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A note on Tsirelson type ideals

by

Boban V e l i č k o v i ć (Paris)

Abstract. Using Tsirelson’s well-known example of a Banach space which does not
contain a copy of c0 or lp, for p ≥ 1, we construct a simple Borel ideal IT such that the
Borel cardinalities of the quotient spaces P(N)/IT and P(N)/I0 are incomparable, where
I0 is the summable ideal of all sets A ⊆ N such that

∑
n∈A 1/(n+1) <∞. This disproves

a “trichotomy” conjecture for Borel ideals proposed by Kechris and Mazur.

Introduction. Given Borel equivalence relations E and F on Polish
spaces X and Y respectively, we say that E is Borel reducible to F and
write E ≤Bor F if there is a Borel function f : X → Y such that for every
x and y in X

xE y iff f(x)F f(y).

For such f let f∗ : X/E → Y/F be defined by f∗([x]E) = [f(x)]F . Then f∗

is an injection of X/E to Y/F which has a Borel lifting f . We write

E ∼Bor F iff E ≤Bor F &F ≤Bor E.

By an ideal I on N we mean an ideal of subsets of N which is nontrivial, i.e.
N 6∈ I, and free, i.e. {n} ∈ I, for all n ∈ N. We say that I is Borel if it is a
Borel subset of P(N) in the usual product topology. Given a Borel ideal I
on N we define an equivalence relation EI on P(N) by letting

X EI Y if and only if X 4 Y ∈ I.
Finally, we write I ≤Bor J iff EI ≤Bor EJ .

The class (E ,≤Bor) of all Borel ideals with this notion of reducibility
was studied by several authors. Here we identify two ideals which are ∼Bor-
equivalent. In [LV] Louveau and the author showed that this structure is very
rich by embedding into it the partial ordering (P(N),⊆∗) (where X ⊆∗ Y iff
X \Y is finite). The ideals constructed in this proof are all Fσδ and P -ideals
(recall that an ideal I is a P -ideal iff for every sequence {An : n ∈ N} of
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members of I there is A ∈ I such that An ⊆∗ A for all n). The interest of
looking for P -ideals is that in this case, by a result of Solecki [So], (I,4) is
a Polish group under a suitable topology. The construction from [LV] was
later modified by Mazur [Ma1] to obtain Fσ ideals. However, Mazur’s ideals
are not P -ideals.

By ≤RK we denote the Rudin–Keisler ordering on ideals, i.e.

I ≤RK J iff ∃f : N→ N(X ∈ I ↔ f−1(X) ∈ J ).

The Rudin–Blass ordering ≤RB is obtained by requiring in the above defini-
tion that f be finite-to-one. It is clear that I ≤RB J implies I ≤RK J and
this in turn implies I ≤Bor J . It is an open question whether I ≤Bor J iff
there is a set A ∈ J + such that I ≤RB J ¹A, the restriction of J to P(A).
In all known cases, this seems to be true. Mathias [Mat], Jalali-Naini [JN],
and Talagrand [Ta] showed that FIN ≤RB I for any Borel (in fact, Baire
measurable) ideal I, where FIN is the ideal of finite subsets of N. Thus, in a
way, the “Borel cardinality” of P(N)/FIN is the smallest among all P(I)/I
for I a Borel ideal.

Recently, Kechris [Ke2] addressed the issue of finding minimal ideals
above FIN under ≤Bor. He was motivated by the well-known dichotomy
results on Borel equivalence relations. He identified two ideals related to
FIN denoted by ∅ × FIN and FIN × ∅ (in fact, these ideals are defined on
N2 but they can be moved to N by some fixed bijection). Define

X ∈ ∅ × FIN iff ∀m({n : (m,n) ∈ X} is finite),

X ∈ FIN× ∅ iff ∃m(X ⊆ m× N).

Thus, it is known and fairly easy to see that ∅ × FIN and FIN × ∅ are
incomparable under ≤Bor and strictly above FIN (see [Ke2] for complete
references). Say that I and J are isomorphic iff there is a permutation π
of N such that X ∈ I iff π(X) ∈ J . Finally, say that I is a trivial variation
of FIN iff there is an infinite set A such that I = {X ⊆ N : X ∩A is finite}.
Kechris then showed that both ∅×FIN and FIN×∅ are minimal above FIN,
in the following strong sense.

Theorem 1 ([Ke2]). If I is a Borel ideal and I ≤Bor ∅×FIN (FIN×∅,
respectively) then either it is isomorphic to ∅ × FIN (FIN× ∅, respectively)
or it is a trivial variation of FIN.

By another result of Solecki [So], if I is a Borel ideal then FIN×∅ ≤RB I
iff I is not a P -ideal. Moreover, if I is a P -ideal then ∅ × FIN ≤RB I iff
I is not Fσ. Thus, any ideal which is incomparable with both FIN × ∅
and ∅ × FIN is an Fσ P -ideal. One way of obtaining such ideals is from
classical Banach spaces. Fix any (αn)n ∈ c+0 \ l1, where c+0 is the space of
all nonnegative sequences of reals converging to zero; for concreteness let us
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say αn = 1/(n+ 1) for all n. Define the ideal I0 by

X ∈ I0 iff
∑

n∈X
αn <∞.

Then, clearly, I0 is an Fσ P -ideal. It is known that I0 is incomparable in
the sense of ≤Bor with both FIN×∅ and ∅×FIN (this follows from results of
Kechris–Louveau [KL], Hjorth [Hj1], and has also been shown independently
by Mazur [Ma2]). Moreover, Hjorth [Hj2] proved that if I ≤Bor I0, then
either I ∼Bor I0, or else I is a trivial variation of FIN. In the light of these
results Kechris conjectured that the following trichotomy holds.

Conjecture 1. If I is any Borel ideal on N and FIN <Bor I then either
FIN× ∅ ≤Bor I or ∅ × FIN ≤Bor I or I0 ≤Bor I.

As noted in [Ke2], this is equivalent to a conjecture of Mazur [Ma2]
which asserts that if I is an Fσ ideal with FIN <Bor I, then FIN×∅ ≤Bor I
or I0 ≤Bor I. In this note we disprove this conjecture by showing that an
ideal associated with the Tsirelson space provides a counterexample. This is
a Banach space which does not contain an isomorphic copy of the classical
Banach spaces c0 or lp for 1 ≤ p <∞.

In fact, the picture seems to be much more complicated than suggested
by the above conjecture. Thus, apparently, there are no minimal (in the
sense of ≤Bor) ideals below the ideal IT constructed in the next section, but
on the other hand, (P(N) ⊆∗) can be embedded in the class of Tsirelson
type ideals ordered by ≤Bor, etc. We plan to present these and other related
results in a later paper. There is a large literature on Tsirelson’s and other
related Banach spaces. For a good if somewhat outdated survey we refer the
reader to [CS], and for a more recent survey to [OS].

Remark. A proof of the main result of this paper was found indepen-
dently by Ilijas Farah in “Ideals induced by Tsirelson submeasures”, which
appears in this issue of Fundamenta Mathematicae.

1. Tsirelson’s space. We now present the Figiel–Johnson version of
Tsirelson’s space (see [FJ] or [CS]). This is actually the dual of the original
space constructed by Tsirelson. We start with some definitions.

(a) If E,F are finite nonempty subsets of N we let E ≤ F iff max(E) ≤
min(F ). We write n ≤ E instead of {n} ≤ E. Similarly we define E < F , etc.
We say that a sequence {Ei}ki=1 is admissible if k ≤ E1 < E2 < . . . < Ek.
In general, given an increasing function h : N→ N and an integer k we say
that a sequence {Ei}li=1 is (h, k)-admissible if k ≤ E1 < E2 < . . . < El and
l ≤ h(k).

(b) Let R<ω denote the vector space of all real scalar sequences of finite
support and let {tn}∞n=1 be the canonical unit vector basis of R<ω. Given a
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vector x =
∑
n antn ∈ R<ω we define Ex =

∑
n∈E antn, the projection of x

onto the coordinates in E.
(c) We define inductively a sequence (‖ · ‖m)∞m=0 of norms on R<ω as

follows. Given x =
∑
n antn ∈ R<ω let

‖x‖0 = maxn|an|.
For m ≥ 0, we set

‖x‖m+1 = max
{
‖x‖m, 1

2
sup

k∑

j=1

‖Ejx‖m : {Ej}kj=1 is admissible
}
.

(d) One verifies that the ‖ · ‖m are norms on R<ω, they increase with m,
and that for all m,

‖x‖m ≤
∑
n

|an|.

Thus, limm ‖x‖m exists and is majorized by the l1-norm of x. Therefore
setting

‖x‖ = lim
m
‖x‖m

defines a norm on R<ω.
(e) Finally, Tsirelson’s space T is the ‖ · ‖ completion of R<ω.
Recall that {tn}∞n=1 is the canonical unit vector basis of R<ω. A block is

a vector y of the form
∑
n∈I antn for some (finite) interval I in N. We now

record some basic properties of the space T (cf. [CS, Proposition I.2]).

Proposition 1. (1) The sequence {tn}∞n=1 is a normalized 1-uncondi-
tional Schauder basis for T .

(2) For each x =
∑
n antn ∈ T ,

‖x‖ = max
{

max
n
|an|, 1

2
sup

k∑

j=1

‖Ejx‖ : {Ej}kj=1 is admissible
}
.

(3) For any k ∈ N, and any k normalized blocks {yi}ki=1 such that for
some integers k − 1 ≤ p1 < p2 < . . . < pk+1, yi is a linear combination of
the base vectors tn for pi < n ≤ pi+1, we have

1
2

k∑

i=1

|bi| ≤
∥∥∥

k∑

i=1

biyi

∥∥∥ ≤
k∑

i=1

|bi|

for all scalars {bi}ki=1.

We are now ready to define a Tsirelson type ideal IT. Fix a vector
α =

∑
n αntn ∈ c+0 \ T , for instance, we could again take αn = 1/(n + 1).

For a finite subset E of N define τ(E) = ‖Eα‖, and for an arbitrary X ⊆ N
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let

τ(X) = sup
n
τ(X ∩ n).

It is now clear from Proposition 1 that τ is a lower semicontinuous submea-
sure on P(N) and that for any X,

τ(X) <∞ iff lim
n→∞

τ(X \ n) = 0.

Hence the ideal

IT = {X : τ(X) <∞}
is an Fσ P -ideal.

The main result of this note is the following.

Theorem 2. IT and I0 are incomparable under ≤Bor.

P r o o f. It suffices to show that I0 �Bor IT. Assume otherwise and fix a
Borel function f : P(N)→ P(N) witnessing that I0 ≤Bor IT. We first prove
the following.

Lemma 1. There is an infinite increasing sequence F0 < F1 < . . . of
finite sets and a sequence (βn)n ∈ c+0 \ l1 such that for every X ⊆ N,

τ
( ⋃

n∈X
Fn

)
<∞ iff

∑

n∈X
βn <∞.

P r o o f. First we show that we may assume that f is continuous. To this
end, fix a dense Gδ set G such that f¹G is continuous. Then, by a standard
fact (see [Ke1, §8.9]), there is a partition N = X0 ∪X1 and sets Z0 ⊆ X0,
Z1 ⊆ X1 such that, for any i ∈ {0, 1}, if X ∩Xi = Zi then X ∈ G. Fix now
i such that Xi ∈ I+

0 . It follows that the function g : P(Xi)→ P(N) defined
by

g(X) = f(X ∪ Z1−i)
is continuous and witnesses I0¹Xi ≤Bor IT. Moreover, it is easily seen that
for any X ∈ I+

0 we have I0 ≤RB I0¹X. Therefore, by composing we can
obtain a continuous function witnessing I0 ≤Bor IT.

To simplify notation assume now that f is already continuous. Following
[Ve, Lemma 2], we can find a strictly increasing sequence 0 = n0 < n1 < . . .
of integers, sets Zi ⊆ [ni, ni+1), and functions fi : P(ni)→ P(ni) such that:

(a) for every X ⊆ N, if X ∩ [ni, ni+1) = Zi then f(X)∩ni = fi(X ∩ni),
(b) for every X,Y ⊆ N, if X ∩ [ni, ni+1) = Y ∩ [ni, ni+1) = Zi and

X 4 Y ⊆ ni then

τ((f(X)4 f(Y )) \ ni+1) ≤ 1/2i+1.

To see why we can arrange (b) suppose that at some stage i no ni+1

and Zi can be found satisfying (b). Then, as in [Ve, Lemma 2], by using the



264 B. Veli čkovi ć

continuity of f , we can find X,Y ⊆ N and an infinite increasing sequence
ni = m0 < m1 < . . . such that X 4 Y ⊆ ni and for every j,

τ(f(X)4 f(Y ) ∩ [mj ,mj+1)) ≥ 1/2i+1.

But then we would have X 4 Y ∈ I0 while τ(f(X)4 f(Y )) 6∈ IT, contra-
dicting the assumption that f is a reduction witnessing I0 ≤Bor IT.

Now assume that sequences (ni)i and (Zi)i have been found satisfying
the above conditions. For ε = 0, 1, 2, let

Xε =
⋃
{[ni, ni+1) : i ≡ ε mod 3}, Wε =

⋃
{Zi : i ≡ ε mod 3}.

Assume for concreteness that X0 6∈ I0 and define a function g : P(X0) →
P(N) by

g(X) = f(X ∪W1 ∪W2)4 f(W1 ∪W2).

Then g is continuous and witnesses I¹X0 ≤Bor IT. Now, for each i, define
a function gi : P([n3i, n3i+1))→ P([n3i−1, n3i+2)) by

gi(X) = g(X) ∩ [n3i−1, n3i+2)

and let

g∗(X) =
⋃

i

gi(X ∩ [n3i, n3i+1)).

Note that (a) and (b) imply that for every X ⊆ X0,

τ(g(X)4 g∗(X)) ≤
∞∑

i=1

1
23i−1 ≤ 1.

Now since g witnesses I¹X0 ≤Bor IT and g(∅) = ∅ it follows that for any
X ⊆ X0,

X ∈ I0 iff g∗(X) ∈ IT.

Since X0 6∈ I0 we can find subsets Bi of [n3i, n3i+1) such that if we let

βi =
∑

k∈Bi

1
k + 1

then limi→∞ βi = 0 and
∑∞
i=0 βi = ∞. Finally, let Fi = gi(Bi) for each i.

Then the sequences (βi)i and (Fi)i are as required.

For the remainder of the proof fix sequences (Fn)n and (βn)n as in
Lemma 1. For a subset X of N define

ϕ(X) =
∑

n∈X
βn.

Then for every such X we have

(1) ϕ(X) <∞ iff τ
( ⋃

n∈X
Fn

)
<∞.



Tsirelson type ideals 265

Given a finite subset a of N let Ea =
⋃
n∈a Fn. For a sequence S = {an}∞n=1

of finite subsets of N let FU(S) denote the family of finite unions of members
of S. Call such an S acceptable iff a1 < a2 < . . . and

lim
n→∞

τ(Ean) = 0 and τ
( ∞⋃
n=1

Ean

)
=∞.

Given an acceptable sequence S = {an}∞n=1 define

K(S) = sup
n

τ(Ean)
ϕ(an)

.

Note that if S∗ ⊆ FU(S) is also acceptable then K(S∗) ≤ K(S). Finally, let

K = inf{K(S) : S acceptable}.
We first prove the following.

Lemma 2. K = 0 or K =∞.

P r o o f. We show that if there is an acceptable S such that K(S) is finite
then there is another acceptable S∗ ⊆ FU(S) such that

K(S∗) ≤ 119
120

K(S).

The proof of this follows closely that of Lemma 2.1 of [FJ] or Proposition 1.3
of [CS]. To begin, fix an acceptable S = {an}∞n=1 such that K(S) is finite.
Note that since τ(

⋃∞
n=1Ean) = ∞ and limn→∞ τ(Ean) = 0 we know that

for n > 0 and every integer k we can find some b ∈ FU(S) such that k ≤ Eb
and 15/(16n) ≤ τ(Eb) ≤ 17/(16n).

Claim 1. For every n ≥ N and k there is b ∈ FU(S) such that k ≤ Eb,

τ(Eb) ≤ 119
64n

and ϕ(b) ≥ 30
16nK(S)

.

Note that using this claim we can easily produce an increasing sequence
b1 < b2 < . . . of members of FU(S) such that

τ(Ebn)
ϕ(bn)

≤ 119
120

K(S),
∞∑
n=1

ϕ(bn) =∞, lim
n→∞

τ(Ebn) = 0.

Then S∗ = {bn}∞n=1 is acceptable and K(S∗) ≤ 119
120K(S), as desired.

Proof of Claim 1. Fix n ≥ N and k. First find some b0 ∈ FU(S) such
that k ≤ Eb0 and

15
16n
≤ τ(Eb0) ≤ 17

16n
.
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Set n0 = maxEb0 . Now let r = 2n0 and find sets bi ∈ FU(S), for 1 ≤ i ≤ r,
such that b0 < b1 < . . . < br and, for every 1 ≤ i ≤ r,

15
16nr

≤ τ(Ebi) ≤
17

16nr
.

Finally, let b′ =
⋃r
i=1 bi and b = b0 ∪ b′. We claim that b is as required.

Consider an admissible sequence l ≤ H1 < . . . < Hl for some l. If l > n0

then
l∑

j=1

τ(Hj ∩ Eb) =
l∑

j=1

τ(Hj ∩ Eb′) ≤ 2τ(Eb′) ≤ 2
l∑

j=1

τ(Ebj ) ≤
34

16n
.

If l ≤ n0 we define

A = {i > 0 : Hj ∩ Ebi 6= ∅ for at least two values of j},
B = {i > 0 : Hj ∩ Ebi 6= ∅ for at most one value of j}.

Then, since A has at most l elements, we have
l∑

j=1

τ(Hj ∩ Eb) ≤
l∑

j=1

τ(Hj ∩ Eb0) +
(∑

i∈A

l∑

j=1

+
∑

i∈B

l∑

j=1

)
τ(Hj ∩ Ebi)

≤ 2τ(Eb0) + 2
∑

i∈A
τ(Ebi) +

∑

i∈B
τ(Ebi)

≤ 34
16n

+ (2l + r − l) 17
16nr

≤ 17
16n

(
2 +

r + l

r

)

≤ 17
16n

(
3 +

n0

r

)
=

119
32n

.

From these two inequalities it now follows that

τ(Eb) = sup
{

1
2

l∑

j=1

τ(Hj ∩ Eb) : {Hj}lj=1 is admissible
}
≤ 119

64n
.

On the other hand, notice that

ϕ(b) =
r∑

i=0

ϕ(bi) ≥ 1
K(S)

r∑

i=0

τ(Ebi) ≥
30

16nK(S)
.

This completes the proof of Claim 1 and Lemma 2.

We now show that (1) fails in both cases of Lemma 2, thus arriving at a
contradiction.

Case 1. K =∞. We consider two subcases.

Subcase 1a. Suppose there exist N ∈ N and ε > 0 such that for every
k ≥ N there is Nk such that for every a if Nk ≤ Ea and 2/k ≤ τ(Ea) < 4/k
then ϕ(a) ≥ ε/k. In this case we can produce an infinite increasing sequence
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S = {ak}∞k=N of finite subsets of N such that 2/k ≤ τ(Eak) ≤ 4/k and
ϕ(ak) ≥ ε/k for every k ≥ N . It follows that S is acceptable and that
K(S) ≤ 4/ε, contradicting the fact that K =∞.

Subcase 1b. Suppose Subcase 1a does not hold. We first show the fol-
lowing.

Claim 2. For every N ∈ N and ε > 0 there is a finite set a of integers
such that N ≤ Ea, τ(Ea) ≥ 1, and ϕ(a) < ε.

P r o o f. Fix N ∈ N and ε > 0. By our assumption that Subcase 1a does
not hold we can find k ≥ N and sets {ai}ki=1 such that max{k,N} ≤ Ea1 <
. . . < Eak , 2/k ≤ τ(Eai) < 4/k and ϕ(ai) < ε/k for i = 1, . . . , k. But then,
since the sequence {Eai}ki=1 is admissible, by setting a =

⋃k
i=1 ai and using

Proposition 1 we have

τ(Ea) ≥ 1
2

k∑

i=1

τ(Eai) ≥
1
2
k

2
k

= 1.

On the other hand,

ϕ(a) =
k∑

i=1

ϕ(ai) < k
ε

k
= ε.

Thus we have N ≤ Ea, τ(Ea) ≥ 1, and ϕ(a) < ε.

Now by using Claim 2 and Proposition 1 again, we can easily produce an
infinite set X such that ϕ(X) <∞ and τ(

⋃
n∈X Fn) =∞. A contradiction.

Case 2. K = 0. We first show that for every integer N and ε > 0 there
is a finite subset a of N such that N ≤ Ea, τ(Ea) < ε, and ϕ(a) ≥ 1. To see
this, fix an acceptable S = {an}∞n=1 such that K(S) < ε/2. Moreover, by
thinning out if necessary, we may assume that N ≤ Ea1 and that ϕ(an) ≤ 1
for all n. Now there is an integer k such that letting a =

⋃k
i=1 ai we have

1 ≤ ϕ(a) ≤ 2. On the other hand, using the fact that τ is subadditive and
that τ(Eai)/ϕ(ai) < ε/2 for every i, we have τ(Ea) < ε.

Now we easily produce an infinite set X such that ϕ(X) = ∞, but
τ(
⋃
n∈X Fn) <∞. A contradiction.
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