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A partition theorem for α-large sets

by

Teresa B i g o r a j s k a and Henryk K o t l a r s k i (Siedlce)

Abstract. Working with Hardy hierarchy and the notion of largeness determined by
it, we define the notion of a partition of a finite set of natural numbers A = ∪i<mAi
being α-large and show that for ordinals α, β < ε0 satisfying suitable assumptions, if A is
(ωβ · α)-large and is partitioned as above and the partition itself is not α-large, then at
least one Ai is ωβ-large.

The goal of this paper is to work out a combinatorial result which gener-
alizes one of the results of Ketonen–Solovay [5]. Working below the ordinal
ε0 we define the notion of a partition A = ∪i<mAi (where A ⊆ ω) being
α-large and show that (under suitable assumptions on α and β), if A is
(ωβ ·α)-large and the partition itself is not α-large then there exists an ωβ-
large homogeneous set. Of course, our paper heavily depends on the work of
Ketonen–Solovay [5]. Indeed, from a point of view we generalize one of their
results ([5], Theorem 4.7) from ω2 to ε0. We would like to point out that
when working with the so-called Hardy hierarchy we are highly influenced
by the work of Z. Ratajczyk (see [9], [6], [7] and his final [10]). It should be
noticed that the idea of Hardy hierarchy was developed by several schools
(see, e.g., [3] and [2]).

Let h be a finite increasing function (in the usual sense of the word,
that is, ∀x, y ∈ Dom(h) [x < y ⇒ f(x) < f(y)]). Assume moreover that
∀x x < h(x). For every α < ε0 we define a function hα, by induction on α.
We put h0(x) = x and hα+1(x) = hα(h(x)).

Before defining the limit step we need to define, for each limit λ < ε0, a
sequence {λ}(n) of ordinals convergent to λ from below. We put {ω}(n) = n,
and, more generally, {ωα+1}(n) = ωα · n. For limit γ we put {ωγ}(n) =
ω{γ}(n). Finally,
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{ωα0 ·m0 + . . .+ ωαs ·ms}(n) = ωα0 ·m0 + . . .+ωαs · (ms − 1) + {ωαs}(n),

where λ = ωα0 ·m0 + . . . + ωαs ·ms is the Cantor normal form expansion
of λ, i.e., α0 > . . . > αs. It is easy to see that these conditions determine
exactly one sequence {{λ}(n) : n}, for each λ < ε0. Observe also that
Ketonen and Solovay [5] use a slightly different notion of {λ}(n). We shall
call the sequence {λ}(n) the fundamental sequence for λ. It is possible to
extend fundamental sequences to larger ordinals (cf. e.g. [8]). For example
let ω0 = ω and ωn+1 = ωωn . Then {ε0}(n) = ωn is a fundamental sequence
for ε0.

Now we are ready to define hλ for λ limit. We simply put hλ(x) =
h{λ}(x)(x). The sequence hα : α < ε0 is called the Hardy hierarchy based
on h.

This notion allows us to define a set A of natural numbers to be α-large.
Namely, A is α-large iff (hA)α(a) is defined, where hA denotes the successor
in the sense of A (i.e., the function with domain A\{maxA} which associates
with every b in its domain the next element of A) and a = minA. We shall
write just h if the meaning of A is clear from the context. One can restate
this definition of largeness in the following manner. A set A is 0-large iff it
is nonempty. A is (α + 1)-large iff A \ {minA} is α-large. A is λ-large, λ
limit, iff it is {λ}(minA)-large. Observe that Ketonen and Solovay [5] use a
slightly different notion of largeness.

Let A be a finite subset of ω. We say that the partition A = ∪0≤i≤eBi
of A is α-large if the set E = {minB0, . . . ,minBe} is α-large. A set or
partition which is not α-large will be called α-small .

For ordinals α, β, γ < ε0 we write α → (β)1
γ if for every α-large set A

with minA > 0 and every partition A = ∪0≤i≤eBi of A which is γ-small,
there exists i ≤ e such that Bi is β-large. We keep the superscript 1 in the
above notation just to follow the usual notation in Ramsey theory (cf. [4]).

For every α < ε0 let LM(α) denote the greatest (i.e., leftmost) exponent
in the Cantor normal form expansion of α. By %(α) we mean the smallest
(i.e., rightmost) exponent of α. We write β � α if either α = 0 or β = 0 or
all the exponents in the Cantor normal form of β are ≥ all the exponents
in the normal form of α, i.e., %(β) ≥ LM(α). Observe that β � α does not
imply β ≥ α, indeed, 0� α for each α and ω4 � ω4 · 3. We should remark
that if the relation β � α holds then the Cantor normal form of β + α is
just the concatenation of the Cantor normal forms of β and α.

The main result of this paper is as follows (we needed it as the main
combinatorial lemma in [1]).

Theorem 1. If α, β < ε0, α ≥ 1 and β � LM(α) then ωβ · α→ (ωβ)1
α.

We shall need several other notions. We extend the notion of a fundamen-
tal sequence to nonlimit ordinals by putting {0}(n) = 0 and {α+1}(n) = α.
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For β, α < ε0 we write β →n α iff there exists a finite sequence α0, . . . , αk
of ordinals such that α0 = β, αk = α and for everym < k there exists jm ≤ n
such that αk+1 = {αk}(jm). We write β ⇒n α if there exists a sequence
as above, but with each jm = n. Observe that both relations →n, ⇒n are
transitive and imply β ≥ α.

Lemma 2. (i) For every α, b, α⇒b 0.
(ii) If β � α and α⇒n γ then β + α⇒n β + γ.

(iii) If k < l and n > 0 then ωα · l⇒n ω
α · k.

(iv) If β ⇒n α and n > 0 then ωβ ⇒n ω
α.

(v) α⇒n {α}(j) and {α}(n)⇒n {α}(j) for j ≤ n.
(vi) {α}(n)⇒1 {α}(j) for 0 < j ≤ n.

(vii) If n ≤ b and α⇒n β then α⇒b β.
(viii) β ⇒n α iff β →n α.

(ix) If α < β then there exists b such that β ⇒b α.

P r o o f. See Ketonen–Solovay [5]. As pointed out above, they work with
slightly different fundamental sequences, but their proofs work in our case as
well. In fact, (i)–(viii) are not very difficult to prove (in the order as stated);
the proof of the last claim (by induction on β) uses (vii).

Lemma 3. Let λ be a limit ordinal smaller than ε0. Then if β � LM(λ)
then for every n ∈ ω, {ωβ · λ}(n) = ωβ · {λ}(n).

P r o o f. Let λ be limit and let % be the smallest exponent in the Cantor
normal form expansion of λ. Then λ = δ + ω% for some δ � ω%. Let β �
LM(λ) and n ∈ ω. We have

{ωβ · λ}(n) = {ωβ(δ + ω%)}(n) = {ωβ · δ + ωβ+%}(n) = ωβ · δ + {ωβ+%}(n).

The last equality holds because ωβ · δ � ωβ+%. Obviously β � %, hence if
% = α+ 1 for some α then

ωβ · δ + {ωβ+%}(n) = ωβ · δ + {ωβ+α+1}(n) = ωβ · δ + ωβ+α · n
= ωβ · (δ + ωα · n) = ωβ · (δ + {ωα+1}(n))

= ωβ · {δ + ω%}(n) = ωβ · {λ}(n).

Let % be limit. By the assumption β � % we get

ωβ · δ + {ωβ+%}(n) = ωβ · δ + ω{β+%}(n) = ωβ · δ + ωβ+{%}(n)

= ωβ · (δ + ω{%}(n)) = ωβ · (δ + {ω%}(n))

= ωβ · {λ}(n).
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Lemma 4. Let h be a function as above. Then for every α < ε0:

(i) hα is increasing.
(ii) For every β, b if α ⇒b β then if hα(b) exists then hβ(b) exists and

hα(b) ≥ hβ(b).

P r o o f. By simultaneous induction on α, left to the reader.

Below if we write A = {a0, . . . , acardA−1} we assume that this enumera-
tion is the natural one, i.e., in increasing order.

Lemma 5. (i) For every α if A,B are finite sets of the same cardinality
and such that for every i < cardA, bi ≤ ai then for every i < cardA if
(hA)α(ai) exists then (hB)α(bi) exists and (hA)α(ai) ≥ (hB)α(bi).

(ii) If A,B are finite sets, A is α-large, cardA = cardB and for every
i < cardA, bi ≤ ai then B is α-large.

(iii) If A ⊆ B and A is α-large then B is α-large.

P r o o f. The first part is immediate by induction on α, the second is a
direct consequence of the first one. The third part follows from the observa-
tion that if A ⊆ B then B has an initial segment of cardinality cardA. But
obviously, if a set has an α-large initial segment then it is α-large itself, so
the second part may be applied.

The following is a minor variant of Lemma 5 in which we speak of sets
of different cardinalities. We write hα(x)↓ rather than “hα(x) exists”.

Lemma 6. For every α and every D,E, if D ⊆ E, x ∈ D and (hD)α(x)↓
then (hE)α(x)↓ and (hE)α(x) ≤ (hD)α(x).

P r o o f (by induction on α). If α = 0 the conclusion is obvious. As-
sume the conclusion for α; we derive it for α + 1. So let D, E satisfy the
assumption. Let x ∈ D be such that (hD)α+1(x) exists. Then (hD)α+1(x) =
(hD)α((hD)(x)). Let y = (hD)(x). We apply the inductive assumption to
y. Thus we infer (hE)α(y)↓ and (hE)α(y) ≤ (hD)α(y). But (hE)(x) ≤
(hD)(x) = y, hence (hE)α+1(x) = (hE)α((hE)(x)) ≤ (hE)α((hD)(x)) ≤
(hD)α((hD)(x)) = (hD)α+1(x) because (hE)α is increasing by Lemma 4.
We leave the limit step to the reader.

Lemma 7. Let h be as above. Then for every α and every β � α, hβ+α =
hβ ◦ hα.

P r o o f. By induction on α.

Let us restate this fact in the following manner.

Lemma 8. Let A be a finite set and let β � α. Then A is (β+α)-large iff
there exists u ∈ A such that {x ∈ A : x ≤ u} is α-large and {x ∈ A : u ≤ x}
is β-large.
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We shall need one more idea (once again, known from Ketonen–Solovay
[5]). For every α < ε0 we define the norm of α, ‖α‖, in the following manner.
We let ‖0‖ = 0. If α > 0 we write α = ωα0 · a0 + . . . + ωαr · ar in the
Cantor normal form and let ‖α‖ =

∑r
i=0 ai · (1 + ‖αi‖). The following fact

strengthens Lemma 2(ix) so that b may be chosen to depend only on α.

Lemma 9. (i) For every α < ε0 if a ≥ ‖α‖ then for every β > α we have
β ⇒a α and hence {β}(a) ≥ α.

(ii) For every α and every β, if %(β) > α and a = ‖α‖ then {β}(a)� ωα

and {β}(a) + ωα < β.

P r o o f. For (i) see Ketonen–Solovay [5]. We prove (ii). We write β =
δ + ωβ

′
where δ � ωβ

′
. By the assumption, β′ > α. If β′ = β′′ + 1 then

{β}(a) = δ + ωβ
′′ · a with β′′ ≥ α, so the first conclusion is immediate. The

second one follows from the fact that in the decisive step the exponent β′

was changed to the smaller one, i.e. β′′. If β′ is limit then {δ + ωβ
′}(a) =

δ + ω{β
′}(a). By (i), {β′}(a) ≥ α, so the first conclusion holds. The second

does as well because in the decisive step the exponent β′ was lowered to
{β′}(a).

We shall need an additional lemma.

Lemma 10. (i) ∀γ > 0 ∀b > 0 γ ⇒b 1.
(ii) ∀α� ω ∀u > b > 1 {α}(u)⇒b {α}(b) + 1.

(iii) ∀α� ω ∀δ � ωα ∀u > b > 1 δ + ω{α}(u) ⇒b δ + ω{α}(b) · b.
(iv) If a set D is (δ + ω{α}(u))-large and b = minD satisfies u > b > 1

then D is (δ + ω{α}(b) · b)-large.

P r o o f. (i) is immediate by induction on γ. (ii) is proved by induction
on α, the cases α = ω and α→ α+ω being immediate, so we show only the
step α � ω2. Write α = δ + ωτ , where δ � ωτ . Thus, τ > 1. If τ = % + 1
then

{α}(u) = {δ + ω%+1}(u) = δ + ω% · u = δ + ω% · b+ ω% · (u− b).
We use (i) to infer {α}(u)⇒b {α}(b)+1 as required. So let τ be limit. Then
{τ}(u)⇒b {τ}(b) + 1 by the inductive assumption, so by Lemma 2(iii),

{α}(u) = {δ + ωτ}(u) = δ + ω{τ}(u) ⇒b δ + ω{τ}(b)+1.

Moreover, ω{τ}(b)+1 ⇒b ω
{τ}(b) · b = ω{τ}(b) + ω{τ}(b) · (b− 1) and the same

argument as above works.
(iii) follows from (ii) and Lemma 2(iii).
In order to prove part (iv), let D,u, b satisfy the assumption. That is,

we have hδ+{ωα}(u)(minD)↓. By (iii) and Lemma 4, hδ+{ωα}(b)·b(minD)↓ as
required.

The main lemma needed for the proof of Theorem 1 is as follows.
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Lemma 11. For every α, every β � ωα and every A,B, if minA > 0
and A is (β + ωα)-large, B ⊆ A and B is ωα-small then A \B is β-large.

P r o o f. Let T (β, α) be the following property:

for every A,B, if A is (β + ωα)-large and B ⊆ A is ωα-small then A \B
is β-large

and we shall prove the statement ∀α ∀β � ωα T (β, α) by induction on α.

Case α = 0. Then A is (β+ω0)-large, i.e. (β+1)-large, and B is 1-small.
If β = 0 then A is 1-large, i.e., has at least two elements, but B being 1-small
has at most one element, so A \ B is nonempty, so 0-large. If β > 0 then
A is (β + 1)-large so A \ {a0} is β-large. Also, B being 1-small has at most
one element. It follows that A \ {a0} and A \ B satisfy the assumption of
Lemma 5 (these sets have the same cardinality and the ith element of A\B
is ≤ the ith element of A \ {a0}), hence A \B is β-large.

Case α = 1. Exactly as above, the case β = 0 is obvious. For other cases
we proceed by induction on β.

Let β = ω. So let A be (ω + ω)-large and let B ⊆ A be ω-small. Let
u = (hA)ω(a0).

Case 1 : b0 > u. Then {x ∈ A : x ≤ u} ⊆ A \B. The first of these sets is
ω-large, so the second is as well by Lemma 5.

Case 2 : b0 = u. Then there exists z ∈ A \ B with z > u (otherwise
{x ∈ A : u ≤ x} ⊆ B, so B is ω-large by Lemma 5). It follows that
{x ∈ A : x < u} ∪ {z} ⊆ A \B, so this set is ω-large, again by Lemma 5.

Case 3 : a0 < b0 < u. In order to show that A \ B is ω-large it suffices
to show that it has more than a0 elements, indeed, min(A \ B) = a0. But
A has more than a0 + u elements and B, being ω-small, has at most b0 < u
elements.

Case 4 : a0 = b0. Then B has at most a0 elements, so A \ B has more
than u elements. If min(A \ B) ≤ u then we are done. Otherwise {x ∈ A :
x ≤ u} ⊆ B, so this set is ω-large, contrary to assumption.

Assume T (β, 1); we prove T (β+ω, 1). So let A be (β+ω+ω)-large and
let B ⊆ A be ω-small. Let u = (hA)ω(a0) and w = (hA)ω(u).

Case 1 : b0 > u. Let A′ = A \ {x ∈ A : x < u}. Thus B ⊆ A′. By T (β, 1),
A′ \B is β-large, hence {x ∈ A : x < u} ∪ (A′ \B) = A \B is (β + ω)-large
by Lemma 8.

Case 2 : b0 = u. Let A′ be {x ∈ A : u ≤ x}. By T (β, 1), the set C = A′\B
is β-large. Let c0 be, as usual, the smallest element of C. Then A\B = {x ∈
A : x < u}∪C = ({x ∈ A : x < u}∪ {c0})∪C is (β+ω)-large by Lemma 8.

Case 3 : a0 < b0 < u. Obviously, B has at most b0 elements (otherwise it
is ω-large), so B has less than u elements. Let k = card({x ∈ A : w < x}).
Thus, A \ B has at least a0 + k + 1 elements. Let c0 = a0, c1, . . . , ca0 be
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the list of the first a0 + 1 elements of A \ B in increasing order. We claim
that ca0 ≤ w. For otherwise there are at least k elements of A \ B which
are > ca0 > w. But this is impossible, as there are only k− 1 such elements
of A. Let E = {e0, . . . , ek} be the set of the k + 1 consecutive elements of
A \B, beginning with e0 = ca0 . Then E is β-large, indeed, its cardinality is
k+1 and its elements are ≤ the corresponding elements of {x ∈ A : w ≤ x}.
It follows that A \ B contains {c0, . . . , ca0} ∪ E, so it is (β + ω)-large by
Lemma 8.

Case 4 : b0 = a0. Then B, being ω-small, has at most a0 elements, hence
A \ B has more than u + k elements. Let E = {e0, . . . , eu+k} be the set of
the first u+ k+ 1 of them. Then E is (β+ω)-large because its elements are
≤ the corresponding elements of {x ∈ A : u ≤ x}.

Assume ∀β′ < β T (β′, 1) and %(β) > 1; we check T (β, 1). So let A
be (β + ω)-large. Let u = (hA)ω(a0) as usual, so A = {x ∈ A : x ≤
u} ∪ {x ∈ A : u ≤ x}. The first of these sets is ω-large and the second
one is β-large, i.e., {β}(u)-large. As %(β) > 1 we have (i) {β}(u) � ω
and (ii) {β}(u) + ω < β. Let B be an ω-small subset of A. The set A is
({β}(u) +ω)-large and by T ({β}(u), 1), A \B is {β}(u)-large. Observe that
min(A \ B) = c0 ≤ u, for otherwise {x ∈ A : x ≤ u} ⊆ B, so B is ω-large
contrary to assumption. If c0 = u then obviously A\B is β-large, so assume
that c0 < u. By Lemma 2(vi), {β}(u) ⇒1 {β}(c0), so {β}(u) ⇒c0 {β}(c0)
by (vii) of the same lemma. By Lemma 4, (hA\B){β}(c0)(c0) exists, so A \B
is β-large.

We show the nonlimit step in the proof of Lemma 11, i.e.,

∀α [(∀β � ωα T (β, α))⇒ (∀β � ωα+1 T (β, α+ 1))].

Once again, the case β = 0 is obvious. Indeed, if A is ωα+1-large and B is
its ωα+1-small subset, then A \B is nonempty, so 0-large.

Case β = ωα+1. Let A be (ωα+1 + ωα+1)-large. Let u = (hA)ωα+1(a0).
Then A = {x ∈ A : x ≤ u} ∪ {x ∈ A : u ≤ x} and both of these sets are
ωα+1-large. Let B be an ωα+1-small subset of A.

Case 1 : b0 > u. Then {x ∈ A : x ≤ u} is contained in A \ B, so this set
is ωα+1-large.

Case 2 : b0 = u. Then there exists z ∈ A \ B with z > u (otherwise
{x ∈ A : u ≤ x} ⊆ B and hence B is ωα+1-large, which contradicts the
assumption), so {x ∈ A : x < u} ∪ {z} is contained in A \ B, so this set is
ωα+1-large.

Case 3 : a0 < b0 < u. We let c0 = b0 = minB and ci+1 = (hB)ωα(ci).
This induction breaks after r steps, where r ≤ b0, otherwise B is ωα+1-large.
That is, the last ci is cr−1. We let A0 = A and Ai+1 = Ai\{x ∈ B : ci ≤ x <
ci+1} and Ar = Ar−1\{x ∈ B : cr−1 ≤ x}. Observe that A0 is (ωα ·(a0+u))-
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large, and (by the inductive assumption), Ai is (ωα · (a0 + u− i))-large. In
particular, Ar is (ωα · a0)-large, i.e., ωα+1-large, indeed a0 = min(A \B).

Case 4 : b0 = a0. Arguing as in case 3 we see that A \B is (ωα · u)-large.
Thus if min(A \ B) = u this set is ωα+1-large. If d = min(A \ B) < u then
{ωα+1}(u)⇒1 {ωα+1}(d) by Lemma 2(vi), hence ωα ·u⇒d ω

α ·d by (vii) of
the same lemma. By Lemma 4, (hA\B)ωα·d(d) exists (because (hA\B)ωα·u(d)
exists).

We prove the implication T (β, α+1)⇒ T (β+ωα+1, α+1) for β � ωα+1.
So let A be (β + ωα+1 · 2)-large and let B be its ωα+1-small subset. Let
u = (hA)ωα+1(a0) and w = (hA)ωα+1(u).

Case 1 : b0 ≥ u. Let A′ = {x ∈ A : x ≥ u}. Then B ⊆ A′. By T (β, α+1),
A′ \B is β-large, hence A \B = ({x ∈ A : x < u} ∪ {c0}) ∪ (A′ \B), where
c0 = min(A′ \B), is (β + ωα+1)-large.

Case 2 : a0 < b0 < u. We put d0 = b0 = minB and di+1 = (hB)ωα(di).
Let r be the greatest i such that di exists. We must have r < b0 for otherwise
B would be ωα+1-large. Let Di = {x ∈ B : di ≤ x < di+1} and Dr = {x ∈
B : dr ≤ x}. Observe that none of these sets is ωα-large. On the other hand,
A is (β+ωα(u+a0))-large. It follows that A\D0 is (β+ωα ·(u+a0−1))-large,
etc., A\B = A\∪i≤rDi is (β+ωα · (u+a0− r))-large. But r+ 1 ≤ u, hence
A \ B is (β + ωα · a0)-large, so it is (β + ωα+1)-large because its minimum
is a0.

Case 3 : b0 = a0. Exactly as above, by subtracting B from A in parts
which are not ωα-large we derive that A\B is (β+ωα ·u)-large. Indeed, there
are only a0 parts as above because minB = a0 and this set is ωα+1-small.
If min(A \ B) = u then we are done. Otherwise e = min(A \ B) < u. But
ωα · u ⇒1 ω

α · e by Lemma 2(vi), and hence ωα · u ⇒e ω
α · e by (vii) of

the same lemma. By Lemma 4, (hA\B)ωα·e(e) exists because (hA\B)ωα·u(e)
exists.

Thus in order to prove the nonlimit step α+ 1 in the proof of Lemma 11
it remains to check the case %(β) > α + 1. So let %(β) > α + 1 and assume
that for all β′ < β, T (β′, α + 1) holds. Let A be (β + ωα+1)-large and let
B be its ωα+1-small subset. As usual, we let u = (hA)ωα+1(a0), so that
A = {x ∈ A : x ≤ u} ∪ {x ∈ A : u ≤ x}; the first of these sets is ωα+1-
large, the second being β-large. It follows that A is ({β}(u) + ωα+1)-large.
Observe that u = (hA)ωα+1(a0) ≥ ‖α + 1‖. By Lemma 9, {β}(u) � ωα+1

and {β}(u)+ωα+1 < β. By T ({β}(u), α+1), A\B is {β}(u)-large. Observe
that min(A\B) = c ≤ u, otherwise {x ∈ A : x ≤ u} ⊆ B, so B is ωα+1-large,
contrary to assumption. If c = u then we are done, A\B is {β}(min(A\B))-
large. So assume that c < u. Then (hA\B){β}(u)(c)↓. Also we have {β}(u)⇒1

{β}(c) by Lemma 2(vi), hence, by Lemma 2(vii), {β}(u) ⇒c {β}(c). By
Lemma 4, (hA\B){β}(c)(c)↓ and A \B is β-large.
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Case α limit. So, by assumption we have ∀α′ < α ∀β � ωα
′
T (β, α′);

we want to prove ∀β � ωα T (β, α). As usual, the case β = 0 is obvious.
Let β = ωα. Let A be (ωα + ωα)-large and let B be its ωα-small subset.

As usual, let u = (hA)ωα(a0).
Case 1 : b0 > u. Then {x ∈ A : x ≤ u} ⊆ A \B, so this set is ωα-large as

required.
Case 2 : b0 = u. Then there exists z > u with z ∈ A \ B, for otherwise

{x ∈ A : u ≤ x} ⊆ B, so B is ωα-large contrary to assumption. Thus
{x ∈ A : x < u} ∪ {z} ⊆ A \B and A \B is ωα-large.

Case 3 : a0 < b0 < u (the main case). Let D = {x ∈ A : b0 ≤ x}
and let E = {x ∈ A : u ≤ x}. Then E is ωα-large, i.e. it is ω{α}(u)-
large. It follows that D is ω{α}(u)-large, indeed, it contains E. By Lemma
10(iv), D is ({ωα}(b0) · b0)-large, in particular, it is ({ωα}(b0) + {ωα}(b0))-
large (reason: a0 < b0, hence b0 > 1). We apply the inductive assumption
T ({ωα}(b0), {α}(b0)) and infer that D \ B is {ωα}(b0)-large. By Lemma
5(iii), A \ B is {ωα}(b0)-large. We also have {ωα}(b0) ⇒a0 {ωα}(a0) by
Lemma 2(vii), hence A \B is {ωα}(a0)-large, i.e., ωα-large.

Case 4 : b0 = a0. In this case B is {ωα}(a0)-small. But A is ({ωα}(u) +
{ωα}(a0))-large. By the inductive assumption T ({ωα}(u), {α}(a0)), A \ B
is {ωα}(u)-large. Let s = min(A \ B). If s = u then we are done. If s < u
then {ωα}(u)⇒s {ωα}(s), hence A \B is {ωα}(s)-large, i.e., ωα-large. The
case s > u cannot happen, for if it does then {x ∈ A : x ≤ u} ⊆ B, so B is
ωα-large, contrary to assumption.

Assume T (β, α), where β � ωα; we prove T (β+ωα, α). So let a set A be
(β+ωα +ωα)-large and let B be its ωα-small subset. Let u,w be as before,
i.e., u = (hA)ωα(a0) and w = (hA)ωα(u).

Case 1 : b0 ≥ u. Then B ⊆ {x ∈ A : u ≤ x} and by the inductive
assumption T (β, α), {x ∈ A \B : u ≤ x} is β-large. It follows that A \B =
{x ∈ A : x ≤ u} ∪ {x ∈ A \B : u ≤ x} is (β + ωα)-large.

Case 2 : a0 < b0 < u. Let E = {x ∈ A : u ≤ x} and D = {x ∈ A :
b0 ≤ x}. Then E is (β+ωα)-large, hence it is (β+{ωα}(u))-large. It follows
that D is (β+ {ωα}(u))-large as well. Exactly as above, it follows that D is
(β+{ωα}(b0) ·b0)-large, hence it is (β+{ωα}(b0) ·2)-large. By the inductive
assumption T (β + {ωα}(b0), {α}(b0)), D \ B is (β + {ωα}(b0))-large, i.e.
(β + ωα)-large. Hence A \B is (β + ωα)-large as a superset of D \B.

Case 3 : b0 = a0. Then B is {ωα}(a0)-small. By the inductive assumption
T (β + ωα + {ωα}(a0), {α}(a0)), A \B is (β + ωα)-large.

Finally, let %(β) > α. Let, as usual, A be (β+ωα)-large and let B be its
ωα-small subset. Let also u = (hA)ωα(a0). Clearly u ≥ ‖α + 1‖, hence A is
({β}(u)+ωα)-large. By Lemma 9, {β}(u)� ωα and {β}(u)+ωα < β. By the
inductive assumption T ({β}(u), α),A\B is {β}(u)-large. Let s = min(A\B).
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Exactly as above, s ≤ u for otherwise {x ∈ A : x ≤ u} ⊆ B, so B is ωα-large
contrary to assumption. If s = u then we are done. Otherwise, s < u, hence
{β}(u)⇒s {β}(s), so A \B is {β}(s)-large, i.e. β-large.

It should be noticed that Lemma 11 admits a generalization in which we
speak not only about ordinals of the form ωα. It is as follows.

Theorem 12. For every α and β � α and every A,B, if A is β+α-large,
B ⊆ A and B is α-small , then A \B is β-large.

P r o o f. Let A be (β + α)-large where β � α, and let B be its α-small
subset. Write α = ωαs + . . .+ωα0 , where αs ≥ . . . ≥ α0. Let e = max{i ≤ s :
B is (ωαi + . . .+ ωα0)-large}. Let h denote the successor in the sense of B.
Let B0 = {x ∈ B : x < hωα0 (minB)}, Bi+1 = {x ∈ B : hωαi (minBi) ≤
x < hωαi+1 (hωαi (minBi))} for i < e. We let Be+1 = B \ ∪0≤i≤eBi. Then
B = ∪0≤i≤e+1Bi. Observe that no Bi, i ≤ e+1, is ωαi-large. By Lemma 11,
by induction on i, we infer that A\ (B0∪ . . .∪Bi) is (β+ωαs + . . .+ωαi+1)-
large. It follows that A \B is β-large.

Proof of Theorem 1. By induction on α. The case α = 1 is obvious,
indeed, if a partition is 1-small then there is only one part.

Assume the conclusion holds for α; we derive it for α + 1. Let A be an
(ωβ · (α + 1))-large subset of ω and let A = ∪0≤i≤eBi be an (α + 1)-small
partition of A. Let E = {minB0, . . . ,minBe}, so E is (α + 1)-small. We
may assume that minE = minB0. We put C = A \ B0. If B0 is ωβ-small
then by Lemma 11, C is (ωβ ·α)-large. Consider the partition C = ∪1≤i≤eBi
of C. Let E1 = {minB1, . . . ,minBe}. But the partition of A is (α+1)-small,
hence hα+1(minB0)↑ (where h denotes the successor in the sense of E). It
follows that hα(h(minB0))↑. We have h(minB0) = minE1. Thus the above
partition of C is α-small. We apply the inductive assumption to the set
C and the above-mentioned partition. Summing up, B0 or at least one of
Bi, 1 ≤ i ≤ e, is ωβ-large.

Assume the conclusion for all ordinals smaller than λ, λ limit. Let A be
an (ωβ · λ)-large set, where β � LM(λ). Let a partition A = ∪0≤i≤eBi be
given and λ-small. Exactly as above, let E = {minB0, . . . ,minBe}. Then A
is ({ωβ · λ}(minA))-large. Thus A is (ωβ · {λ}(minA))-large by Lemma 3.
Obviously, E is {λ}(minA)-small and β � LM({λ}(minA)). By the induc-
tive assumption, at least one of Bi, i ≤ e, is ωβ-large.

We show that the result of Theorem 1 is the best possible. Let A be a
finite subset of ω, let β < ε0 and let A = ∪0≤i≤eBi be the partition of A
determined by the following conditions:

(i) Each Bi is of the form A ∩ [u,w] for some u,w ∈ A.
(ii) minB0 = minA and for all i = 0, . . . , e−1, minBi+1 = hωβ (minBi).

(iii) hωβ (minBe)↑.
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Of course, h denotes the successor in the sense of A. Let, as usual, E denote
the set {minBi : i ≤ e}. Let H denote the successor in the sense of E.
Obviously, H(n) = hωβ (n) for n ∈ E \ {maxE}. We show that

(∗) if A is (ωβ · α)-large, where β � LM(α), then Hα(minA) =
hωβ ·α(minA).

We prove (∗) by induction on α, the steps α = 0 and α → α + 1 being
evident. In the limit step one uses Lemma 3.

If A is (ωβ ·(α+1))-small, where β � %(α), then by (∗) we infer immedi-
ately that the partition of A determined by the above mentioned conditions
is (α+ 1)-small. But none of the sets Bi is ωβ-large.
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