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Dynamical boundary of a self-similar set

by

Manuel M o r á n (Madrid)

Abstract. Given a self-similar set E generated by a finite system Ψ of contract-
ing similitudes of a complete metric space X we analyze a separation condition for Ψ ,
which is obtained if, in the open set condition, the open subset of X is replaced with an
open set in the topology of E as a metric subspace of X. We prove that such a condi-
tion, which we call the restricted open set condition, is equivalent to the strong open
set condition. Using the dynamical properties of the forward shift, we find a canon-
ical construction for the largest open set V satisfying the restricted open set condi-
tion. We show that the boundary of V in E, which we call the dynamical boundary
of E, is made up of exceptional points from a topological and measure-theoretic point of
view, and it exhibits some other boundary-like properties. Using properties of subself-
similar sets, we find a method which allows us to obtain the Hausdorff and packing
dimensions of the dynamical boundary and the overlapping set in the case when X
is the n-dimensional Euclidean space and Ψ satisfies the open set condition. We show
that, in this case, the dimension of these sets is strictly less than the dimension of the
set E.

1. Introduction. A self-similar set is a set that can be decomposed
into subsets which are similar copies of the whole set. Self-similar sets like
the Cantor set, the Koch curve or the Sierpiński gasket are amongst the
first known examples of fractal sets. The basic ideas leading to the analysis
of self-similar sets were originated in 1946 by P. A. P. Moran [13], and
developed by Mandelbrot [8] and Hutchinson [5]. A considerable volume
of research in the last two decades has focused on these sets (see [9] for
some references). Self-similar sets are a canonical type of fractal sets. Their
analysis has been relevant for the development of many tools of geometric
measure theory and they have also a wide range of applications to various
empirical sciences (see [8] and [4]).
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2 M. Morán

In the rest of this section we describe the self-similar constructions we
deal with, we give some of their basic properties and we discuss some conse-
quences of the results of the paper. Section 2 is devoted to the analysis of the
restricted open set condition and to the analysis of the general properties of
the dynamical boundary, and in Section 3 we analyze the fractal dimension
of the dynamical boundary and the overlapping set.

1.1. Self-similar set generated by a finite system of similitudes. Given
a finite set Ψ = {ψ1, . . . , ψm} of surjective and contracting similarities of
a complete metric space X, there exists a unique compact subset E ⊆ X,
which we call the self-similar set generated by Ψ , such that SΨ(E) = E,
where SΨ is the set mapping defined by

SΨ(Y ) =
m⋃

i=1

ψi(Y ), Y ⊆ X.

The proof of this fact for self-similar sets in Rn can be seen in [5]. It depends
on the completeness of the set of non-empty compact subsets of Rn endowed
with the Hausdorff metric, which also holds if the embedding space is any
complete metric space, as in our case. From now onwards we assume that
we are given a system Ψ of surjective and contracting similitudes of X and
a self-similar set E as defined above.

Remark 1.1. A useful consequence of the uniqueness of E is the follow-
ing: Let K be a non-empty compact subset of X such that SΨ(K) ⊆ K. If
SΨk denotes the kth iterate of the set mapping SΨ , then

∞⋂

k=1

SΨk(K) = E ⊆ K.

This is easily seen by checking that SΨ(
⋂∞
k=1 SΨ

k(K)) =
⋂∞
k=1 SΨ

k(K).

1.2. Space of codes of a self-similar set. The self-similar set E is the image
of the space of codes M = M∞ = M×M× . . . , with M = {1, . . . ,m}, under
the projection mapping π : M→ E given by

π(i) =
∞⋂

k=1

ψi(k)(E), i = i1i2 . . . ∈M,

where i(k) denotes the curtailment i1 . . . ik ∈Mk of i and, given j ∈Mk, ψj
denotes the similitude ψj1 ◦ . . . ◦ψjk . We abbreviate the sets ψj(E), j ∈Mk,
k ∈ N, to Ej. We also write ri for the contraction ratio of the similitude ψi,
i ∈Mk, k ∈ N.

1.3. Hausdorff measures and the open set condition. Given s > 0, the
Hausdorff s-dimensional measure of a subset Y ⊆ X is defined by
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Hs(Y ) = lim
δ→0

inf
{∑

i

|Bi|s
}
,

where the infimum is taken over the countable covers of Y by open balls
with diameter smaller than δ, and where | · | stands for diameter. We
write dimY for the Hausdorff dimension of a subset Y ⊆ X, i.e. dimY =
inf{s : Hs(Y ) = 0} (see [2, 9] for more details on Hausdorff measures and
dimension).

We say that Ψ (or E) satisfies the open set condition (O.S.C.) if there
exists a non-empty bounded open set O ⊆ X such that

(1)
(i) SΨ(O) ⊆ O,

(ii) ψi(O) ∩ ψj(O) = ∅ if i 6= j.

If also E ∩ O 6= ∅, then we say that Ψ satisfies the strong open set
condition (S.O.S.C.).

Assume that X = Rn. It is known [13, 5] that if the O.S.C. holds for
Ψ , then dimE = s for the unique root s of the equation ϕ(x) = 1 with
ϕ(x) =

∑m
i=1 r

x
i , and for this value of s, we have 0 < Hs(E). A. Schief

[14] showed that the O.S.C. is then equivalent to Hs(E) > 0. If the O.S.C.
holds with O as the open set, it may happen that E ⊆ ∂O (∂O denotes
the boundary of O). A. Schief [14] also showed that if the O.S.C. holds
for some open set, then so does the S.O.S.C. Other interesting separation
conditions have been shown to be equivalent to the O.S.C. in the Euclidean
case (see [1]).

The equivalence of the O.S.C., the S.O.S.C. and the positiveness of
Hs(E) still holds in complete metric spaces which are β-spaces [16, 15].
In the general case when X is a complete metric space, the situation is quite
different. In this setting, the O.S.C. does not imply the S.O.S.C. A. Schief
[15] has shown that the S.O.S.C. is still relevant, since it implies that the
Hausdorff dimension of E coincides with its similarity dimension. In the
quoted reference an example of a self-similar set is shown satisfying the
O.S.C. whose Hausdorff dimension decreases to zero, which shows that the
O.S.C. may be rather meaningless in complete metric spaces which are not
β-spaces. See [15] for a complete discussion of the logical links among the dif-
ferent separation conditions for self-similar sets in that setting. In Section 2
we focus on finding a canonical way to construct a separating set.

The overlapping set O ⊆ E is defined by O =
⋃
i 6=j Ei ∩ Ej . When the

O.S.C. holds, to know an upper bound for the dimension of the overlapping
set is useful for the analysis of relevant subsets of E, for instance, for the
analysis of the multifractal components. In [10] it is shown that some results
holding in the non-overlapping case can be extended, when Ψ satisfies the
O.S.C., to subsets of E with dimension greater than that of the overlapping
set, and other results stand for subsets of dimension greater than that of
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the dynamical boundary of E (see Section 1.4 for a definition). In Section 3
we show that the dimension of the dynamical boundary, and the dimension
of the overlapping set, of a self-similar set in Rn satisfying the O.S.C. is
strictly smaller than the similarity dimension (see Theorem 3.3).

Assume that Ψ satisfies the O.S.C. Let adh(Y ), Y ⊆ X, denote the
closure of Y . From the continuity of ψi, i ∈ M , together with property (i)
in (1) it follows that SΨ(adh(O)) ⊆ adh(O) so, by Remark 1.1, we see that
E ⊆ adh(O), hence Ei ⊆ adh(ψi(O)), i ∈M . Therefore we have

O ⊆
⋃

i 6=j
adh(ψi(O)) ∩ adh(ψj(O)).

Since ψi(O) ⊆ X − ψj(O) for i 6= j, we see that

ψi(O) = int(ψi(O)) ⊆ int(X − ψj(O))

= X − adh(ψj(O)) ⊆ X − ∂(ψj(O)),

which shows that ψi(O) ∩ ∂(ψj(O)) = ∅ for i 6= j. Therefore we may write

O ⊆
⋃

i 6=j
[∂(ψi(O)) ∪ ψi(O)] ∩ [∂(ψj(O)) ∪ ψj(O)](2)

=
⋃

i 6=j
∂(ψi(O)) ∩ ∂(ψj(O)).

From this it easily follows that

(3) O ∩ ψi(O) = ∅, i ∈M.

Assume that a non-empty open set V ⊆ E satisfies

(4)
(i) SΨ(V ) ⊆ V,

(ii) ψ(V ) ∩O = ∅ for all ψ ∈ Ψ.
In this case we say that Ψ satisfies the restricted open set condition

(R.O.S.C.) for the open set V . If the S.O.S.C. holds for an open set O, then
it is easy to see using (3) that the R.O.S.C. holds for E ∩ O. We show in
Theorem 2.3 that both separation conditions are indeed equivalent, but to
derive the S.O.S.C. from the R.O.S.C. is not trivial, since care is needed to
extend the open set satisfying the R.O.S.C. to an open set in X satisfying
the S.O.S.C. If the R.O.S.C. holds for a set W then W = E∩O for some set
O open in X, but even in the case where SΨ(O) ⊆ O, ψi(O)∩ψj(O) could be
non-empty for some pair ψi, ψj of similitudes in Ψ , as the following example,
due to an anonymous referee, shows: Consider a Sierpiński triangle E with
side length 1 generated by two similitudes of contraction ratio 1/2, and a
third similitude of contraction ratio 1/4 with fixed point at some vertex of
the horizontal side of E, and let O be the interior of a triangle with a vertex
being the top vertex of E, and whose horizontal side is the horizontal side
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of E extended by 1 in both directions. Then the sets W := E ∩ O and O
are in the situation described.

From condition (ii) of (4) it follows that ψi(V ) ∩ ψj(V ) = ∅ if i 6= j,
i, j ∈ M . So, a subset of E satisfying the R.O.S.C. also satisfies conditions
(1) required for an open subset of X for which the O.S.C. holds. It is easy
to see that property (ii) of (4) may fail to hold for a non-empty subset open
in E which has properties (i) and (ii) of (1) (take as V the set [0, 1) in the
standard construction of the unit interval as a self-similar set generated by
two similitudes with contraction ratios 1/2). We do not know, however, if
from the assumption that conditions (i) and (ii) of (1) hold for a non-empty
set V open in E it follows that the R.O.S.C. holds for some set open in E.

1.4. The shift mapping. The possibility of obtaining useful information
on the measure-theoretic properties of E from an analysis of the dynamical
properties of the geometric shift (see below for a definition) has been shown
in [11] and [12]. In this paper we use topological properties of the dynamics of
the geometric shift to construct the largest open set satisfying the R.O.S.C.

The code shift mapping σ : M → M is defined on M by σ(i1i2 . . .) =
i2i3 . . . If O = ∅, the code shift can be projected onto E, thus yielding a
geometric shift T : E → E, given by T (x) = π ◦ σ ◦ π−1(x). If O 6= ∅, this
last formula defines a set-valued rather than a point-to-point mapping, since
π−1(x) is, in general, a subset of M. We also write T (Y ) = π ◦ σ ◦ π−1(Y )
for subsets Y ⊆ E.

Observe that if x ∈ T (Y ) then x = π◦σ(i) for some i ∈M with π(i) ∈ Y ,
and ψi1(x) = π(i). Conversely, assume that ψi(x) ∈ Y with x ∈ E and
i ∈M . Then x = π(i) for some i ∈M, and we have

x = π ◦ σ(ii1i2 . . .) ∈ π ◦ σ ◦ π−1(ψi(x)) ⊆ T (Y ).

Therefore

(5) x ∈ T (Y ) if and only if ψ(x) ∈ Y for some ψ ∈ Ψ.
We will frequently use this fact throughout the text.

The shift orbit O(Y ) of a set Y ⊆ E is defined by O(Y ) =
⋃∞
i=0 T

i(Y ),
with T 0(Y ) = Y . We show in Section 2 that the R.O.S.C. holds if and only
if the set G := adh(O(T (O))), which we call the dynamical boundary of
E, satisfies E − G 6= ∅, and then V := E − G is the largest set satisfying
the R.O.S.C. (see Remark 2.2 and Theorem 2.3). We also analyze in that
section the conditions under which G can be obtained in the simplified form⋃q
i=1 T

i(O) for finite q (see Example 2.6, Theorem 2.7, and Proposition 2.8).
There are a number of reasons to regard the set G as a boundary of

a self-similar set. First, it is the topological boundary of the largest set
satisfying the R.O.S.C. Also it is contained in the topological boundary of
any open subset of X satisfying the O.S.C. (see Lemma 2.1). If E has a
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non-empty interior in X, then G is the boundary of E (see Proposition 2.8).
The points of G have an exceptional behaviour from the following measure-
theoretic point of view: Let p = (pi)1≤i≤m be a probability vector, and let
νp = p × p × . . . be the infinite-fold product probability measure on M
obtained by regarding p as a probability measure on M given by p(i) = pi,
i ∈ M . The measure µp = νp ◦ π−1 defined as the projection of νp on
E under π is called a self-similar measure in the literature (self-similar
measures were introduced in [5]). We say that µp is non-degenerate if pi > 0
for all i ∈M . A straightforward adaptation of Theorem 1 of [11] shows that,
if µp is non-degenerate and Ψ satisfies the S.O.S.C., then µp(G) = 0.

We call a subset Y ⊆ E T -invariant if T (Y ) ⊆ Y . The set G is T -
invariant (see Lemma 2.1). If y ∈ T (x) for some x ∈ E, then y = ψ−1(x)
for some ψ ∈ Ψ , so all “branches” of T are expanding similitudes and, in
this sense, the dynamics of the set mapping T is a repelling dynamics on T -
invariant subsets of E. These properties are also shared by a pair (J, f−1),
where f is a rational map in the complex plane and J is its associated
Julia set.

We remark that for self-similar sets with G a finite set, Brownian motions
are analyzed in [6] and the Laplacian operator is introduced in [7]. In this
case the self-similar set is called post-critically finite, a concept which comes
from the theory of Julia sets.

2. The restricted open set condition. We denote by U(x, r) the
open ball of X centered at x with radius r. Given Z ⊆ X the notation
UZ(x, r) stands for an open ball in the metric subspace Z, i.e. UZ(x, r) =
{y ∈ Z : d(x, y) < r}, x ∈ Z. Likewise, int(Y ), adh(Y ) and ∂(Y ), Y ⊆ X,
are respectively used for the topological operators of interior, closure and
boundary derived from the metric in X, whilst for Z ⊆ X, intZ(Y ) and
∂Z(Y ), Y ⊆ Z, denote the corresponding operators in Z as a metric subspace
of X. Notice that, for any closed set Z ⊆ X, the closure of Y ⊆ Z in the
subspace Z coincides with adh(Y ). We first prove the following lemma.

Lemma 2.1. Assume that Ψ satisfies the open set condition for an open
set O ⊆ X. Then

(i) T (E ∩ ∂O) ⊆ E ∩ ∂O.
(ii) T (O) ⊆ E ∩ ∂O.

(iii) Let G = adh(O(T (O))). Then G ⊆ E ∩ ∂O.
(iv) T (G) ⊆ G.

P r o o f. A proof of (i) can be seen in [11]. We prove it here for com-
pleteness. Let x ∈ T (E ∩ ∂O). Then, by (5), there exists a ψ ∈ Ψ such that
ψ(x) ∈ E ∩ ∂O. If x ∈ O then ψ(x) ∈ O, giving a contradiction, which
proves (i). Let x ∈ T (O), and let ψ ∈ Ψ be such that ψ(x) ∈ O. If x ∈ O
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then ψ(x) ∈ ψ(O) gives ∅ 6= ψ(O)∩O, in contradiction with (3). Therefore,
x ∈ ∂O, which proves (ii). Properties (i) and (ii) give O(T (O)) ⊆ E ∩ ∂O.
Since E ∩ ∂O is a closed set, property (iii) follows.

Let x ∈ T (G). Then ψi(x) ∈ G for some i ∈ M and there exists a
sequence yk → ψi(x) with yk ∈ O(T (O)) for all k ∈ N. There exists a j ∈M
such that yk ∈ Ej for infinitely many values of k. We may assume that yk ∈
Ej for all k. If j 6= i, then ψi(x) ∈ Ej∩Ei since Ej is closed. Hence ψi(x) ∈ O,
which shows that x ∈ T (O) ⊆ G. If i = j, then ψ−1

i (yk) ∈ T (yk) ⊆ O(T (O)).
Therefore x = ψ−1

i (ψi(x)) = limk ψ
−1
i (yk) ∈ adh(O(T (O))) = G.

Remark 2.2. If we follow the lines of the proof of Lemma 2.1, we may
check that the properties of the open set O used there are those in (1)
and (3), which are also satisfied by a set W which satisfies the R.O.S.C.
From this it follows that the lemma holds if we replace O with W and the
topological operators in X with the corresponding operators in E. Observe
also that to prove property (2) we only need the properties in (1) and the
continuity of the similitudes, so (2) holds for W .

Part (iii) of the above lemma shows that the boundary ∂(O) of any
open set O satisfying the O.S.C. contains the set G. If a set W satisfies the
R.O.S.C., property (iii) of Lemma 2.1 shows that G ⊆ ∂E(W ). Therefore
the set V = E − G is the largest open set which can satisfy the R.O.S.C.
In the next theorem we state that V actually satisfies the R.O.S.C. and we
formulate two separation conditions equivalent to the S.O.S.C.

Theorem 2.3. The following conditions are equivalent.

(i) The restricted open set condition holds for Ψ .
(ii) The open set V = E −G, with G = adh(O(T (O))), is non-empty.

(iii) The strong open set condition holds for Ψ .

We keep the notation for V and G from now onwards. See Example 2.6,
Theorem 2.7 and Proposition 2.8 for a discussion of conditions under which
we can drop the operator adh(·) from the definition of G.

P r o o f. (i)⇒(ii). Assume first that the R.O.S.C. holds for W . By Re-
mark 2.2 we know that G ⊆ ∂E(W ). Therefore we have E − G ⊇ E −
∂E(W ) ⊇W 6= ∅.

(ii)⇒(i). Let V = E − G and assume V 6= ∅. We denote by Vi the set
ψi(V ), i ∈M . If x ∈ V then ψi(x) ∈ V , since if we assume on the contrary
that ψi(x) ∈ G then, by Lemma 2.1(iv), x ∈ T (G) ⊆ G, which is not
possible. If x ∈ Vi ∩ O, then ψ−1

i (x) ∈ V ∩ T (O), which is not possible (as
T (O) ⊆ G). This shows that V satisfies the R.O.S.C.

(ii)⇒(iii). Let V = E −G be non-empty. Then V satisfies the R.O.S.C.
For every x ∈ V , let

%x = 2−1d(x,G).
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Then we claim that the set

O =
⋃

x∈V
U(x, %x),

which is an open set in X, satisfies the S.O.S.C. This will be proved by using
the fact that ri%x ≤ %ψi(x) for x ∈ V . To prove this last inequality, we first
prove that

(6) UE(ψi(x), 2ri%x) ⊆ Vi, x ∈ V, i ∈M.

Observe that, since E and Ei are closed sets the topological operators
adhE(·), adhEi(·) and adh(·) coincide. From adh(Ei − Vi) ⊆ adh(E − Vi) it
follows that ∂Ei(Vi) ⊆ ∂E(Vi). Let x ∈ ∂E(Vi). Since x ∈ adh(E−Vi), either
x ∈ adh(Ei − Vi) or x ∈ Ej for some j 6= i. In the first case ψ−1

i (x) ∈ G,
since G is a closed set. In the second case, x ∈ O, so ψ−1

i (x) ∈ T (O) ⊆ G.
Therefore ψ−1

i (x) ∈ G in either case, which shows that ∂E(Vi) ⊆ ψi(G).
Since ψi : E → Ei is a homeomorphism, we see that ψi(G) = ψi(∂V ) =
∂Ei(Vi) ⊆ ∂E(Vi), so we have

∂E(Vi) = ψi(G).

From ∅ = Vi ∩ ψi(G) = Vi ∩ ∂E(Vi) it follows that Vi, i ∈ M , is an open
set in E. If we take a z in ψi(G) such that d(ψi(x), ψi(G)) = d(ψi(x), z), we
then have

2ri%x = rid(x,G) ≤ rid(x, ψ−1
i (z)) = d(ψi(x), z) = d(ψi(x), ∂E(Vi)),

which shows that (6) holds.
Assume now that ri%x > %ψi(x), and let z ∈ G satisfy d(ψi(x), z) =

2%ψi(x). Then z ∈ UE(ψi(x), 2ri%x) ⊆ Vi ⊆ V , which contradicts z ∈ G.
Therefore ri%x ≤ %ψi(x). From this, it easily follows that ψi(O) ⊆ O.

We now prove that ψi(O) ∩ ψj(O) = ∅, i 6= j. Let x ∈ ψi(O) ∩ ψj(O).
From x ∈ ψi(O) it follows that there exists a y ∈ V with d(ψi(y), x) < ri%y.
Analogously, for some z ∈ V, d(ψj(z), x) < rj%z. So,

d(ψi(y), ψj(z)) < max{2ri%y, 2rj%z}.
Assume for instance that rj%z ≤ ri%y. Then using (6) we have

ψj(z) ∈ UE(ψi(y), 2ri%y) ⊆ Vi,
giving the contradiction ψj(z) ∈ Vi ∩ Vj = ∅.

(iii)⇒(i). If the strong open set condition holds for O, then V = O ∩ E
satisfies the R.O.S.C.

Remark 2.4. Theorem 2.3 shows that each of the separation conditions
(i), (ii), and (iii) is equivalent to the O.S.C. for X = Rn, since this last
condition is equivalent to (iii) in this case (see [14] for a proof). Observe
that the logical chain linking the separation conditions (i), (ii) and (iii)
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depends only on the structure of X as a complete metric space. The link
between the O.S.C. and the strong open set condition depends on specific
properties of Rn, as shown by the results by Schief quoted in Section 1.3.

From the proof of the above theorem we can also easily draw the following
useful consequence: If UE(x, r) is an open ball contained in V , then

ψi(UE(x, r)) = UE(ψi(x), rir), i ∈Mk, k ∈ N.
To see this, we may assume k = 1 without loss of generality. From r ≤
2%x together with (6), it follows that, if y ∈ UE(ψi(x), rir), then y ∈
UE(ψi(x), 2ri%x) ⊆ Vi, so ψ−1

i (y) ∈ UE(x, r), and y ∈ ψi(UE(x, r)). There-
fore ψi(UE(x, r)) ⊇ UE(ψi(x), rir). The opposite inclusion is trivial.

Remark 2.5. In many classical examples of self-similar sets, as the Koch
curve, the Sierpiński gasket, the unit cube in Rn as a self-similar set gener-
ated by 2n similitudes and the twin-dragon fractal, the dynamical boundary
G may be written in a simplified form, since O(T (O)) =

⋃q
i=1 T

i(O) for a
finite q in all these cases, and from the fact that, for any closed set F , T (F )
is also a closed set, we then get

G =
q⋃

i=1

T i(O).

We say that a set A ⊆ E is T -finitely generated by a set B ⊆ E if A ⊆⋃q
i=0 T

i(B) for a finite q. The following example shows that, in general,
O(T (O)) is not T -finitely generated by O.

Example 2.6. Let Ψ = {ψi}1≤i≤6 be the system of six similitudes map-
ping the unit square Q ⊆ R2 onto six squares, as indicated in Figure 1. We

Fig. 1
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assume that the four corners of Q are the fixed points of the similitudes
ψ1, ψ2, ψ3 and ψ4 respectively. The contraction ratios of ψ1 and ψ2 are 1/2
and the contraction ratios of ψ3 and ψ4 are 1/3. Thus the upper side U
of Q is contained in the self-similar set E generated by Ψ , and the lower
side of Q contains a ternary Cantor set which is in turn contained in E. We
now show that O(T (O)) cannot be T -finitely generated by O in the sense of
Remark 2.5. Let OH denote the horizontal part of the overlapping set, that
is, OH = O − (E1 ∩ E2). Observe first that O(T (OH)) contains the set of
points of U with an x-coordinate of the form 2k3−p. It is easy to see that
the set

{k log 2− p log 3 : k, p ∈ N}
is dense in R. This follows from the ergodicity of irrational rotations. There-
fore U ⊆ adh(O(T (OH))) ⊆ G. Notice also that we have U ∩O(T (OH)) =
U ∩ O(T (O)), so if O(T (O)) is T -finitely generated by O then U is also
T -finitely generated by OH . In this case, taking into account that dimY =
dimT (Y ) for any Y ⊆ E, we get dimU = dimOH , which gives the contra-
diction

1 = dimU = dimOH = log 2/ log 3.

In the following theorem we give a sufficient condition for the boundary
of a separating open set to be T -finitely generated by the intersection of the
separating set with the overlapping set.

Theorem 2.7. (i) Assume that Ψ satisfies the open set condition for
an open set O with O ∩ E 6= ∅, and SΨ(E ∩ ∂O) − ∂O = O ∩ O. Then
E ∩ ∂O = O(T (O ∩ O)), and E ∩ ∂O is T-finitely generated by O ∩ O.

(ii) Assume that Ψ satisfies the strong open set condition and let V =
E −G. If SΨ(G)−G = O ∩ V , then G = O(T (O ∩ V )) and G is T-finitely
generated by O ∩ V .

P r o o f. (i). We first prove that
⋃k
i=1 T

i(O ∩ O), k = 1, 2, . . . , are open
sets in E ∩∂O. To see this we prove that if U is an open set in E ∩∂O, then
T (O∩O)∪T (U) is an open set in E∩∂O. Assume that x ∈ U∪(O∩O). Then
T (x) =

⋃
i∈Px ψ

−1
i (x) for some set of indices Px ⊆ M . We treat separately

the cases x ∈ O ∩ O and x ∈ U .
Assume that x ∈ O ∩ O. Then U(x, %x) ∩ O ⊆ O for a sufficiently

small %x. Let i ∈ Px and y ∈ U(ψ−1
i (x), r−1

i %x) ∩ E ∩ ∂O. Then ψi(y) ∈
SΨ(E ∩ ∂O) ∩ O ⊆ O ∩ O. This shows that

Wi
x := U(ψ−1

i (x), r−1
i %x) ∩ E ∩ ∂O ⊆ T (O ∩ O).

Therefore, for every x ∈ O ∩ O, T (x) is a finite union of points which are
interior points of T (O∩O) in E ∩∂O. This shows that T (O∩O) is an open
set in E ∩ ∂O.
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Assume now that x ∈ U . Then U(x, %x) ∩ E ∩ ∂O ⊆ U for a sufficiently
small %x. We now prove that, for i ∈ Px,

Wi
x := U(ψ−1

i (x), r−1
i %x) ∩ E ∩ ∂O ⊆ T (O ∩ O) ∪ T (U).

Take a y ∈ Wi
x. Then ψi(y) ∈ SΨ(E∩∂O). If ψi(y) ∈ E∩∂O then ψi(y) ∈ U ,

and y ∈ T (U). If ψi(y) 6∈ E ∩ ∂O, then ψi(y) ∈ O ∩ O, and y ∈ T (O ∩ O).
Putting together the two cases considered above, we have proved that,

for x ∈ (O∩O)∪U , T (x) is a finite union of interior points in E∩∂O of the
set T (O∩O)∪T (U), which shows that T (O∩O)∪T (U) is open in E ∩ ∂O.
If we apply inductively this fact to U =

⋃k
i=1 T

i(O ∩ O), k = 1, 2, . . . , we
see that all these sets are open in E ∩ ∂O.

We prove that E ∩ ∂O =
⋃q
i=1 T

i(O ∩O) for a finite q. The compact set
H = E ∩ ∂O−⋃∞i=0 T

i(O ∩O) satisfies SΨ(H) ⊆ H. This follows from the
fact that, otherwise, for some x ∈ H and some ψ ∈ Ψ , either ψ(x) ∈ O ∩O,
which gives the contradiction x ∈ T (O ∩ O), or ψ(x) ∈ ⋃∞i=1 T

i(O ∩ O),
which gives the contradiction x ∈ T (

⋃∞
i=1 T

i(O ∩ O)) ⊆ ⋃∞i=0 T
i(O ∩ O).

Therefore the compact set K =
⋂∞
i=1 SΨ(H) satisfies SΨ(K) = K. Then,

by the uniqueness of E, either K is an empty set or K = E. Since K = E
would imply H = E, and so E ∩ O = ∅, we see that K is an empty set,
so H is also empty. The proof of (i) then follows from the compactness of
E ∩ ∂O.

(ii) The proof of (i) remains valid if we replace O with V and E ∩
∂O with G. Notice that in this case V ∩ E 6= ∅ is guaranteed by Theo-
rem 2.3.

Notice that one of the hypotheses of this theorem holds in each case
mentioned in Remark 2.5. For the twin-dragon fractal and the unit cube,
the O.S.C. is satisfied for an open set in Rn contained in E. In the following
proposition we see that the hypotheses of Theorem 2.7 follow from this fact.

Proposition 2.8. If Ψ satisfies the strong open set condition and O :=
int(E) 6= ∅, then the following properties hold : V = O, G = ∂E = ∂V ,
SΨ(∂E)− ∂E = O ∩ V , V satisfies the hypotheses of Theorem 2.7 and ∂E
is T -finitely generated by T (O).

P r o o f. We first check that O satisfies the O.S.C. From the bicontinuity
of ψi, i ∈ M , it follows that ψi(O) = ψi(int(E)) = int(Ei) ⊆ O. If ψi(O) ∩
ψj(O) 6= ∅, i 6= j, then O has a non-empty interior, so it contains some
cylinder set. It follows that T q(O) = E for a finite q, so G = E and by
Theorem 2.3, Ψ cannot satisfy the S.O.S.C. This shows that O satisfies
the O.S.C. and it also satisfies the R.O.S.C. Since O is the largest open
set contained in E, it has to coincide with V . If x ∈ SΨ(∂E) − ∂E then
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x ∈ ψi(∂E)− ∂E = ∂(Ei) ∩ O for some i ∈M . Therefore

x ∈ adh(X − Ei) ∩ O =
((⋃

j 6=i
Ej

)
∪ adh(X − E)

)
∩ O =

(⋃

j 6=i
Ej

)
∩ O,

which proves that x ∈ O ∩ O, and the hypotheses of Theorem 2.7 hold.

3. Dimension of the overlapping set. Given F ⊆ E, for every k ∈ N
consider the set Fk = {i ∈Mk : Ei∩F 6= ∅} of codes and denote by 〈F 〉k the
self-similar set generated by the system {ψi : i ∈ Fk} of similitudes. It turns
out that the sequence of self-similar sets 〈F 〉k gives a useful information
about the dimension of the set F under certain hypotheses. This is the
method used in this section to obtain estimates for the dimension of the
overlapping set. We first prove the following lemma.

Lemma 3.1. Let F be a T-invariant subset of E. Then

(7) F ⊆
⋂

k∈N
〈F 〉k.

If F is closed but not necessarily T-invariant , then

F ⊇
⋂

k∈N
〈F 〉k.

P r o o f. Assume that F is T -invariant, and let x ∈ F and k ∈ N. Then,
for any natural number q and any i ∈ π−1(x), π(σqk(i)) ∈ T qk(x) ⊆ F , so
Ej(k) ∩ F 6= ∅ for j = σqk(i). Therefore x ∈ 〈F 〉k, which proves (7).

Assume now that F is closed. Let δk = max{|Ei| : i ∈ Fk} and let

[F ]δk = {x ∈ E : d(F, x) ≤ δk}.
Then

〈F 〉k ⊆
⋃

i∈Fk
Ei ⊆ [F ]δk .

Since δk tends to zero as k tends to infinity, we see that
⋂

k∈N
〈F 〉k ⊆

⋂

k∈N
[F ]δk = F.

Falconer [3] defines a subself-similar set as a compact set F ⊆ E such
that F ⊆ SΨ(F ). It may be easily seen that F ⊆ E is subself-similar if and
only if F is closed and T -invariant (see [3] for a proof). Using the properties
of subself-similar sets obtained in the quoted reference, we prove

Lemma 3.2. Assume that X = Rn.

(i) If F is a T -invariant subset of E, then

dimBF ≤ inf{dim〈F 〉k : k ∈ N},
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where dimBY stands for the upper box dimension of Y ⊆ Rn (see [2, 9] for
a definition).

(ii) Assume that Ψ satisfies the O.S.C. If F is a closed T-invariant set ,
then

dimF = dimBF = lim
k→∞

dim〈F 〉k.
The upper box dimension is not less than either the Hausdorff, the pack-

ing and the lower box dimensions (see [17, 2, 9] for definitions). Hence, if (i)
holds, we may replace dimB(·) in (i) with any of the above mentioned di-
mensions and the inequality still holds. The Hausdorff dimension is a lower
bound for the lower box, upper box and packing dimensions [17, 2, 9]. There-
fore, if (ii) holds, all these dimensions coincide.

Proof of Lemma 3.2. It is well known [2, 9] that the upper box and
the Hausdorff dimensions of a self-similar set coincide. Hence dimB〈F 〉k =
dim〈F 〉k, and (i) is then a trivial consequence of (7).

To prove (ii) we use the fact that, since F is a subself-similar set, we
have (see [3])

dimF = sup
{
t > 0 :

∑

k∈N

∑

i∈Fk
rti =∞

}
.

Assume that t < lim supk dim〈F 〉k. Then t < dim〈F 〉k for infinitely many
values of k, and for such k’s we know that

∑
i∈Fk r

t
i > 1. Therefore dimF ≥ t,

and so dimF ≥ lim supk dim〈F 〉k.

We may now prove the main result of this section.

Theorem 3.3. Assume that X = Rn and that Ψ satisfies the strong open
set condition for the open set O ⊆ Rn. Then

dimBO ≤ dim adh(O(T (O))) = lim
k→∞

dim〈adh(O(T (O)))〉k(8)

≤ dimE ∩ ∂O = lim
k→∞

〈E ∩ ∂O〉k < s.

P r o o f. For Y ⊆ E, we have Y ⊆ SΨ(T (Y )), which proves that dimB(O)
≤ dimB(T (O)) by the invariance of dimB under similitudes. Since T (O) ⊆
adh(O(T (O))), the first inequality in (8) follows. The next equality follows
from Lemmas 2.1(iv) and 3.2(ii). Lemma 2.1(iii) gives the next inequality.
The subsequent equality in (8) is a consequence of Lemmas 2.1(i) and 3.2(ii).

Let x ∈ O ∩ E, and i ∈ π−1(x). Then Ei(k) ⊆ O ∩ E for k large
enough, so Ei(k) ∩ ∂O = ∅. Let Fk = {i ∈ Mk : Ei ∩ ∂O 6= ∅}. Then
Mk − Fk 6= ∅, and therefore

∑
i∈Fk r

s
i <

∑
i∈Mk rsi = 1, which shows that

inf{dim〈E ∩ ∂O〉k : k ∈ N} < s, and Lemmas 2.1(i) and 3.2(i) yield the last
inequality in (8).
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Notice that the string (8) remains true for any open set O ⊆ E satisfying
the R.O.S.C. and also for every open setO ⊆ Rn satisfying the O.S.C. except
for the last inequality.
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