A note on Tsirelson type ideals

by

Boban Veličković (Paris)

Abstract. Using Tsirelson's well-known example of a Banach space which does not contain a copy of c_0 or l_p , for $p \geq 1$, we construct a simple Borel ideal \mathcal{I}_T such that the Borel cardinalities of the quotient spaces $\mathcal{P}(\mathbb{N})/\mathcal{I}_T$ and $\mathcal{P}(\mathbb{N})/\mathcal{I}_0$ are incomparable, where \mathcal{I}_0 is the summable ideal of all sets $A \subseteq \mathbb{N}$ such that $\sum_{n \in A} 1/(n+1) < \infty$. This disproves a "trichotomy" conjecture for Borel ideals proposed by Kechris and Mazur.

Introduction. Given Borel equivalence relations E and F on Polish spaces X and Y respectively, we say that E is Borel reducible to F and write $E \leq_{\text{Bor}} F$ if there is a Borel function $f: X \to Y$ such that for every x and y in X

$$x E y$$
 iff $f(x) F f(y)$.

For such f let $f^*: X/E \to Y/F$ be defined by $f^*([x]_E) = [f(x)]_F$. Then f^* is an injection of X/E to Y/F which has a Borel lifting f. We write

$$E \sim_{\text{Bor}} F$$
 iff $E \leq_{\text{Bor}} F \& F \leq_{\text{Bor}} E$.

By an *ideal* \mathcal{I} on \mathbb{N} we mean an ideal of subsets of \mathbb{N} which is *nontrivial*, i.e. $\mathbb{N} \notin \mathcal{I}$, and *free*, i.e. $\{n\} \in \mathcal{I}$, for all $n \in \mathbb{N}$. We say that \mathcal{I} is *Borel* if it is a Borel subset of $\mathcal{P}(\mathbb{N})$ in the usual product topology. Given a Borel ideal \mathcal{I} on \mathbb{N} we define an equivalence relation $E_{\mathcal{I}}$ on $\mathcal{P}(\mathbb{N})$ by letting

$$X E_{\mathcal{I}} Y$$
 if and only if $X \triangle Y \in \mathcal{I}$.

Finally, we write $\mathcal{I} \leq_{\mathrm{Bor}} \mathcal{J}$ iff $E_{\mathcal{I}} \leq_{\mathrm{Bor}} E_{\mathcal{J}}$.

The class $(\mathcal{E}, \leq_{\mathrm{Bor}})$ of all Borel ideals with this notion of reducibility was studied by several authors. Here we identify two ideals which are \sim_{Bor} equivalent. In [LV] Louveau and the author showed that this structure is very rich by embedding into it the partial ordering $(\mathcal{P}(\mathbb{N}), \subseteq^*)$ (where $X \subseteq^* Y$ iff $X \setminus Y$ is finite). The ideals constructed in this proof are all $F_{\sigma\delta}$ and P-ideals (recall that an ideal \mathcal{I} is a P-ideal iff for every sequence $\{A_n : n \in \mathbb{N}\}$ of

¹⁹⁹¹ Mathematics Subject Classification: Primary 03E15, 04A15; Secondary 46B.

members of \mathcal{I} there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for all n). The interest of looking for P-ideals is that in this case, by a result of Solecki [So], (\mathcal{I}, Δ) is a Polish group under a suitable topology. The construction from [LV] was later modified by Mazur [Ma1] to obtain F_{σ} ideals. However, Mazur's ideals are not P-ideals.

By \leq_{RK} we denote the Rudin-Keisler ordering on ideals, i.e.

$$\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J} \quad \text{iff} \quad \exists f : \mathbb{N} \to \mathbb{N} (X \in \mathcal{I} \leftrightarrow f^{-1}(X) \in \mathcal{J}).$$

The $Rudin-Blass\ ordering \leq_{\mathrm{RB}}$ is obtained by requiring in the above definition that f be finite-to-one. It is clear that $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ implies $\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J}$ and this in turn implies $\mathcal{I} \leq_{\mathrm{Bor}} \mathcal{J}$. It is an open question whether $\mathcal{I} \leq_{\mathrm{Bor}} \mathcal{J}$ iff there is a set $A \in \mathcal{J}^+$ such that $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J} \upharpoonright A$, the restriction of \mathcal{J} to $\mathcal{P}(A)$. In all known cases, this seems to be true. Mathias [Mat], Jalali-Naini [JN], and Talagrand [Ta] showed that FIN $\leq_{\mathrm{RB}} \mathcal{I}$ for any Borel (in fact, Baire measurable) ideal \mathcal{I} , where FIN is the ideal of finite subsets of \mathbb{N} . Thus, in a way, the "Borel cardinality" of $\mathcal{P}(\mathbb{N})/\mathrm{FIN}$ is the smallest among all $\mathcal{P}(\mathcal{I})/\mathcal{I}$ for \mathcal{I} a Borel ideal.

Recently, Kechris [Ke2] addressed the issue of finding minimal ideals above FIN under \leq_{Bor} . He was motivated by the well-known dichotomy results on Borel equivalence relations. He identified two ideals related to FIN denoted by $\emptyset \times \mathrm{FIN}$ and $\mathrm{FIN} \times \emptyset$ (in fact, these ideals are defined on \mathbb{N}^2 but they can be moved to \mathbb{N} by some fixed bijection). Define

$$X \in \emptyset \times \text{FIN}$$
 iff $\forall m(\{n : (m, n) \in X\} \text{ is finite}),$
 $X \in \text{FIN} \times \emptyset$ iff $\exists m(X \subseteq m \times \mathbb{N}).$

Thus, it is known and fairly easy to see that $\emptyset \times \text{FIN}$ and $\text{FIN} \times \emptyset$ are incomparable under \leq_{Bor} and strictly above FIN (see [Ke2] for complete references). Say that \mathcal{I} and \mathcal{J} are isomorphic iff there is a permutation π of \mathbb{N} such that $X \in \mathcal{I}$ iff $\pi(X) \in \mathcal{J}$. Finally, say that \mathcal{I} is a trivial variation of FIN iff there is an infinite set A such that $\mathcal{I} = \{X \subseteq \mathbb{N} : X \cap A \text{ is finite}\}$. Kechris then showed that both $\emptyset \times \text{FIN}$ and $\text{FIN} \times \emptyset$ are minimal above FIN, in the following strong sense.

THEOREM 1 ([Ke2]). If \mathcal{I} is a Borel ideal and $\mathcal{I} \leq_{\operatorname{Bor}} \emptyset \times \operatorname{FIN}$ (FIN $\times \emptyset$, respectively) then either it is isomorphic to $\emptyset \times \operatorname{FIN}$ (FIN $\times \emptyset$, respectively) or it is a trivial variation of FIN.

By another result of Solecki [So], if \mathcal{I} is a Borel ideal then FIN $\times \emptyset \leq_{RB} \mathcal{I}$ iff \mathcal{I} is not a P-ideal. Moreover, if \mathcal{I} is a P-ideal then $\emptyset \times \text{FIN} \leq_{RB} \mathcal{I}$ iff \mathcal{I} is not F_{σ} . Thus, any ideal which is incomparable with both FIN $\times \emptyset$ and $\emptyset \times \text{FIN}$ is an F_{σ} P-ideal. One way of obtaining such ideals is from classical Banach spaces. Fix any $(\alpha_n)_n \in c_0^+ \setminus l_1$, where c_0^+ is the space of all nonnegative sequences of reals converging to zero; for concreteness let us

say $\alpha_n = 1/(n+1)$ for all n. Define the ideal \mathcal{I}_0 by

$$X \in \mathcal{I}_0 \quad \text{iff} \quad \sum_{n \in X} \alpha_n < \infty.$$

Then, clearly, \mathcal{I}_0 is an F_{σ} P-ideal. It is known that \mathcal{I}_0 is incomparable in the sense of \leq_{Bor} with both FIN $\times \emptyset$ and $\emptyset \times \mathrm{FIN}$ (this follows from results of Kechris–Louveau [KL], Hjorth [Hj1], and has also been shown independently by Mazur [Ma2]). Moreover, Hjorth [Hj2] proved that if $\mathcal{I} \leq_{\mathrm{Bor}} \mathcal{I}_0$, then either $\mathcal{I} \sim_{\mathrm{Bor}} \mathcal{I}_0$, or else \mathcal{I} is a trivial variation of FIN. In the light of these results Kechris conjectured that the following trichotomy holds.

Conjecture 1. If \mathcal{I} is any Borel ideal on \mathbb{N} and FIN $\leq_{\operatorname{Bor}} \mathcal{I}$ then either FIN $\times \emptyset \leq_{\operatorname{Bor}} \mathcal{I}$ or $\emptyset \times \operatorname{FIN} \leq_{\operatorname{Bor}} \mathcal{I}$ or $\mathcal{I}_0 \leq_{\operatorname{Bor}} \mathcal{I}$.

As noted in [Ke2], this is equivalent to a conjecture of Mazur [Ma2] which asserts that if \mathcal{I} is an F_{σ} ideal with FIN $<_{\text{Bor}} \mathcal{I}$, then FIN $\times \emptyset \leq_{\text{Bor}} \mathcal{I}$ or $\mathcal{I}_0 \leq_{\text{Bor}} \mathcal{I}$. In this note we disprove this conjecture by showing that an ideal associated with the Tsirelson space provides a counterexample. This is a Banach space which does not contain an isomorphic copy of the classical Banach spaces c_0 or l_p for $1 \leq p < \infty$.

In fact, the picture seems to be much more complicated than suggested by the above conjecture. Thus, apparently, there are no minimal (in the sense of \leq_{Bor}) ideals below the ideal \mathcal{I}_{T} constructed in the next section, but on the other hand, $(\mathcal{P}(\mathbb{N}) \subseteq^*)$ can be embedded in the class of Tsirelson type ideals ordered by \leq_{Bor} , etc. We plan to present these and other related results in a later paper. There is a large literature on Tsirelson's and other related Banach spaces. For a good if somewhat outdated survey we refer the reader to [CS], and for a more recent survey to [OS].

REMARK. A proof of the main result of this paper was found independently by Ilijas Farah in "Ideals induced by Tsirelson submeasures", which appears in this issue of Fundamenta Mathematicae.

- 1. Tsirelson's space. We now present the Figiel–Johnson version of Tsirelson's space (see [FJ] or [CS]). This is actually the dual of the original space constructed by Tsirelson. We start with some definitions.
- (a) If E, F are finite nonempty subsets of \mathbb{N} we let $E \leq F$ iff $\max(E) \leq \min(F)$. We write $n \leq E$ instead of $\{n\} \leq E$. Similarly we define E < F, etc. We say that a sequence $\{E_i\}_{i=1}^k$ is admissible if $k \leq E_1 < E_2 < \ldots < E_k$. In general, given an increasing function $h : \mathbb{N} \to \mathbb{N}$ and an integer k we say that a sequence $\{E_i\}_{i=1}^l$ is (h,k)-admissible if $k \leq E_1 < E_2 < \ldots < E_l$ and $l \leq h(k)$.
- (b) Let $\mathbb{R}^{<\omega}$ denote the vector space of all real scalar sequences of finite support and let $\{t_n\}_{n=1}^{\infty}$ be the canonical unit vector basis of $\mathbb{R}^{<\omega}$. Given a

vector $x = \sum_n a_n t_n \in \mathbb{R}^{<\omega}$ we define $Ex = \sum_{n \in E} a_n t_n$, the projection of x onto the coordinates in E.

(c) We define inductively a sequence $(\|\cdot\|_m)_{m=0}^{\infty}$ of norms on $\mathbb{R}^{<\omega}$ as follows. Given $x = \sum_n a_n t_n \in \mathbb{R}^{<\omega}$ let

$$||x||_0 = \max_n |a_n|.$$

For $m \geq 0$, we set

$$||x||_{m+1} = \max \left\{ ||x||_m, \frac{1}{2} \sup \sum_{j=1}^k ||E_j x||_m : \{E_j\}_{j=1}^k \text{ is admissible} \right\}.$$

(d) One verifies that the $\|\cdot\|_m$ are norms on $\mathbb{R}^{<\omega}$, they increase with m, and that for all m,

$$||x||_m \le \sum_n |a_n|.$$

Thus, $\lim_m ||x||_m$ exists and is majorized by the l_1 -norm of x. Therefore setting

$$||x|| = \lim_{m} ||x||_{m}$$

defines a norm on $\mathbb{R}^{<\omega}$.

(e) Finally, Tsirelson's space T is the $\|\cdot\|$ completion of $\mathbb{R}^{<\omega}$.

Recall that $\{t_n\}_{n=1}^{\infty}$ is the canonical unit vector basis of $\mathbb{R}^{<\omega}$. A block is a vector y of the form $\sum_{n\in I} a_n t_n$ for some (finite) interval I in \mathbb{N} . We now record some basic properties of the space T (cf. [CS, Proposition I.2]).

PROPOSITION 1. (1) The sequence $\{t_n\}_{n=1}^{\infty}$ is a normalized 1-unconditional Schauder basis for T.

(2) For each $x = \sum_{n} a_n t_n \in T$,

$$||x|| = \max \left\{ \max_{n} |a_n|, \frac{1}{2} \sup \sum_{j=1}^{k} ||E_j x|| : \{E_j\}_{j=1}^{k} \text{ is admissible} \right\}.$$

(3) For any $k \in \mathbb{N}$, and any k normalized blocks $\{y_i\}_{i=1}^k$ such that for some integers $k-1 \leq p_1 < p_2 < \ldots < p_{k+1}$, y_i is a linear combination of the base vectors t_n for $p_i < n \leq p_{i+1}$, we have

$$\frac{1}{2} \sum_{i=1}^{k} |b_i| \le \left\| \sum_{i=1}^{k} b_i y_i \right\| \le \sum_{i=1}^{k} |b_i|$$

for all scalars $\{b_i\}_{i=1}^k$.

We are now ready to define a Tsirelson type ideal \mathcal{I}_T . Fix a vector $\alpha = \sum_n \alpha_n t_n \in c_0^+ \setminus T$, for instance, we could again take $\alpha_n = 1/(n+1)$. For a finite subset E of \mathbb{N} define $\tau(E) = ||E\alpha||$, and for an arbitrary $X \subseteq \mathbb{N}$

let

$$\tau(X) = \sup_{n} \tau(X \cap n).$$

It is now clear from Proposition 1 that τ is a lower semicontinuous submeasure on $\mathcal{P}(\mathbb{N})$ and that for any X,

$$\tau(X) < \infty$$
 iff $\lim_{n \to \infty} \tau(X \setminus n) = 0$.

Hence the ideal

$$\mathcal{I}_{\mathrm{T}} = \{X : \tau(X) < \infty\}$$

is an F_{σ} P-ideal.

The main result of this note is the following.

Theorem 2. \mathcal{I}_T and \mathcal{I}_0 are incomparable under \leq_{Bor} .

Proof. It suffices to show that $\mathcal{I}_0 \nleq_{\mathrm{Bor}} \mathcal{I}_{\mathrm{T}}$. Assume otherwise and fix a Borel function $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ witnessing that $\mathcal{I}_0 \leq_{\mathrm{Bor}} \mathcal{I}_{\mathrm{T}}$. We first prove the following.

LEMMA 1. There is an infinite increasing sequence $F_0 < F_1 < \dots$ of finite sets and a sequence $(\beta_n)_n \in c_0^+ \setminus l_1$ such that for every $X \subseteq \mathbb{N}$,

$$\tau\Big(\bigcup_{n\in X}F_n\Big)<\infty\quad iff\quad \sum_{n\in X}\beta_n<\infty.$$

Proof. First we show that we may assume that f is continuous. To this end, fix a dense G_{δ} set G such that $f \upharpoonright G$ is continuous. Then, by a standard fact (see [Ke1, §8.9]), there is a partition $\mathbb{N} = X_0 \cup X_1$ and sets $Z_0 \subseteq X_0$, $Z_1 \subseteq X_1$ such that, for any $i \in \{0,1\}$, if $X \cap X_i = Z_i$ then $X \in G$. Fix now i such that $X_i \in \mathcal{I}_0^+$. It follows that the function $g: \mathcal{P}(X_i) \to \mathcal{P}(\mathbb{N})$ defined by

$$g(X) = f(X \cup Z_{1-i})$$

is continuous and witnesses $\mathcal{I}_0 \upharpoonright X_i \leq_{\operatorname{Bor}} \mathcal{I}_{\operatorname{T}}$. Moreover, it is easily seen that for any $X \in \mathcal{I}_0^+$ we have $\mathcal{I}_0 \leq_{\operatorname{RB}} \mathcal{I}_0 \upharpoonright X$. Therefore, by composing we can obtain a continuous function witnessing $\mathcal{I}_0 \leq_{\operatorname{Bor}} \mathcal{I}_{\operatorname{T}}$.

To simplify notation assume now that f is already continuous. Following [Ve, Lemma 2], we can find a strictly increasing sequence $0 = n_0 < n_1 < \dots$ of integers, sets $Z_i \subseteq [n_i, n_{i+1})$, and functions $f_i : \mathcal{P}(n_i) \to \mathcal{P}(n_i)$ such that:

- (a) for every $X \subseteq \mathbb{N}$, if $X \cap [n_i, n_{i+1}) = Z_i$ then $f(X) \cap n_i = f_i(X \cap n_i)$,
- (b) for every $X, Y \subseteq \mathbb{N}$, if $X \cap [n_i, n_{i+1}) = Y \cap [n_i, n_{i+1}) = Z_i$ and $X \triangle Y \subseteq n_i$ then

$$\tau((f(X) \triangle f(Y)) \setminus n_{i+1}) \le 1/2^{i+1}.$$

To see why we can arrange (b) suppose that at some stage i no n_{i+1} and Z_i can be found satisfying (b). Then, as in [Ve, Lemma 2], by using the

continuity of f, we can find $X, Y \subseteq \mathbb{N}$ and an infinite increasing sequence $n_i = m_0 < m_1 < \dots$ such that $X \triangle Y \subseteq n_i$ and for every j,

$$\tau(f(X) \triangle f(Y) \cap [m_j, m_{j+1})) \ge 1/2^{i+1}.$$

But then we would have $X \triangle Y \in \mathcal{I}_0$ while $\tau(f(X) \triangle f(Y)) \notin \mathcal{I}_T$, contradicting the assumption that f is a reduction witnessing $\mathcal{I}_0 \leq_{\operatorname{Bor}} \mathcal{I}_T$.

Now assume that sequences $(n_i)_i$ and $(Z_i)_i$ have been found satisfying the above conditions. For $\varepsilon = 0, 1, 2$, let

$$X_{\varepsilon} = \bigcup \{ [n_i, n_{i+1}) : i \equiv \varepsilon \mod 3 \}, \quad W_{\varepsilon} = \bigcup \{ Z_i : i \equiv \varepsilon \mod 3 \}.$$

Assume for concreteness that $X_0 \notin \mathcal{I}_0$ and define a function $g : \mathcal{P}(X_0) \to \mathcal{P}(\mathbb{N})$ by

$$g(X) = f(X \cup W_1 \cup W_2) \triangle f(W_1 \cup W_2).$$

Then g is continuous and witnesses $\mathcal{I} \upharpoonright X_0 \leq_{\text{Bor}} \mathcal{I}_T$. Now, for each i, define a function $g_i : \mathcal{P}([n_{3i}, n_{3i+1})) \to \mathcal{P}([n_{3i-1}, n_{3i+2}))$ by

$$q_i(X) = g(X) \cap [n_{3i-1}, n_{3i+2})$$

and let

$$g^*(X) = \bigcup_i g_i(X \cap [n_{3i}, n_{3i+1})).$$

Note that (a) and (b) imply that for every $X \subseteq X_0$,

$$\tau(g(X) \triangle g^*(X)) \le \sum_{i=1}^{\infty} \frac{1}{2^{3i-1}} \le 1.$$

Now since g witnesses $\mathcal{I} \upharpoonright X_0 \leq_{\mathrm{Bor}} \mathcal{I}_{\mathrm{T}}$ and $g(\emptyset) = \emptyset$ it follows that for any $X \subseteq X_0$,

$$X \in \mathcal{I}_0$$
 iff $g^*(X) \in \mathcal{I}_T$.

Since $X_0 \notin \mathcal{I}_0$ we can find subsets B_i of $[n_{3i}, n_{3i+1})$ such that if we let

$$\beta_i = \sum_{k \in B_i} \frac{1}{k+1}$$

then $\lim_{i\to\infty} \beta_i = 0$ and $\sum_{i=0}^{\infty} \beta_i = \infty$. Finally, let $F_i = g_i(B_i)$ for each i. Then the sequences $(\beta_i)_i$ and $(F_i)_i$ are as required. \blacksquare

For the remainder of the proof fix sequences $(F_n)_n$ and $(\beta_n)_n$ as in Lemma 1. For a subset X of \mathbb{N} define

$$\varphi(X) = \sum_{n \in X} \beta_n.$$

Then for every such X we have

(1)
$$\varphi(X) < \infty \quad \text{iff} \quad \tau\Big(\bigcup_{n \in X} F_n\Big) < \infty.$$

Given a finite subset a of \mathbb{N} let $E_a = \bigcup_{n \in a} F_n$. For a sequence $S = \{a_n\}_{n=1}^{\infty}$ of finite subsets of \mathbb{N} let $\mathrm{FU}(S)$ denote the family of finite unions of members of S. Call such an S acceptable iff $a_1 < a_2 < \ldots$ and

$$\lim_{n\to\infty} \tau(E_{a_n}) = 0 \quad \text{and} \quad \tau\Big(\bigcup_{n=1}^{\infty} E_{a_n}\Big) = \infty.$$

Given an acceptable sequence $S = \{a_n\}_{n=1}^{\infty}$ define

$$K(S) = \sup_{n} \frac{\tau(E_{a_n})}{\varphi(a_n)}.$$

Note that if $S^* \subseteq FU(S)$ is also acceptable then $K(S^*) \leq K(S)$. Finally, let

$$K = \inf\{K(S) : S \text{ acceptable}\}.$$

We first prove the following.

Lemma 2.
$$K = 0$$
 or $K = \infty$.

Proof. We show that if there is an acceptable S such that K(S) is finite then there is another acceptable $S^* \subseteq FU(S)$ such that

$$K(S^*) \le \frac{119}{120}K(S).$$

The proof of this follows closely that of Lemma 2.1 of [FJ] or Proposition 1.3 of [CS]. To begin, fix an acceptable $S = \{a_n\}_{n=1}^{\infty}$ such that K(S) is finite. Note that since $\tau(\bigcup_{n=1}^{\infty} E_{a_n}) = \infty$ and $\lim_{n \to \infty} \tau(E_{a_n}) = 0$ we know that for n > 0 and every integer k we can find some $b \in FU(S)$ such that $k \le E_b$ and $15/(16n) \le \tau(E_b) \le 17/(16n)$.

CLAIM 1. For every $n \geq N$ and k there is $b \in FU(S)$ such that $k \leq E_b$,

$$\tau(E_b) \le \frac{119}{64n} \quad and \quad \varphi(b) \ge \frac{30}{16nK(S)}.$$

Note that using this claim we can easily produce an increasing sequence $b_1 < b_2 < \dots$ of members of FU(S) such that

$$\frac{\tau(E_{b_n})}{\varphi(b_n)} \le \frac{119}{120} K(S), \qquad \sum_{n=1}^{\infty} \varphi(b_n) = \infty, \qquad \lim_{n \to \infty} \tau(E_{b_n}) = 0.$$

Then $S^* = \{b_n\}_{n=1}^{\infty}$ is acceptable and $K(S^*) \leq \frac{119}{120}K(S)$, as desired

Proof of Claim 1. Fix $n \geq N$ and k. First find some $b_0 \in \mathrm{FU}(S)$ such that $k \leq E_{b_0}$ and

$$\frac{15}{16n} \le \tau(E_{b_0}) \le \frac{17}{16n}.$$

Set $n_0 = \max E_{b_0}$. Now let $r = 2n_0$ and find sets $b_i \in FU(S)$, for $1 \le i \le r$, such that $b_0 < b_1 < \ldots < b_r$ and, for every $1 \le i \le r$,

$$\frac{15}{16nr} \le \tau(E_{b_i}) \le \frac{17}{16nr}.$$

Finally, let $b' = \bigcup_{i=1}^r b_i$ and $b = b_0 \cup b'$. We claim that b is as required.

Consider an admissible sequence $l \leq H_1 < \ldots < H_l$ for some l. If $l > n_0$ then

$$\sum_{j=1}^{l} \tau(H_j \cap E_b) = \sum_{j=1}^{l} \tau(H_j \cap E_{b'}) \le 2\tau(E_{b'}) \le 2\sum_{j=1}^{l} \tau(E_{b_j}) \le \frac{34}{16n}.$$

If $l \leq n_0$ we define

 $A = \{i > 0 : H_j \cap E_{b_i} \neq \emptyset \text{ for at least two values of } j\},$ $B = \{i > 0 : H_j \cap E_{b_i} \neq \emptyset \text{ for at most one value of } j\}.$

Then, since A has at most l elements, we have

$$\sum_{j=1}^{l} \tau(H_{j} \cap E_{b}) \leq \sum_{j=1}^{l} \tau(H_{j} \cap E_{b_{0}}) + \left(\sum_{i \in A} \sum_{j=1}^{l} + \sum_{i \in B} \sum_{j=1}^{l}\right) \tau(H_{j} \cap E_{b_{i}})$$

$$\leq 2\tau(E_{b_{0}}) + 2\sum_{i \in A} \tau(E_{b_{i}}) + \sum_{i \in B} \tau(E_{b_{i}})$$

$$\leq \frac{34}{16n} + (2l + r - l) \frac{17}{16nr} \leq \frac{17}{16n} \left(2 + \frac{r + l}{r}\right)$$

$$\leq \frac{17}{16n} \left(3 + \frac{n_{0}}{r}\right) = \frac{119}{32n}.$$

From these two inequalities it now follows that

$$\tau(E_b) = \sup \left\{ \frac{1}{2} \sum_{j=1}^{l} \tau(H_j \cap E_b) : \{H_j\}_{j=1}^{l} \text{ is admissible } \right\} \le \frac{119}{64n}.$$

On the other hand, notice that

$$\varphi(b) = \sum_{i=0}^{r} \varphi(b_i) \ge \frac{1}{K(S)} \sum_{i=0}^{r} \tau(E_{b_i}) \ge \frac{30}{16nK(S)}.$$

This completes the proof of Claim 1 and Lemma 2.

We now show that (1) fails in both cases of Lemma 2, thus arriving at a contradiction.

Case 1. $K = \infty$. We consider two subcases.

Subcase 1a. Suppose there exist $N \in \mathbb{N}$ and $\varepsilon > 0$ such that for every $k \geq N$ there is N_k such that for every a if $N_k \leq E_a$ and $2/k \leq \tau(E_a) < 4/k$ then $\varphi(a) \geq \varepsilon/k$. In this case we can produce an infinite increasing sequence

 $S = \{a_k\}_{k=N}^{\infty}$ of finite subsets of \mathbb{N} such that $2/k \leq \tau(E_{a_k}) \leq 4/k$ and $\varphi(a_k) \geq \varepsilon/k$ for every $k \geq N$. It follows that S is acceptable and that $K(S) \leq 4/\varepsilon$, contradicting the fact that $K = \infty$.

SUBCASE 1b. Suppose Subcase 1a does not hold. We first show the following.

CLAIM 2. For every $N \in \mathbb{N}$ and $\varepsilon > 0$ there is a finite set a of integers such that $N \leq E_a$, $\tau(E_a) \geq 1$, and $\varphi(a) < \varepsilon$.

Proof. Fix $N \in \mathbb{N}$ and $\varepsilon > 0$. By our assumption that Subcase 1a does not hold we can find $k \geq N$ and sets $\{a_i\}_{i=1}^k$ such that $\max\{k,N\} \leq E_{a_1} < \ldots < E_{a_k}, \, 2/k \leq \tau(E_{a_i}) < 4/k$ and $\varphi(a_i) < \varepsilon/k$ for $i=1,\ldots,k$. But then, since the sequence $\{E_{a_i}\}_{i=1}^k$ is admissible, by setting $a = \bigcup_{i=1}^k a_i$ and using Proposition 1 we have

$$\tau(E_a) \ge \frac{1}{2} \sum_{i=1}^k \tau(E_{a_i}) \ge \frac{1}{2} k \frac{2}{k} = 1.$$

On the other hand,

$$\varphi(a) = \sum_{i=1}^{k} \varphi(a_i) < k \frac{\varepsilon}{k} = \varepsilon.$$

Thus we have $N \leq E_a$, $\tau(E_a) \geq 1$, and $\varphi(a) < \varepsilon$.

Now by using Claim 2 and Proposition 1 again, we can easily produce an infinite set X such that $\varphi(X) < \infty$ and $\tau(\bigcup_{n \in X} F_n) = \infty$. A contradiction.

Case 2. K=0. We first show that for every integer N and $\varepsilon>0$ there is a finite subset a of $\mathbb N$ such that $N\leq E_a,\, \tau(E_a)<\varepsilon,\,$ and $\varphi(a)\geq 1.$ To see this, fix an acceptable $S=\{a_n\}_{n=1}^\infty$ such that $K(S)<\varepsilon/2$. Moreover, by thinning out if necessary, we may assume that $N\leq E_{a_1}$ and that $\varphi(a_n)\leq 1$ for all n. Now there is an integer k such that letting $a=\bigcup_{i=1}^k a_i$ we have $1\leq \varphi(a)\leq 2$. On the other hand, using the fact that τ is subadditive and that $\tau(E_{a_i})/\varphi(a_i)<\varepsilon/2$ for every i, we have $\tau(E_a)<\varepsilon$.

Now we easily produce an infinite set X such that $\varphi(X) = \infty$, but $\tau(\bigcup_{n \in X} F_n) < \infty$. A contradiction.

References

- [CS] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.
- [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no l_p , Compositio Math. 29 (1974), 179–190.
- [Hj1] G. Hjorth, Actions of S_{∞} , manuscript.
- [Hj2] —, Actions by the classical Banach spaces, manuscript.

- [JN] S. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
- [Ke1] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [Ke2] —, Rigidity properties of Borel ideals on the integers, preprint.
- [KL] A. Kechris and A. Louveau, The structure of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215–242.
- [LV] A. Louveau and B. Veličković, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994), 255–259.
- [Mat] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (eds.), Colloq. Math. Soc. János Bolyai 10, Vol. III, North-Holland, 1975, 1095–1097.
- [Ma1] K. Mazur, A modification of Louveau and Veličković construction for F_{σ} -ideals, preprint.
- [Ma2] —, Towards a dichotomy for F_{σ} -ideals, preprint.
- [OS] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; new geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich, Birkhäuser, 1995, 955–965.
- [So] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339–348.
- [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13–43.
- [Ve] B. Veličković, Definable automorphisms of $\mathcal{P}(\omega)$ /fin, Proc. Amer. Math. Soc. 96 (1986), 130–135.

UFR de Mathématiques Université Paris 7 2 Place Jussieu 75251 Paris, France

E-mail: boban@logique.jussieu.fr

Received 10 April 1998