \sum_{n \in B \cap D_q} \lambda_n \le \mu_{n_m} = \eta_{n_m} \lambda_{n_m} \le \eta_{n_m} w$$

Then we have

$$v \le y - x = w + z \le (1 + \eta_{n_m})w.$$

This implies that

u

 $0 \le (y-x)^k - w^k \le ((1+\eta_{n_m})^k - 1)w^k \le ((1+\eta_{n_m})^k - 1)(y-x)^k.$ Setting j := j(A,m) = j(B,m) we obtain

$$|f(y) - f(x) - 2^{-j}w^k| \le \sum_{q > m} \left(\sum_{n \in B \cap D_q} \lambda_n\right)^k$$
$$\le \mu_{n_m}^k \le \eta_{n_m}^k w^k \le \eta_{n_m}^k (y - x)^k$$

Thus

$$|f(y) - f(x) - 2^{-j}(y - x)^k| \le |f(y) - f(x) - 2^{-j}w^k| + |w^k - (y - x)^k| \le \{\eta_{n_m}^k + (1 + \eta_{n_m})^k - 1\}(y - x)^k.$$

As $y \to x$, j stays fixed but $m \to \infty$. Since $\eta_{n_m} \to 0$ as $m \to \infty$, we see that f is k times Peano differentiable at x relative to P. The first k-1 derivatives are zero but the kth equals $k! 2^{-j}$.

Since the set of all T(A) with finite A is dense in P, Corollary 3.10 shows that f does not admit a k-extension. So P does not belong to \mathbf{P}_k .

Theorems 4.1 and 4.2 solve our problem except in the case of

(4.5)
$$\liminf \eta_n = 0 \quad \text{and} \quad \limsup \eta_n = 1.$$

This leads us to asking the question: can a symmetric perfect set P whose corresponding sequence η_n satisfies (4.5) belong to \mathbf{P}_k ?

References

- Z. Buczolich, Second Peano derivatives are not extendable, Real Anal. Exchange 14 (1988–89), 423–428.
- Z. Buczolich and C. Weil, *Extending Peano differentiable functions*, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 323–330.
- [3] P. Bullen, Denjoy's index and porosity, Real Anal. Exchange 10 (1984-85), 85-144.
- [4] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.

- [5] A. Denjoy, Leçons sur le calcul de coefficients d'une série trigonométrique I-IV, Gauthier-Villars, Paris, 1941–1949.
- [6] H. Fejzić, The Peano derivatives, doct. dissertation, Michigan State Univ., 1992.
- [7] H. Fejzić, J. Mařík and C. Weil, *Extending Peano derivatives*, Math. Bohem. 119 (1994), 387–406.
- [8] H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
- [9] B. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, Berlin, 1985.

Department of Mathematical Sciences University of Wisconsin-Milwaukee P.O. Box 413 Milwaukee, Wisconsin 53201 U.S.A. E-mail: volkmer@csd.uwm.edu

> Received 18 June 1997; in revised form 2 February 1998 and 24 September 1998