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Ideals induced by Tsirelson submeasures

by

Ilijas F a r a h (North York, Ont.)

Abstract. We use Tsirelson’s Banach space ([2]) to define an Fσ P-ideal which refutes
a conjecture of Mazur and Kechris (see [12, 9, 8]).

1. Introduction. By the dichotomy results of Silver and Harrington–
Kechris–Louveau (see [10, 8]), the Borel-cardinality of quotients over Borel
equivalence relations on Polish spaces is well-understood below P(N)/Fin.
This cannot be said for the next level of this ordering, even if we restrict
our attention to Borel-cardinalities of quotients P(N)/I over Borel ideals
I. The two natural “successors” of Fin are the Fubini ideals on N2: Fin×∅
(also called I1) consisting of all sets with only finitely many nonempty ver-
tical sections, and ∅ × Fin (also called I3 and Finω) consisting of all sets
all of whose vertical sections are finite. By results of Solecki ([17]), quo-
tients over these two ideals are the critical points for quotients over Borel
ideals which are not P-ideals and for Borel P-ideals which are not Fσ, re-
spectively (I is a P-ideal if it is σ-directed under the inclusion modulo
finite). In [9], Kechris posed the following trichotomy conjecture for Borel
ideals I such that P(N)/I 6≤B P(N)/Fin: at least one of P(N2)/Fin×∅,
P(N2)/∅ × Fin, and P(N)/I1/n is ≤B P(N)/I (the summable ideal I1/n
is defined below). By the above results of Solecki, this is equivalent to
an earlier dichotomy conjecture of Mazur ([12]): If I is an Fσ ideal such
that P(N)/I 6≤B P(N)/Fin, then either P(N2)/Fin×∅ or P(N)/I1/n is
≤B P(N)/I.
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Consider an ordering on Borel ideals simpler than ≤B:

I ≤+
RB J if there is A ⊆ N and h : A→ N

such that B ∈ I iff h−1(B) ∈ J .
If A = N, then we write I ≤RB J . Clearly, I ≤+

RB J implies P(N)/I ≤B

P(N)/J , as the mapping A 7→ h−1(A) verifies. It is rather surprising that
the converse is often true; for example, the above Solecki dichotomy results
are proved for the ≤RB-ordering (see also Lemma 2.1 below).

Any I serving as a counterexample to the Kechris–Mazur conjecture, or
KMC, would have to be an Fσ P-ideal. Until recently, the only known Fσ
P-ideals were the summable ideals, that is, ones of the form

If = {A : νf (A) <∞} = {A : lim
n

(νf (A \ n)) = 0}
where νf (A) =

∑
n∈A f(n) for some f : N→ R+. These ideals cannot serve

as a counterexample to the Kechris–Mazur conjecture, since we have either
If ≤+

RB Fin or I1/n ≤+
RB If (note that this is false for the ≤RB ordering, and

this is why we introduce ≤+
RB). By [17, Theorem 3.3] (see also [11, Lemma

1.2]), all Fσ P-ideals are of the form

I = {A : φ(A) <∞} = {A : lim
i
φ(A \ i) = 0}

for some lower semicontinuous submeasure φ, i.e. a mapping such that
φ(A) ≤ φ(A ∪ B) ≤ φ(A) + φ(B), φ(∅) = 0 and limi φi(A ∩ i) = φ(A)
for all A,B. The first non-summable Fσ P-ideals were discovered in [4] (see
also [3]). All these ideals were of the form

I{φn} =
{
A :
∑

i

φi(A) <∞
}
,

where for some sequence {ni} each φi is a submeasure on the interval
[ni, ni+1). But such ideals satisfy the KMC since if limi supj φi({j}) = 0
(and this can be assumed without loss of generality by going to a positive
set) then there are si and mi such that

φk(si)
{≈ 1/i, k = mi,

= 0, otherwise,

so that the map collapsing si to i witnesses I1/n ≤+
RB I{φi}. An Fσ P-ideal

which is not of the form I{φi} was later found by Solecki ([16]), who also
proved that this ideal is of the form I{φi} when restricted to a positive set,
so it is again ≥+

RB I1/n. Another class of Fσ P-ideals, suggested by Kechris,
are ideals of the form

I =
{
A : p

√∑

i

φi(A))p <∞
}
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for a sequence of submeasures φi as before and p > 1, but these again do not
serve as a counterexample to KMC, for the same reason as I{φi}. (However,
using methods and results of [7] it can be proved that the Borel-cardinalities
of these quotients are different for different p’s.)

The new Fσ P-ideal which we define here is extracted from Tsirelson
space, an infinite-dimensional Banach space which does not contain a copy
of c0 or any `p (see [2]). The study of this space has played a prominent
role in the recent striking developments in the theory of infinite-dimensional
Banach spaces (see [6], [13, p. 956]). It is likely that other Banach spaces
will give rise to interesting examples of analytic P-ideals (see [5]).

After the completion of this paper, we have learned that our main result,
Theorem 3.1, was independently proved by B. Veličković ([19]).

The paper is organized as follows. In §2 we prove that P(N)/I1/n ≤B

P(N)/I is equivalent to I1/n ≤+
RB I. In §3 we introduce the ideals Tfh. In

§§4–6 various properties of these ideals are proved, and in §7 we conclude
the proof that P(N)/Tfh serves as a counterexample to the Kechris–Mazur
conjecture.

A word on notation: If s, t are finite sets of integers and n is an integer,
by s < t we denote the fact that max s < min t, and by n < s (n > s) the
fact that n < min s (n > max s, respectively).

The results of this note were presented at the XI Latinamerican Logic
Symposium in Merida, Venezuela, in July 1998. I would like to thank the
organizers, in particular Carlos Uzcategui for his warm hospitality.

2. The first reduction. A quotient P(N)/I has smaller Borel-cardinal-
ity than the quotient P(N)/J (in symbols P(N)/I ≤B P(N)/J ) if there is a
Borel mapping F : P(N)→ P(N) such that X4Y ∈ I iff F (X)4F (Y ) ∈ J .

In the following lemma it is proved that the KMC is equivalent to its ap-
parently stronger version, appearing in [4], which states: For every analytic
ideal I such that I 6≤RB Fin one of Fin×∅, ∅×Fin or I1/n is ≤RB I ¹ A for
some I-positive A. (It is well-known that P(N)/I ≤B P(N)/Fin is equivalent
to I ≤RB Fin.)

Lemma 2.1. If J is an analytic P-ideal such that P(N)/I1/n≤BP(N)/J ,
then I1/n ≤+

RB J . Moreover , there are w1 < w2 < . . . in Fin such that the
map collapsing wi to i witnesses this.

P r o o f. By [17], we can fix a lower semicontinuous submeasure φ such
that J = {A : limi φ(A\i) = 0}. Let F : P(N)→ P(N) be a Borel reduction.
By a standard use of stabilizers, similar to the one below, we can assume that
F is continuous (see also [18]). Find integers 1 = a1 < b1 < a2 < b2 < . . . ,
si ⊆ [bi, ai+1) and ki ∈ (bi, ai+1) so that for all i, all u, v ⊆ bi, and all
X,Y ⊆ [ai+1,∞):



246 I. Farah

(1) ai > 2i, bi > 2ai,
(2) (F (u ∪ si ∪X)4 F (u ∪ si ∪ Y )) ∩ ki = ∅,
(3) φ((F (u ∪ si ∪X)4 F (v ∪ si ∪X)) \ ki) ≤ 2−i.

The method for construction of these sequences is standard, dating back
to [15] and [18]: Assume that ai, bi (i ≤ n) and sj , kj (j ≤ n−1) as above have
been chosen, but there are no sn, kn and an+1 satisfying the requirements.
Condition (1) is easy to satisfy and since F is continuous, (2) will be satisfied
for every choice of sn, a large enough kn and a large enough an+1. Therefore
we can construct a sequence bn < t1 < l1 < t2 < l2 < . . . so that li ∈ N,
ti ∈ Fin, and for all i there are ui, vi ⊆ an such that

φ
((
F
(
ui ∪

i⋃

j=1

tj ∪ ti+1

)
4 F

(
ui ∪

i⋃

j=1

tj ∪ ti+1

))
\ li
)
> 2−n.

Pick u, v such that 〈u, v〉 = 〈ui, vi〉 infinitely often. Then F (u ∪ ⋃i ti) 4
F (v ∪⋃i ti) is not in J—a contradiction.

Assume an, bn, sn and kn are chosen to satisfy the above conditions.
By (1), ν1/n([ai, bi]) =

∑bi
j=ai 1/j ≥ 1/n and there is ui ⊆ (ai, bi) such

that |ν1/n(ui) − 1/i| ≤ 2−i for every i. Let C =
⋃
i si and define F1 :

P (
⋃
i[ai, bi))→ P(N) by

F1(B) = F (B ∪ C)4 F (C).

Then F1(∅) = ∅ and for X,Y ⊆ ⋃i[ai, bi) we have (X ∪ C) 4 (Y ∪ C) =
X4 Y ∈ I1/n iff F1(X)4F1(Y ) = F (X ∪C)4F (Y ∪C) ∈ J . By (2)–(3),
for all i, all u, v ⊆ ⋃i≤m[ai, bi), and all X,Y ⊆ ⋃i≥m+1[ai, bi) we have:

(4) (F1(u ∪X)4 F1(u ∪ Y )) ∩ km = ∅,
(5) φ((F1(u ∪X)4 F1(v ∪X)) \ km) ≤ 2−m.

Let wi = F1(ui) ∩ [ki−1, ki). Then a map collapsing wi to i witnesses
I1/n ≤+

RB J . This is implied by the following computations (assume m ∈ A
and let uX =

⋃
i∈X ui):

tm = (F1(uA)4 wA) ∩ [km−1, km)

⊆ (F1(uA)4 F1(uA\m)) ∪ (F1(uA\m)4 F1(um))) ∩ [km−1, km)

(since wA ∩ [km−1, km) = wm)

⊆ (((F1(uA)4 F1(uA\m)) \ am) ∪ (F1(uA\m)4 F1(um))) ∩ km
(by (4) and (5), since uA 4 uA\m ⊆

⋃m−1
i=1 [ai, bi)

and uA\m 4 um ⊆
⋃∞
i=m+1[ai, bi))

= (F1(uA)4 F1(uA\m)) \ am,
and therefore φ(tm) ≤ 2−m+1 if m ∈ A. An analogous computation shows
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that φ(tm) ≤ 2−m+1 also in the case when m 6∈ A, and therefore we have

F1(uA)4 wA ⊆
⋃
m

tm ∪ [1, k1) ∈ J .

To prove the moreover part, that we can assume that w1 < w2 < . . . , find
1 < n1 < m1 < n2 < m2 < . . . so that ni > 2i, ν1/n([ni,mi]) − 1/i| ≤ 2−i,
and

max
⋃

j∈[ni,mi]

wj < min
⋃

j∈[ni+1,mi+1]

wj .

Then the sets w′i =
⋃
j∈[ni,mi] wj are as required.

Let us digress a little and note that ∅×Fin also shares the nice property
of I1/n from Lemma 2.1, as its proof readily shows.

Lemma 2.2. If J is an analytic P-ideal such that P(N2)/∅ × Fin ≤B

P(N)/J , then ∅ × Fin ≤+
RB J ¹A for some A ∈ J +.

It would be interesting to find more ideals with this property shared by
I1/n and ∅ × Fin, since it considerably simplifies some questions about the
Borel-cardinality of their quotients. Let us note that a pathological Fσδ P-
ideal J constructed in [3, §6] does not have this property. Namely, by a result
of M. R. Oliver ([14]), EJ is Borel-reducible to EZ0 , the equivalence relation
induced by the density zero ideal. But the ideal Z0 is nonpathological (see
[3]), and therefore by [3, Proposition 6.5], J ≤+

RB Z0 would imply that J is
nonpathological as well.

3. Tsirelson submeasures and ideals. Assume that {xn} is an uncon-
ditional basic sequence in a Banach space X such that limn ‖

∑n
i=1 xi‖ =∞.

Then

J =
{
A :
∥∥∥
∑

n∈A
xn

∥∥∥ <∞
}

is an analytic P-ideal, which we call a generalized summable ideal . Many
analytic P-ideals are of this form, and ideals Tfh defined below are obtained
in this way from the Tsirelson space, a Banach space which does not include
a copy of c0 or any `p (see [2]).

For sets A,B ⊆ N, we often denote by AB their intersection, A∩B. Fix
functions f : N→ R and an increasing h : N→ N. A tuple

〈k,E1, . . . , Em〉
is h-admissible if k ∈ N, Ei ∈ Fin for all i, k < E1 < E2 < . . . < Em,
and m ≤ h(k). We abbreviate tuples 〈k,E1, . . . , Em〉 as 〈k, ~E〉 and write
m = | ~E|, so that the necessary condition for the admissibility is | ~E| ≤ h(k).
Let Ah be the set of all h-admissible tuples. Define a sequence of Tsirelson
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submeasures τn = τf,h,n (n ∈ N ∪ {∞}) as follows:

τf,h,0(A) = sup
n∈A

f(n),

τkf,h,n(A) = sup
〈k, ~E〉∈Ah

|~E|∑

i=1

τf,h,n(EiA),

τf,h,n+1(A) = max
{
τf,h,n(A), 1

2 supk τ
k
f,h,n(A)

}
,

τf,h,∞(A) = sup
n
τf,h,n(A) = lim

n
τf,h,n(A).

We always omit ∞ in subscripts, so that τf,h stands for τf,h,∞ and τkf,h
stands for τkf,h,∞. Similarly, when f, h are clear from the context we write
τn instead of τf,h,n, τk instead of τkf,h, and so on. The submeasure τ = τf,h
defines a Tsirelson ideal , Tfh, on N by

Tfh = Exh(τ) = {A : lim
i
τ(A \ i) = 0}.

We always assume that f : N→ R+, limi f(i) = 0, and h is strictly increas-
ing, unless otherwise specified.

Theorem 3.1. Assume f, h are as above. Then P(N)/I1/n 6≤B P(N)/Tfh
and Tfh is an Fσ P-ideal.

The proof of Theorem 3.1 occupies the rest of this note.

Lemma 3.2. Assume f, h are as above. Then

(1) Either τ(A) = supi∈A f(i) or τ(A) = 1
2 supk τ

k(A).
(2) All τn and τ are lower semicontinuous submeasures.
(3) τ(A) <∞ if and only if limn τ(A \ n) = 0.
(4) τm+1(A) <∞ if and only if limn τm(A \ n) = 0.
(5) Tfh = {A | τ(A) <∞} and therefore it is an Fσ P-ideal.

P r o o f. To prove (1), note that if τ(A) > supi∈A f(i) then we have

τ(A) = sup
n

(
1
2

sup
k
τkn(A)

)
=

1
2

sup
k
τk(A).

Statement (2) is obvious from the definition. In (3) only the direct implica-
tion requires a proof. Assume that limn τ(A\n) 6= 0; then we can find ε > 0
and finite sets w1 < w2 < . . . included in A such that τ(wn) ≥ ε for all n.
Fix p ∈ N and find n such that

min(wn) > 2p.

Then A0 =
⋃n+2p
i=n wi ⊆ A and by (1) we get

τ(A0) ≥ 1
2

n+2p∑

i=n

τ(wi) ≥ pε.

Since p was arbitrary, we have τ(A) =∞ as required.
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The proof of (4) is analogous to that of (3), and (5) follows immediately
from (3).

We concentrate on the ideal Tfh, but we note that the ideals

Tf,h,n = Exh(τn) = {A : lim
i
τn(A \ i) = 0}, n ∈ N,

can turn out to be interesting in their own right. All these are P-ideals which
are not Fσ (assuming they are proper ideals, of course), since a mapping
witnessing ∅ × Fin ≤RB Tf,h,n can be easily obtained from an (n− 1)-good
sequence (see §6).

4. Properties of Tsirelson submeasures. In this section we show
several lemmas which will be used in the proof of Theorem 3.1. First we
give a transparent description of how τn is computed in Lemma 4.2 below.
By N<N we denote the set of all finite sequences of integers, and consider
it as a tree under the ordering of end-extension. A set T ⊆ N<N is a tree
if it is closed under taking initial segments of its elements. Note that the
height of a finite tree T is equal to the maximal length of its elements. By 〈〉
we denote the empty sequence in N<N, and t∧i is the sequence obtained by
concatenating t with 〈i〉. An end-node of T is any t ∈ T such that t∧i 6∈ T for
all i. (Note that end-nodes of T do not necessarily belong to its top level.)

Definition 4.1. A family 〈Et : t ∈ T 〉 is an h-tree if T ⊆ N<N is a finitely
branching finite tree, the sets Et are finite, and for all t ∈ T , if t∧1, . . . , t∧l
are the immediate successors of t in T then

(1) Et∧1 < . . . < Et∧l and Et =
⋃l
i=1Et∧l,

(2) l ≤ h(minEt∧1), i.e. 〈minEt∧1, . . . , Et∧l〉 is h-admissible, and
(3) if t is an end-node of T , then Et is a singleton.

The height of 〈Et : t ∈ T 〉 is the height of T . Note that every i ∈ E〈〉
defines a unique branch,

Bi = {t ∈ T : i ∈ Et},
of T . The length, |Bi|, of this branch is equal to the length of its last node.
A function g : N → {0, 1, . . . , n,∞} is an (h, n)-weight assignment if there
is an h-tree 〈Et : t ∈ T 〉 of height at most n such that

(4) E〈〉 = {i : g(i) 6=∞},
(5) g(i) = |Bi| for each i ∈ E〈〉.
Lemma 4.2. Assume that h : N → N is strictly increasing. Then for

every s we have

τn(s) = sup
g

∑

i∈s
2−g(i)f(i),

where the supremum is taken over all (h, n)-weight assignments g.
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P r o o f. Note that every branching of an h-tree corresponds to an appli-
cation of a step in the recursive definition of τn+1, and that the nodes of
height k come with the weight equal to 2−k because of the k-fold multiplica-
tion with 1/2. Condition (3) corresponds to τ0(A) = supi∈A f(i). Therefore,
the lemma is proved by a straightforward induction on n.

Lemma 4.3. If f, h are as in Lemma 4.2, n ∈ N and s is finite, then
there is an s′ ⊆ s such that τn(s′) = τn(s) and τ(s′) ≤ 3τn(s′)/2.

P r o o f. Since s is finite, the supremum appearing in Lemma 4.2 is at-
tained for some (h, n)-weight assignment g; let s′ = {i : g(i) 6= ∞} ∩ s.
It suffices to prove that τm(s′) ≤ 3τn(s′)/2 for every m. Fix m, let gm be
some (h,m)-weight assignment, and let X = {i ∈ s′ : gm(i) > g(i)} and
Y = {i ∈ s′ : gm(i) ≤ g(i)}. We claim that

(†)
∑

i∈Y
2−gm(i)f(i) ≤ τn(s′).

To verify this, by Lemma 4.2 it suffices to show that the map g′ defined by

g′(i) =
{
gm(i) if gm(i) ≤ g(i),
∞ if gm(i) > g(i) or gm(i) =∞,

is an (h, n)-weight assignment. To see this, let 〈Et : t ∈ T 〉 be an h-tree
of height m witnessing that gm is an (h,m)-weight assignment. Then for
T ′ = {t ∈ T : |t| ≤ n} the family 〈Et ∩ {i : g′(i) 6=∞} : t ∈ T ′〉 is an h-tree
(this follows immediately from the definitions). Since g is an (h, n)-weight
assignment, this tree is of height at most n and it witnesses that g′m is an
(h, n)-weight assignment.

Therefore (†) is true and since X ⊆ s′ we have

τm(s′) =
∑

i∈X
2−gm(i)f(i) +

∑

i∈Y
2−gm(i)f(i)

≤ 1
2

∑

i∈X
2−g(i)f(i) + τn(s′) ≤ 1

2
τn(s′) + τn(s′).

Since m was arbitrary and τ(s′) = supm τm(s′), this concludes the proof.

Recall that νf (s) =
∑
i∈S f(i).

Lemma 4.4. Assume limn f(n) = 0 and h : N→ N is strictly increasing.
Then for all s and n we have νf (s) ≥ 2n+1(τn+1(s)− τn(s)).

P r o o f. Fix an ε > 0. Let g be an (h, n+1)-weight assignment such that
∑

i∈s
2−g(i)f(i) ≥ τn+1(s) + ε,

as given by Lemma 4.2. Let s0 = {i ∈ s : g(i) ≤ n}. Then by a weight
assignment argument identical to that in the proof of Lemma 4.3 we have
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τn(s) ≥ τn(s0) ≥∑i∈s0 2−g(i)f(i), and therefore

2−(n+1)νf (s) ≥ 2−(n+1)
∑

i∈s\s0
f(i)

≥
∑

i∈s
2−g(i)f(i)−

∑

i∈s0
2−g(i)f(i) ≥ τn+1(s)− τn(s) + ε.

Since ε > 0 was arbitrary, this concludes the proof.

Recall that if {wi} is a sequence of sets and A ⊆ N, then we write
wA =

⋃
i∈A wi. The following lemma will be very useful (recall the definition

of τkn from §3).

Lemma 4.5. Assume f, h are as in Lemma 4.2, w1 < w2 < . . . is a
sequence of finite sets, and δ > 0. If for all i we have

(1) τn(wi) < δ/2, and
(2) τmax(wi)

n−1 (w[i+1,∞)) < δ (taking max(w0) = 1),

then for every A ⊆ ⋃i wi we have τn(A) < δ.

P r o o f. If τn(A) = τn−1(A), the conclusion follows from (2) above.

Claim 4.6. Under the above assumptions, if A ⊆ ⋃i wi and τn(A) >
τn−1(A), then

τn(A) ≤ sup
i

(
τn(wi) +

1
2
τmaxwi
n−1

( ∞⋃

j=i+1

wj

))
.

P r o o f. Fix ε > 0. By the assumption, we have

τn(A) ≤ 1
2

m∑

j=1

τn−1(EjA) + ε

for some m ≤ h(k) and k < E1 < . . . < Em. Let i be the minimal such
that k ≤ maxwi. If maxEl ≤ maxwi for all l = 1, . . . , h(k), then τn(A) ≤
τn(wi) + ε, and there is nothing to prove. Let l be the minimal such that
maxEl > maxwi. Then

τn(A) ≤ 1
2

l−1∑

j=1

τn−1(EjA) + τn−1(ElA) +
1
2

m∑

j=l

τn−1(EjA) + ε

≤ 1
2

l−1∑

j=1

τn−1(EjA) + τn−1(El(Awi))

+ τn−1(El(A \ wi)) +
1
2

m∑

j=l

τn−1(EjA) + ε
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≤ τn(wi) +
1
2
τkn−1

( ∞⋃

p=i+1

wp

)
+ ε.

Since k ≤ maxwi and ε > 0 was arbitrarily small, this completes the proof.

Lemma 4.5 follows immediately by the claim.

5. The second reduction. The main result of this section is Proposition
5.3, essentially saying that if I ≤RB Tfh then I is of the form Tf ′h′ for some
f ′, h′ (possibly with limi f

′(i) 6= 0). It is essentially due to Casazza, Johnson
and Tzafriri (see [1] and [2, Proposition I.12 and Lemmas II.1 and II.3]),
who used the case when h is the identity function, to prove that every
infinite-dimensional subspace of Tsirelson space includes a copy of Tsirelson
space. We reproduce the proof from [1] for the convenience of the reader.

Lemma 5.1. Assume f : N→ R is nonnegative and h : N→ N is strictly
increasing , and let h+(n) = h(n+ h(n)). Then for every A and n we have

τf,h,n(A) ≤ τf,h+,n(A) ≤ 3τf,h,n(A).

P r o o f. The left-hand side inequality is obvious, since h+ ≥ h. We prove
the following strengthening of the right-hand side inequality by induction:

(∗) For all A and n there are sets F1 < F2 < F3 such that

τf,h+,n(A) ≤
3∑

j=1

τf,h,n(FjA).

The case when n = 0 is trivial, so let us assume the lemma is proved for
some n and prove it for n + 1. If τf,h+,n+1(A) = τf,h+,n(A), then there is
nothing to prove, so we can assume

τf,h+,n+1(A) =
1
2

h+(k)∑

l=1

τf,h+,n(ElA) for some h+-admissible 〈k, ~E〉,

≤ 1
2

h+(k)∑

l=1

3∑

j=1

τf,h,n(FljElA) for some Fl1 < Fl2 < Fl3.

We can assume FljEl = Flj for all l, j. For G3(l−1)+j = Flj we have G1 <
G2 < . . . < G3h+(k). We can assume all Gl’s are nonempty, possibly by
eliminating the empty ones from the sequence. Let k∗ = k + h(k) (so that
h+(k) = h(k∗)) and

F1 =
h(k)⋃

l=1

Gl, F2 =
h(k)+h(k∗)⋃

l=h(k)+1

Gl, F3 =
3h+(k)⋃

l=h(k)+h(k∗)+1

Gl.
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Then 〈k,G1, . . . , Gh(k)〉 is h-admissible, so we have

τf,h,n+1(F1A) ≥ 1
2

h(k)∑

l=1

τf,h,n(GlA).

Note that, since each Gl is nonempty, we have min(Gh(k)+1) ≥ minG1 +
h(k) ≥ k∗, and therefore the tuple associated with F2 is h-admissible and
we have

τf,h,n+1(F2A) ≥ 1
2

h(k∗)∑

l=h(k)+1

τf,h,n(GlA).

Like before, minGh(k)+h(k∗)+1 ≥ k∗ + h(k∗). Since k ≤ h(k) and h(2k) ≤
h(k∗), we have (note that h(i) + j ≤ h(i+ j), since h is strictly increasing)

3h+(k) ≤ h(k∗) + 2h(k∗) ≤ h(k∗) + h(k∗ + h(k∗))

and 3h+(k) − h(k∗) ≤ h(k∗ + h(k∗)), so the tuple associated with F3 is
h-admissible, and we have

τf,h+,n+1(A) ≤ 1
2

3h(2k))∑

l=1

τf,h,n(GlA) ≤
3∑

j=1

τf,h,n+1(FjA),

completing the inductive proof.

Lemma 5.2. Assume f, h are as in Lemma 5.1 and that w1 < w2 < . . . are
finite sets. Let f ′(i) = τf,h(wi), h′(i) = h(minwi), and h′′(i) = h(maxwi).
Then for all A ⊆ N we have

τf ′,h′(A) ≤ τf,h(wA) ≤ 6τf ′,h′′(A).

P r o o f. We first prove the left-hand side inequality, by proving

(∗) τf ′,h′,n(A) ≤ τf,h(wA)

using induction on n. Since τf ′,h′(A) = limn τf ′,h′,n(A), this will suffice.
In the case when n = 0 for some i ∈ A we have τf ′,h′,0(A) = τf,h(wi) ≤
τf,h(

⋃
j∈A wj).

Now assume (∗) is true for n. If τf ′,h′,n+1(A) = τf ′,h′,n(A), there is
nothing to prove. So we can assume

τf ′,h′,n+1(A) =
1
2

h′(k)∑

j=1

τf ′,h′,n(EjA) for some h-admissible 〈k, ~E〉.

(Assuming that | ~E| = h′(k) is clearly not a loss of generality.) Since h′ is in-
creasing, we can assume k = minE1, and therefore h′(minE1) = h(minwk).
Let E′j =

⋃
j∈Ei wj . Then 〈minwk, E′1, . . . , E

′
h′(k)〉 is h-admissible, by the
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inductive assumption we have

1
2

h′(k)∑

j=1

τf ′,h′,n(EjA) ≤ 1
2

h(minw(k))∑

j=1

τf,h(E′jwA) ≤ τf,h(wA),

and this ends the verification of the left-hand side inequality.
Now we prove the right-hand side inequality. Let h∗(i) = 2h′′(i). Since

2h′′(i) ≤ h′′(i+ h′′(i)), Lemma 5.1 implies τf ′,h∗,n ≤ 3τf ′h′′,n for all n, and
therefore it suffices to prove

τf,h,n(wA) ≤ 2τf ′,h∗,n(A)

using induction on n. When n = 0 for some i ∈ A we have

τf,h,0(wA) = τf,h,0(wi) ≤ τf,h(wi) = τf ′,h′′,0(i) ≤ 2τf ′,h∗,0(A).

Now we assume the lemma is true for n and prove it for n + 1. Again we
can assume that τf,h,n+1(wA) > τf,h,n(wA), therefore for some h-admissible
〈k, ~E〉 (without loss of generality, we can assume that k = minE1 and
| ~E| = h(k)) we have

τf,h,n+1(wA) =
1
2

h(k)∑

l=1

τf,h,n(ElwA).

We can assume wA ⊆
⋃h(k)
l=1 El. Let E−l = {i : min(wi) ∈ El} and E+

l = {i :
max(wi) ∈ El}. Then by the inductive assumption

1
2

h(k)∑

l=1

τf,h,n(ElwA) ≤ 1
2

h(k)∑

l=1

2τf,h,n(E+
l A) +

1
2

h(k)∑

l=1

2τf,h,n(E−l A)

≤ 1
2

h(k)∑

l=1

2τf ′,h∗,n(E+
l A) +

1
2

h(k)∑

l=1

2τf ′,h∗,n(E−l A).

If j = min(
⋃h(k)
l=1 (E+

l ∪ E−l )), then h′′(j) = h(maxwj) ≥ h(minE1) = h(k),
also h∗(j) = 2h′′(j) ≥ 2h(k), so that 〈j, ~E∗〉 (where ~E∗ is the increasing
enumeration of

⋃h(k)
l=1 (E−l ∪ E+

l )) is h∗-admissible, so that the right-hand
side is equal to at most 2τf ′,h∗,n+1(A). As pointed out earlier, this concludes
the proof since τf ′,h∗,n+1 ≤ τf ′,h′′,n+1 for all n.

We are now prepared for the main result of this section.

Proposition 5.3. Assume f : N → R is nonnegative and h : N → N is
strictly increasing. If w1 < w2 < . . . are finite sets, then for f ′(i) = τf,h(wi)
and h′(i) = h(minwi) we have Tf ′,h′ = {A : wA ∈ Tfh}.
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P r o o f. Let h′′(i) = max(wi) and (h′)+(i) = h′(i + h′(i)). Since h′′ ≤
(h′)+, Lemmas 5.1 and 5.2 imply that for every A we have

τf ′,h′(A) ≤ τf,h(wA) ≤ 6τf ′,h′′(A) ≤ 6τf ′(h′)+(A) ≤ 18τf ′,h′(A),

thus τf,h(wA) = ∞ if and only if τf ′,h′(A) = ∞, and the two ideals coin-
cide.

6. Good sequences. An important part of the proof of Theorem 3.1
is in proving its weaker version:

Proposition 6.1. If h is strictly increasing , the ideals Tfh and I1/n are
different.

P r o o f. Assume the contrary, that Tfh = I1/n. Note that we can assume
limi f(i) = 0, for otherwise there would be an infinite set A none of whose
infinite subsets is in Tfh, but there is no such set for I1/n.

Claim 6.2. There is a sequence t1 < t2 < . . . and N ∈ N such that

(a) νf ≤ Nν1/n on
⋃
i ti, and

(b) infi(τ1(ti)) > 0.

P r o o f. Let Im = [m,m + h(m)) and note that τ(Im) = τ1(Im)/2 =
νf (Im)/2. We shall prove that there is an N ∈ N such that if t0m = {k ∈
Im : kf(k) < N}, then all but finitely many t0m satisfy ν1/n(t0m) ≥ (ln 2)/2.
If we can find such a sequence, then we can take ti to be its subsequence
satisfying t1 < t2 < . . . , and (a) will be satisfied. To assure (b), note that
lim infi νf (ti) > 0, since otherwise there would be an infinite C ⊆ N such
that Y =

⋃
i∈C ti satisfies νf (Y ) <∞, but then Y ∈ Tfh\I1/n, contradicting

our assumptions. Therefore we can find a subsequence of ti which satisfies
infi νf (ti) > 0, and since ti ⊆ [mi,mi+h(mi)) for some mi, this implies (b).

Assume that N as above does not exist. Then we can find {m(N)}∞N=1
satisfying

(1) ν1/n{k ∈ Im(N) : kf(k) < 2N} < (ln 2)/2,
(2) k > 2N for all k ∈ Im(N) with f(k) < 2−N , and
(3) the intervals Im(N) are pairwise disjoint.

Since ν1/n(Im) ≥ ln(m+ h(m))− ln(m) ≥ ln 2 for all m, by (1) we have

ν1/n{k ∈ Im(N) : kf(k) ≥ 2N} > (ln 2)/2.

Let sN ⊆ Im(N) be such that

(4) kf(k) ≥ 2N for all k ∈ sN , and
(5) |ν1/n(sN )− 2−N+1| < 2−N .

(Note that (5) can be assured by using (2).) Then we have

τ(sN ) = νf (sN )/2 ≥ 2Nν1/n(sN ) ≥ 2N · 2−N = 1,
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therefore
⋃
N sN ∈ I1/n \Tfh, contradicting our assumption and completing

the proof of Claim 6.2.

We will use {ti} given by Claim 6.2 to find {wj} such that for all j,

(6) w1 < w2 < . . . are included in
⋃
i ti,

(7) τj+1(wj) ≥ 2−j+1, and
(8) τj(wj) ≤ 2−j .

Assume {wj} satisfy (6)–(8) above, and find vj ⊆ wj such that τ(vj) ≤
3τj+1(wj)/2 and τj+1(vj) = τj+1(wj). Therefore τ(vj) < 2−j+2 and by
Lemma 4.4 we have νf (vj) ≥ 2j+1(2−j+1 − 2−j) = 2. Note that τ ≤ νf and
νf ≤ Nν1/n on the set X =

⋃
j vj ⊆

⋃
ti, and therefore limn τ(X \ n) <∞

and limn νf (X\n) =∞. This impliesX ∈ Tfh\If ⊆ Tfh\I1/n, contradicting
our assumptions.

Therefore it suffices to find {wi} satisfying (6)–(8) above. We do this by
using the following notion (recall that uA =

⋃
i∈A ui).

Definition 6.3. A sequence u1 < u2 < . . . of finite sets is m-good for
f, h (or simply m-good if f, h are clear from the context) if there exists a
δ > 0 such that:

(i) the set {τm(ui) : i ∈ N} is dense in [0, δ], and
(ii) limi τm−1(u[i,∞)) = 0.

Lemma 6.4. Assume limn f(n) = 0 and h is strictly increasing. If a
sequence {ui} is m-good and a, ε > 0, then there is a finite v ⊆ ⋃

i ui
satisfying |τm+1(v)− a| < ε and τm(v) < ε.

P r o o f. We can assume that ε < δ, where δ is as in the definition of
good sequence. By going to a subsequence we can also assume that for all i
we have

τmaxui
m−1 (u[i+1,∞)) < ε (taking max(u0) = 1).

The set A = {i : τm(ui) < ε/2} is infinite and lim supk∈A τm(uk) = ε/2
(because the sequence {ui} is m-good and the corresponding δ is bigger
than ε/2). By Lemma 3.2(4) we have τm+1(uA) = ∞. Therefore we can
find v ⊆ uA such that τm+1(v) ≥ a, τm+1(v′) < a for every v′ ( v, and
f(j) < ε for every j ∈ v. Then by the subadditivity of τm+1 we have
|τm+1(v) − a| = τm+1(v) − a < ε. By Lemma 4.5 (applied with δ = ε) we
have τm(v) < ε, therefore v is as required.

Lemma 6.5. Assume limn f(n) = 0 and h is strictly increasing. Then
for every m-good sequence {ui} there is an (m+ 1)-good sequence {vi} such
that

⋃
i vi ⊆

⋃
i ui.

P r o o f. Let qi (i ∈ N) be an enumeration of all rationals in the interval
(0, 1). By using Lemma 6.4, we can recursively find v1 < v2 < . . . included in
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⋃
i ui and such that |τm+1(vi)− qi| < 2−i and τm(vi) < 2−i. Then for every

i we have τm(v[i,∞)) < 2−i+1, therefore the sequence vi is (m+ 1)-good.

Let ti be as in Claim 6.2, and let ε = infi τ1(ti) > 0. Since limn f(n) = 0,
we can find ui ⊆ ti (i ∈ N) so that {τ1(ui) : i ∈ N} is dense in [0, ε]. Since
the condition limi τ0(ui) = 0 reduces to our assumption that limk f(k) = 0,
this sequence is 1-good. Therefore the sequence wi as in (6)–(8) can now be
constructed recursively by using Lemmas 6.5 and 6.4. As explained before,
this implies that the two ideals differ and concludes the proof of Proposition
6.1.

The above proof gives the following proposition of independent interest
(see the proof of [5, Proposition 3.6]).

Proposition 6.6. If limn f(n) = 0, h : N→ N is strictly increasing and

lim inf
n

νf ([n, n+ h(n)) > 0,

then for every m ≥ 1 there is an m-good sequence.

7. Proof of Theorem 3.1. The ideal Tfh is, by Lemma 3.2(5), an
Fσ P-ideal. Therefore it remains to prove that P(N)/I1/n 6≤B P(N)/Tfh.
By Lemma 2.1, it suffices to prove that there is no sequence of finite sets
w1 < w2 < . . . such that for all A ⊆ N we have

A ∈ I1/n if and only if
⋃

i∈A
wi ∈ Tfh.

Assume that such a sequence exists. By Proposition 5.3, for some strictly
increasing h′ and f ′(n) = τf,h(wn) the ideals I1/n and Tf ′h′ coincide, but
this contradicts Proposition 6.1 and completes the proof.
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932–942.

[7] G. Hjorth, Actions by classical Banach spaces, J. Symbolic Logic, to appear.
[8] G. Hjorth and A. S. Kechr i s, New dichotomies for Borel equivalence relations,

Bull. Symbolic Logic 3 (1997), 329–346.



258 I. Farah

[9] A. S. Kechr i s, Rigidity properties of Borel ideals on the integers, Topology Appl.
85 (1998), 195–205.

[10] A. Louveau, On the size of quotients by definable equivalence relations, in: Proc.
Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 269–276.
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