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Extending Peano derivatives:
necessary and sufficient conditions

by

Hans V o l k m e r (Milwaukee, Wisc.)

Abstract. The paper treats functions which are defined on closed subsets of [0, 1] and
which are k times Peano differentiable. A necessary and sufficient condition is given for the
existence of a k times Peano differentiable extension of such a function to [0, 1]. Several
applications of the result are presented. In particular, functions defined on symmetric
perfect sets are studied.

1. Introduction. Let P be a closed subset of [0, 1], and let f : P → R
be a given real-valued function defined on P . Let k be a positive integer.
We say that f is k times Peano differentiable at x ∈ P relative to P with
Peano derivatives f(1)(x), . . . , f(k)(x) if we can write (f(0) := f)

f(x+ h) =
k∑

j=0

f(j)(x)
hj

j!
+ ε(x, h)

hk

k!

with

ε(x, h)→ 0 as 0 6= h→ 0, x+ h ∈ P .
This condition is empty if x is an isolated point of P . At an isolated point
the Peano derivatives f(1)(x), . . . , f(k)(x) are arbitrarily assigned. If f is k
times Peano differentiable at every point x ∈ P , then we say that f is k
times Peano differentiable on P relative to P . If P is perfect, this definition
is due to Denjoy [4, p. 280]. The extension to closed sets was given by Fejzić,
Mař́ık and Weil [7].

Let f : P → R be k times Peano differentiable on P relative to P with
Peano derivatives f(1), . . . , f(k). In this paper we deal with the following
question: does there exist a function F : [0, 1] → R which is k times Peano
differentiable on [0, 1] and has the property that F (x) = f(x) and F(j)(x) =

1991 Mathematics Subject Classification: Primary 26A24.

[219]



220 H. Volkmer

f(j)(x) for all x ∈ P and all j = 1, . . . , k? We will call such a function F a
k-extension of f for short.

This question was raised in the very interesting papers [2, 7] which
inspired the present paper. It was shown in [7] that 1-extensions always
exist but examples of Buczolich [1] and Denjoy [4] show that, for every
k ≥ 2, there are k times Peano differentiable functions which do not admit a
k-extension. A more general class of such examples is presented in Section 4
of the present paper.

The main result of this paper is Corollary 3.10 of Theorem 3.2 which
gives a necessary and sufficient condition for the existence of k-extensions.
The necessity of the condition is known from [7, Cor. 4.8]. We recall this im-
portant theorem in Section 2. In Corollary 3.8 we prove that a k times Peano
differentiable function f : P → R admits a k-extension if and only if its re-
striction to the perfect kernel of the boundary of P admits a k-extension.

As in [7] we say that a closed subset P of [0, 1] belongs to the class
Pk if every k times Peano differentiable function f : P → R admits a
k-extension. Corollary 3.9 establishes that every closed set with countable
boundary belongs to Pk.

In Section 4 we investigate the problem whether a given symmetric per-
fect set specified by a sequence {εn} belongs to Pk. For many sequences we
solve the problem but one case is still open.

2. A property of Peano derivatives. Let H be a perfect subset of
[0, 1]. We say that H is of finite Denjoy index [3, p. 138], [7, p. 392] if there
exist two constants θ > 0 and β > 1 such that, for every x ∈ H, there is a
real sequence hn, n ∈ N, such that 0 6= hn → 0 as n → ∞, x + hn ∈ H for
n ∈ N, |h1| ≥ θ, and

(2.1) 1 < |hn|/|hn+1| ≤ β for all n ∈ N.
The following theorem will be used in Section 3.

Theorem 2.1. Let H be a perfect subset of [0, 1] of finite Denjoy index.
Let f : H → R be k times Peano differentiable on H relative to H with
Peano derivatives f(1), . . . , f(k). Let P be a perfect subset of H. Then there
is a dense open subset E of P such that , for each x ∈ E and p = 1, . . . , k−1,
f(p) is k−p times Peano differentiable at x relative to P with Peano deriva-
tives f(p+1)(x), . . . , f(k)(x).

Theorem 2.1 is related to a result of Denjoy [4, p. 293] (which is given
without proof), namely that the set E is only residual (complement of a set
of first category). Theorem 2.1 is proved for H = [0, 1] in [6, Thm. 1.1.20].
In [7, Cor. 4.8] an extension theorem is used to generalize it to the case
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where H is of finite Denjoy index. The author has found a more direct proof
of Theorem 2.1 that is omitted here. It is of interest to have such a proof
because we will show that Theorem 2.1 can be used to prove the extension
theorem (Corollary 3.11).

Theorem 2.1 with H = P = [0, 1] shows that every function f : [0, 1]→ R
which is k times Peano differentiable on [0, 1] is k times differentiable on a
dense open subset of [0, 1]. This was proved by Oliver [8] in a different way.

3. A necessary and sufficient condition. The following lemma shows
that we can assume without loss of generality that P is nowhere dense when
we study the extension problem.

Lemma 3.1. Let P be a closed subset of [0, 1], and let f : P → R
be k times Peano differentiable on P relative to P . If f restricted to the
topological boundary ∂P of P has a k-extension, then so does f .

P r o o f. Let G be a k-extension of f |∂P . The function h := f − G is k
times Peano differentiable on P relative to P , and it vanishes together with
its first k Peano derivatives on ∂P . Define H : [0, 1] → R by H(x) = h(x)
for x ∈ P and H(x) = 0 for x 6∈ P . Then H is a k-extension of h. Now
G+H is a k-extension of f .

Let P be a nowhere dense closed subset of [0, 1], and let f : P → R
be k times Peano differentiable on P relative to P . Let R(f, P ) be the set
of all x ∈ P for which there exists an open interval (a, b) with a < x < b
and a, b 6∈ P such that f |(a, b) ∩ P has a k-extension. Note that R(f, P )
is open relative to P and contains every isolated point of P . We also set
Q(f, P ) := P −R(f, P ). This is a closed subset of P .

Our goal is to prove the following theorem.

Theorem 3.2. Let P be a closed nowhere dense subset of [0, 1], and let
f : P → R be k times Peano differentiable on P relative to P . If f satisfies
the condition:

(3.1) for every nonempty closed subset P0 of P , R(f, P0) is nonempty ,

then f admits a k-extension.

For the proof a series of lemmas will be needed.

Lemma 3.3. Let P be a closed subset of [0, 1]. Let f : P → R be k
times Peano differentiable on P relative to P . Suppose there is a k-extension
F : [0, 1]→ R of f . For every open interval I containing P and every ε > 0,
there is another k-extension H : [0, 1]→ R of f such that

(3.2) max
x∈[0,1]

|H(x)| ≤ max
x∈P
|f(x)|+ ε
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and
H(x) = 0 for all x outside I.

P r o o f. Let A := maxx∈P |f(x)|. Define a function G : [0, 1] → R by
G(x) = F (x) if |F (x)| ≤ A + ε, G(x) = A + ε if F (x) > A + ε and
G(x) = −A − ε if F (x) < −A − ε. Then G might not be k times Peano
differentiable on [0, 1] any more but G agrees with F in a neighborhood of
each x ∈ P . Inspection of the proof of Lemma 4.6 of [7] shows that G can be
“smoothened” to a function H in such a way that it becomes a k-extension
of f and still |H(x)| ≤ A+ ε for all x ∈ [0, 1]. It is clear that we can change
H so that H vanishes outside I without destroying condition (3.2).

Lemma 3.4. Let P be a closed nowhere dense subset of [0, 1], and let
f : P → R be k times Peano differentiable on P relative to P . Let A be a
compact subset of R(f, P ). Then f |A admits a k-extension.

P r o o f. For every x ∈ A, there is an open interval I containing x whose
endpoints are not in P such that f |I ∩ A admits a k-extension. By com-
pactness of A, finitely many of these intervals, say I1, . . . , In, cover A. We
can also assume that these intervals are pairwise disjoint. By Lemma 3.3,
for every j = 1, . . . , n, there is a k-extension Fj of f |Ij ∩ A which vanishes
outside Ij . Then F1 + . . .+ Fn is a k-extension of f |A.

Lemma 3.5. Let P be a closed nowhere dense subset of [0, 1]. Let Q be
a nonempty closed subset of P . Then there exists a countable collection of
open intervals In which has the following properties:

(i) the In are pairwise disjoint , disjoint from Q and Pn := In ∩ P is
nonempty ;

(ii) the length |In| of In is less than the distance dist(In, Q) from In
to Q;

(iii) the endpoints of In are not in P so that Pn is closed ;
(iv) P −Q =

⋃
n Pn.

P r o o f. Consider a complementary interval (a, b) of Q. Since P is no-
where dense, it is easy to find points cn, n ∈ Z, which are not in P such that
a < . . . < c−1 < c0 < c1 < . . . < b, cn → a as n → −∞, cn → b as n → ∞
and dist((cn, cn+1), Q) > |cn − cn+1| for all n. Then let In = (cn, cn+1). If
we do this for every complementary interval, the collection of all the In that
meet P has the desired properties.

Lemma 3.6. Let P be a closed nowhere dense subset of [0, 1], and let
f : P → R be k times Peano differentiable on P relative to P . Suppose that ,
for all x ∈ Q(f, P ),

(3.3) f(x) = f(1)(x) = . . . = f(k)(x) = 0.

Then f admits a k-extension.
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P r o o f. If Q := Q(f, P ) is empty, then the conclusion follows from
Lemma 3.4 with A = P . So let Q be nonempty. By Lemma 3.5, there
are countably many open intervals In having the properties (i) through (iv)
as given in the lemma. Let Pn := P ∩ In. Since Pn ∩ Q = ∅, Lemmas 3.3
and 3.4 tell us that, for every n, there is Fn : [0, 1]→ R such that

(a) Fn is k times Peano differentiable on [0, 1];
(b) (Fn)(j)(x) = f(j)(x) for all x ∈ Pn and all j = 0, . . . , k;
(c) Fn has support in In;
(d) |Fn(x)| ≤ maxy∈Pn |f(y)|+ dist(In, Q)k+1 for all x.

Define F : [0, 1]→ R by

F (x) :=
∑
n

Fn(x).

This is a well-defined function because the supports of the Fn are pairwise
disjoint. We now show that F is a k-extension of f . Each x ∈ [0, 1] − Q
has a neighborhood which meets only finitely many supports of the Fn.
This proves that F is k times Peano differentiable at each x ∈ [0, 1]−Q. If
x ∈ P − Q, then there is n such that x ∈ Pn and F agrees with Fn in In.
Thus F(j)(x) = f(j)(x) for all j = 0, . . . , k.

By (3.3), all what is left to show is that F (x)/(x− b)k → 0 as x→ b for
every b ∈ Q. Let b ∈ Q, ε > 0. By assumption, there is 0 < δ < ε such that

(3.4) |y − b| < δ, y ∈ P ⇒ |f(y)| ≤ ε|y − b|k.
Let x ∈ [0, 1] with |x− b| < δ/2. Since there is nothing to prove if F (x) = 0,
let x ∈ In for some n. So

(3.5) |In| ≤ dist(In, Q) ≤ |x− b|.
If y ∈ Pn, then

|y − b| ≤ |y − x|+ |x− b| ≤ |In|+ |x− b| ≤ 2|x− b| < δ.

By (3.4), |f(y)| ≤ ε|y − b|k ≤ ε2k|x− b|k. By (d) and (3.5),

|F (x)| ≤ ε2k|x− b|k + |x− b|k+1 ≤ ε(2k + 1)|x− b|k.
Since this is true for all x with |x− b| < δ/2, the conclusion follows.

Let P be a closed nowhere dense subset of [0, 1], and let f : P → R be k
times Peano differentiable on P relative to P . By transfinite induction, for
every ordinal α, we define a closed subset Tα = Tα(f, P ) of P as follows:

(i) if α = 0, then T0 := P ;
(ii) if α = β + 1, then Tα := Q(f, Tβ);

(iii) if α is a limit number, then Tα := ∩β<αTβ .

Clearly, we have Tβ ⊂ Tα (with equality allowed) whenever α < β.
Under condition (3.1), Tβ is a proper subset of Tα whenever α < β and Tα
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is nonempty. In this case the Cantor–Baire stationary principle implies that
there is a smallest ordinal µ = µ(f, P ) in the first or second number class for
which Tµ = ∅. We will use transfinite induction on µ in order to construct
a k-extension of f . Let us first use an ordinary induction.

Lemma 3.7. Let P be a closed nowhere dense subset of [0, 1], and let
f : P → R be k times Peano differentiable on P relative to P . Assume that
there is a positive integer n such that Tn = ∅. Then f admits a k-extension.

P r o o f. The proof is by induction on n. If n = 1, then we are done by
Lemma 3.4. Assume that the statement of the lemma is true for n−1 in place
of n, and let P and f be given with Tn(f, P ) = ∅. Define Q := Q(f, P ). Then
Q is a closed subset of [0, 1] with Tn−1(f,Q) = ∅. By induction hypothesis,
there is a function G : [0, 1] → R which is k times Peano differentiable on
[0, 1] and G(j)(x) = f(j)(x) for all x ∈ Q and j = 0, . . . , k. The function
f −G is k times Peano differentiable on P relative to P . This function to-
gether with its first k Peano derivatives vanishes on Q. Note that Q(f, P ) =
Q(f − G,P ). By Lemma 3.6, there is a function H : [0, 1] → R which is k
times Peano differentiable on [0, 1] and H(j)(x) = f(j)(x) − G(j)(x) for all
x ∈ P and j = 0, . . . , k. Now F := G+H is a k-extension of f .

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Let µ = µ(f, P ) be the smallest ordinal (of the
first or second number class) such that Tµ(f, P ) = ∅. We prove the theorem
by transfinite induction on µ(f, P ). We have already shown in Lemma 3.7
that the theorem is true if µ(f, P ) is finite. Assume now that the theorem
is true if µ(f, P ) < γ where γ is a given ordinal in the second number class.
Let P be a closed nowhere dense subset of [0, 1], and let f : P → R be k
times Peano differentiable on P relative to P with µ(f, P ) = γ. We have to
show that f admits a k-extension. The ordinal γ cannot be a limit number.
So γ is of the form γ = β+m, where β is a limit number and m is a positive
integer. Let

S := Tβ =
⋂

α<β

Tα.

Since Tm(f, S) = ∅ we know from Lemma 3.7 that f |S has a k-extension G.
Define h(x) := f(x)−G(x) for x ∈ P . Note that Tα(f, P ) = Tα(h, P ) for all
ordinals α, and

(3.6) h(x) = h(1)(x) = . . . = h(k)(x) = 0 for all x ∈ S.
Let x be in P −S. Then there is an ordinal α < β such that x 6∈ Tα. Choose
an open interval (a, b) disjoint from Tα containing x and such that a, b 6∈ P .
Then P0 := P ∩ (a, b) is disjoint from Tα. Since Tα(h, P0) is a subset of both
Tα = Tα(h, P ) and P0, Tα(h, P0) is empty. By induction hypothesis, h|P0
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admits a k-extension which implies x ∈ R(h, P ). Since x was arbitrary in
P −S, we see that P −S is contained in R(h, P ) and so Q(h, P ) is a subset
of S. By Lemma 3.6 and (3.6), h admits a k-extension H. Then G+H is a
k-extension of f .

We now draw some conclusions from Theorem 3.2.

Corollary 3.8. Let P be a closed subset of [0, 1], and let f : P → R
be k times Peano differentiable on P relative to P . Let ∂P = A ∪ B be the
(unique) decomposition of ∂P into a perfect (or empty) set A and an at
most countable set B. If f |A admits a k-extension, then so does f .

P r o o f. We verify that f |∂P satisfies condition (3.1). Let P0 be a closed
nonempty subset of ∂P . If P0 has an isolated point, then this point is in
R(f, P0) and R(f, P0) is nonempty. If P0 does not have an isolated point,
then P0 is perfect and it is a subset of A. Since f |A has a k-extension, this
implies R(f, P0) = P0. So condition (3.1) is satisfied, and the conclusion
follows from Lemma 3.1 and Theorem 3.2.

Corollary 3.8 shows that it is sufficient to consider nowhere dense perfect
sets P when we investigate the extension problem.

Corollary 3.9. Let P be a closed subset of [0, 1] with the property that
∂P is countable. Then P belongs to the class Pk.

We now obtain a necessary and sufficient condition for the existence of
k-extensions.

Corollary 3.10. Let P be a closed subset of [0, 1], and let f : P → R
be k times Peano differentiable on P relative to P with Peano derivatives
f(1), . . . , f(k). Then there exists a k-extension of f if and only if the following
condition holds: in every perfect subset P0 of ∂P there exists a point x
such that , for all y in a neighborhood I of x relative to P0 and all p =
1, . . . , k− 1, f(p) is k− p times Peano differentiable at y relative to P0 with
Peano derivatives f(p+1)(y), . . . , f(k)(y).

P r o o f. By Theorem 2.1 with H = [0, 1], the condition is necessary for
the existence of a k-extension of f . Now let the condition be satisfied. In
order to show that f admits a k-extension it is enough to verify condition
(3.1) for f |∂P (by Lemma 3.1 and Theorem 3.2). Let P0 be a perfect subset
of ∂P . By assumption, there is x ∈ P0 and an open interval I containing
x whose endpoints do not lie in P such that for all y ∈ I ∩ P0 and all
p = 1, . . . , k − 1, f(p) is k − p times Peano differentiable at y relative to
P0 with Peano derivatives f(p+1)(y), . . . , f(k)(y). By [7, Theorem 3.3], this
implies that f |I ∩ P0 admits a k-extension.

By combining Theorem 2.1 with Corollary 3.10 we obtain a new proof
of the main result of [7].
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Corollary 3.11. Every perfect subset of [0, 1] which has finite Denjoy
index belongs to Pk.

4. Extension of functions defined on symmetric perfect sets.
Let λn, n ∈ N, be a given sequence of positive numbers with

∑∞
n=1 λn = 1.

We assume that

(4.1) µn :=
∞∑

m=n+1

λm < λn for all n ∈ N.

Let P be the set of all finite or infinite subsums of the series
∑
n λn:

(4.2) P :=
{∑

n∈A
λn : A ∈ P(N)

}
,

where P(N) denotes the power set of N. The empty sum is defined as 0.
Let T : P(N)→ P be the map defined by T (A) :=

∑
n∈A λn. Then T is

a measure on P(N) and P is the range of T . Condition (4.1) implies that T
is one-to-one. We turn P(N) into a metric space by defining

d(A,B) :=
∑

n∈A4B
2−n.

It is easy to see that T is continuous from P(N) onto P . Since P(N) is
compact, this shows that P is compact and T is a topological map. It is also
easy to see that P has no isolated points and so is a perfect set. The set P
is called a symmetric perfect set .

The right end-points of complementary intervals of P are exactly the
points T (A) with A finite. The left end-points of complementary intervals
of P are exactly the points T (A) with N−A finite.

We define ηn := µn/λn ∈ (0, 1) and εn := (1 − ηn)/(1 + ηn). It is easy
to see that P can be obtained by successively removing middle intervals
from [0, 1] of proportion εn in the nth step as described in [9, p. 205] and
[5, p. 116]. The symmetric perfect set P is completely determined by the
numbers ηn (or εn) which can be arbitrarily chosen in (0, 1). For example,
in the Cantor set we have εn = 1/3, ηn = 1/2, λn = 2 · 3−n and µn = 3−n.

We pose the problem: for which choices of sequences ηn does P belong
to the class Pk?

We present two results.

Theorem 4.1. If lim inf ηn > 0, then the symmetric perfect set P is of
finite Denjoy index. Thus it belongs to Pk.

P r o o f. By assumption, there is a > 0 such that ηn ≥ a for all n ∈ N. We
claim that P has finite Denjoy index with corresponding constants θ = λ1

and β = 2/a. Let x = T (A) ∈ P . We define hn := λn if n 6∈ A and hn := −λn
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if n ∈ A. Then x+hn ∈ P for all n. Since 0 < λn → 0, we have 0 6= hn → 0.
Also, |h1| = λ1 = θ. Since

λn
λn+1

=
µn

ηnλn+1
=
λn+1 + µn+1

ηnλn+1
=

1 + ηn+1

ηn
,

we obtain

1 <
|hn|
|hn+1| <

2
a

= β

for all n. So P has finite Denjoy index. By Corollary 3.11, P belongs to Pk.

Theorem 4.2. Assume that lim inf ηn = 0 and lim sup ηn < 1. Let k ≥ 2.
Then the symmetric perfect set P does not belong to Pk.

P r o o f. We will construct a function f : P → R which is k times Peano
differentiable on P relative to P but does not admit a k-extension. By as-
sumption, there is δ > 0 such that 1 − ηn ≥ δ for all n. Moreover, there
are positive integers n1 < n2 < n3 < . . . converging to infinity such that
ηni → 0. We decompose N into blocks Di := {ni−1 + 1, . . . , ni}, i ∈ N,
where n0 := 0. For each subset A of N and every i ∈ N, we define j(A, i) as
the number of q ∈ {1, . . . , i − 1} for which A ∩Dq is nonempty. We define
f : P → R as follows:

f(x) :=
∞∑

i=1

2−j(A,i)
( ∑

n∈A∩Di
λn

)k
for x = T (A).

We now show that f is k times Peano differentiable at a given x ∈ P relative
to P . We distinguish two cases:

First case: x = T (A) and A is an infinite set. Let y = T (B) ∈ P ,
A 6= B. Let p be the minimal element in A4 B. Define m by p ∈ Dm. We
have

(4.3) |y − x| ≥ λp − µp = (1− ηp)λp ≥ δλp.
Also,

(4.4) |f(y)− f(x)| ≤ 2−j(A,m)2µkp−1 ≤ 2−j(A,m)2k+1λkp.

From (4.3) and (4.4) we obtain

|f(y)− f(x)| ≤ 2−j(A,m)2k+1δ−k|y − x|k.
Now y → x implies m → ∞. Since A is infinite, this in turn implies
j(A,m) → ∞. Hence f is k times Peano differentiable at x relative to
P with the first k Peano derivatives equal to 0.

Second case: x = T (A) and A is a finite set. Let y = T (B), A 6= B.
Since we are only interested in y close to x and A is finite, we can assume that
B ⊃ A so that y > x. Let again p be the minimal element in A4B = B−A
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and p ∈ Dm. Of course, we can assume that A∩Dm = ∅. Write y−x = w+z
with

w :=
∑

n∈B∩Dm
λn ≥ λp ≥ λnm

and
z :=

∑
q>m

∑

n∈B∩Dq
λn ≤ µnm = ηnmλnm ≤ ηnmw.

Then we have
w ≤ y − x = w + z ≤ (1 + ηnm)w.

This implies that

0 ≤ (y − x)k − wk ≤ ((1 + ηnm)k − 1)wk ≤ ((1 + ηnm)k − 1)(y − x)k.

Setting j := j(A,m) = j(B,m) we obtain

|f(y)− f(x)− 2−jwk| ≤
∑
q>m

( ∑

n∈B∩Dq
λn

)k

≤ µknm ≤ ηknmwk ≤ ηknm(y − x)k.

Thus

|f(y)− f(x)− 2−j(y − x)k| ≤ |f(y)− f(x)− 2−jwk|+ |wk − (y − x)k|
≤ {ηknm + (1 + ηnm)k − 1}(y − x)k.

As y → x, j stays fixed but m → ∞. Since ηnm → 0 as m → ∞, we see
that f is k times Peano differentiable at x relative to P . The first k − 1
derivatives are zero but the kth equals k!2−j .

Since the set of all T (A) with finite A is dense in P , Corollary 3.10 shows
that f does not admit a k-extension. So P does not belong to Pk.

Theorems 4.1 and 4.2 solve our problem except in the case of

(4.5) lim inf ηn = 0 and lim sup ηn = 1.

This leads us to asking the question: can a symmetric perfect set P whose
corresponding sequence ηn satisfies (4.5) belong to Pk?
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