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A partition theorem for a-large sets
by

Teresa Bigorajska and Henryk Kotlarski (Siedlce)

Abstract. Working with Hardy hierarchy and the notion of largeness determined by
it, we define the notion of a partition of a finite set of natural numbers A = U;«p A;
being a-large and show that for ordinals «, 8 < g satisfying suitable assumptions, if A is
(wﬁ - a)-large and is partitioned as above and the partition itself is not a-large, then at
least one A; is w® -large.

The goal of this paper is to work out a combinatorial result which gener-
alizes one of the results of Ketonen—Solovay [5]. Working below the ordinal
go we define the notion of a partition A = U;<,, A; (where A C w) being
a-large and show that (under suitable assumptions on « and j3), if A is
(w? - a)-large and the partition itself is not a-large then there exists an w”-
large homogeneous set. Of course, our paper heavily depends on the work of
Ketonen—Solovay [5]. Indeed, from a point of view we generalize one of their
results ([5], Theorem 4.7) from w? to g9. We would like to point out that
when working with the so-called Hardy hierarchy we are highly influenced
by the work of Z. Ratajczyk (see [9], [6], [7] and his final [10]). It should be
noticed that the idea of Hardy hierarchy was developed by several schools
(see, e.g., [3] and [2]).

Let h be a finite increasing function (in the usual sense of the word,
that is, Vz,y € Dom(h) [z < y = f(z) < f(y)]). Assume moreover that
Vz x < h(z). For every a < gy we define a function h,, by induction on «a.
We put ho(z) = = and ho+1(x) = ho(h(x)).

Before defining the limit step we need to define, for each limit A < g¢, a
sequence {A}(n) of ordinals convergent to A from below. We put {w}(n) = n,
and, more generally, {w**1}(n) = w® - n. For limit v we put {w7}(n) =
w{7}(") Finally,
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{w* -mo+...+w* -ms}(n) =w*® -mo+... +w* - (ms — 1) + {w* }(n),

where A = w® - mg + ... + w* - my is the Cantor normal form expansion
of A\, ie.,, ag > ... > ;. It is easy to see that these conditions determine
exactly one sequence {{A}(n) : n}, for each A < go. Observe also that
Ketonen and Solovay [5] use a slightly different notion of {A\}(n). We shall
call the sequence {A}(n) the fundamental sequence for \. It is possible to
extend fundamental sequences to larger ordinals (cf. e.g. [8]). For example
let wp = w and wy, 11 = w*". Then {ep}(n) = w, is a fundamental sequence
for gg.

Now we are ready to define hy for A limit. We simply put hy(z) =
hixy()(z). The sequence hy @ a < €q is called the Hardy hierarchy based
on h.

This notion allows us to define a set A of natural numbers to be a-large.
Namely, A is a-large iff (h*),(a) is defined, where h** denotes the successor
in the sense of A (i.e., the function with domain A\{max A} which associates
with every b in its domain the next element of A) and a = min A. We shall
write just h if the meaning of A is clear from the context. One can restate
this definition of largeness in the following manner. A set A is 0-large iff it
is nonempty. A is (a + 1)-large iff A\ {min A} is a-large. A is A-large, A
limit, iff it is {\}(min A)-large. Observe that Ketonen and Solovay [5] use a
slightly different notion of largeness.

Let A be a finite subset of w. We say that the partition A = Up<i<.B;
of A is a-large if the set F = {min By,...,min B.} is a-large. A set or
partition which is not a-large will be called a-small.

For ordinals «, 3,7 < 9 we write a — (ﬁ)}y if for every a-large set A
with min A > 0 and every partition A = Up<;<.B; of A which is vy-small,
there exists ¢ < e such that B; is g-large. We keep the superscript 1 in the
above notation just to follow the usual notation in Ramsey theory (cf. [4]).

For every av < g¢ let LM () denote the greatest (i.e., leftmost) exponent
in the Cantor normal form expansion of «. By o(«) we mean the smallest
(i.e., rightmost) exponent of a. We write > « if either « =0 or § =0 or
all the exponents in the Cantor normal form of 8 are > all the exponents
in the normal form of «, i.e., o(3) > LM(«a). Observe that 3 > « does not
imply 3 > «, indeed, 0 > « for each a and w* > w* - 3. We should remark
that if the relation 8 > « holds then the Cantor normal form of § + « is
just the concatenation of the Cantor normal forms of 5 and «.

The main result of this paper is as follows (we needed it as the main
combinatorial lemma in [1]).

THEOREM 1. If a, B < €9, @ > 1 and B> LM(a) then w” - a — (W%)L.

We shall need several other notions. We extend the notion of a fundamen-
tal sequence to nonlimit ordinals by putting {0}(n) = 0 and {a+1}(n) = a.
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For 8, a < g¢ we write 8 —,, « iff there exists a finite sequence ay, . .., ap
of ordinals such that ag = 3, @, = a and for every m < k there exists j,,, < n
such that a1 = {ar}(Gm). We write 5 =, « if there exists a sequence
as above, but with each j,, = n. Observe that both relations —,,, =, are
transitive and imply 8 > a.

LEMMA 2. (i) For every o, b, a = 0.
(ii) If B> «a and o =, v then B+ a =, 0+ 7.
(iii) If k <l and n > 0 then w® -l =, w* - k.

(iv) If B = a and n > 0 then w® =, w*.
(v) @ = {a}(j) and {a}(n) =, {a}(j) for j <n.
(vi) {a}(n) =1 {a}(j) for 0 <j <n.

(vil) If n < b and o =, 8 then o =, .

(viii) B =, a iff B —p a.

(ix) If a < [ then there exists b such that 3 = a.

Proof. See Ketonen—Solovay [5]. As pointed out above, they work with
slightly different fundamental sequences, but their proofs work in our case as
well. In fact, (i)—(viii) are not very difficult to prove (in the order as stated);
the proof of the last claim (by induction on /) uses (vii). m

LEMMA 3. Let X be a limit ordinal smaller than £y. Then if 3 > LM(\)
then for every n € w, {w? - A}(n) = w? - {\}(n).

Proof. Let A be limit and let ¢ be the smallest exponent in the Cantor
normal form expansion of A\. Then A = ¢ + w? for some § > w?. Let G >
LM(A) and n € w. We have

{07 A}(n) = (W26 + W)} n) = {5+ WP (n) = w? -5 + (W) (n).

The last equality holds because w? - § > w?t¢. Obviously 3 > o, hence if
o0 = a+ 1 for some « then

WP+ {wPTeY(n) = WP s+ {WPTe T (n) = WP 54+ WPt
=W (F 4w n)=w? (6 + {w*T}(n)
=’ {04+ wel(n) =uw’ - {\}n).
Let o be limit. By the assumption 3 > ¢ we get
w? 5+ {wt(n) = w5+ wibtern) — B .5 4 ,PH{e}(n)
=B (6 + w{g}(n)) — WP (6 + {w?}(n))
= {A}(n). =
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LEMMA 4. Let h be a function as above. Then for every a < €g:

(i) he is increasing.
(ii) For every B,b if a = [ then if ho(b) exists then hg(b) exists and
ha(b) = hs(b).

Proof. By simultaneous induction on «, left to the reader. m

Below if we write A = {ao, ..., dcard A—1} We assume that this enumera-
tion is the natural one, i.e., in increasing order.

LEMMA 5. (i) For every « if A, B are finite sets of the same cardinality
and such that for every i < card A, b; < a; then for every i < card A if
(h)o(a;) exists then (hB)o(b;) exists and (h*)a(a;) > (hB)a(bs).

(ii) If A, B are finite sets, A is a-large, card A = card B and for every
i < card A, b; < a; then B is a-large.

(iii) If A C B and A is a-large then B is a-large.

Proof. The first part is immediate by induction on «, the second is a
direct consequence of the first one. The third part follows from the observa-
tion that if A C B then B has an initial segment of cardinality card A. But
obviously, if a set has an a-large initial segment then it is a-large itself, so
the second part may be applied. =

The following is a minor variant of Lemma 5 in which we speak of sets
of different cardinalities. We write h,(z)] rather than “h,(x) exists”.

LEMMA 6. For every a and every D, E, if D C E, x € D and (h?),(z)]
then (hF)o ()] and (h®)(z) < (hP)o(2).

Proof (by induction on «). If & = 0 the conclusion is obvious. As-
sume the conclusion for «; we derive it for o + 1. So let D, E satisfy the
assumption. Let € D be such that (h?),y1(z) exists. Then (hP)q11(z) =
(hP)o((hP)(x)). Let y = (hP)(x). We apply the inductive assumption to
y. Thus we infer (hF),(y)| and (h¥)a(y) < (RP)a(y). But (RF)(z) <
(hP)(z) =y, hence (hF)ar1(z) = (hF)a((hP)(z)) < (hF)a((hP)(2)) <
(hP)o((RP)(2)) = (hP)qy1(x) because (hF), is increasing by Lemma 4.
We leave the limit step to the reader. m

LEMMA 7. Let h be as above. Then for every a and every 3> «, hgiqa =
hg o) ha .

Proof. By induction on o. =
Let us restate this fact in the following manner.

LEMMA 8. Let A be a finite set and let B > a. Then A is (8+ «)-large iff
there exists u € A such that {z € A :x <u} is a-large and {x € A:u < x}
1s B-large. m
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We shall need one more idea (once again, known from Ketonen—Solovay
[5]). For every a < g¢ we define the norm of , ||c|, in the following manner.
We let |0 = 0. If @ > 0 we write & = w* -ag + ...+ w* - a, in the

T

Cantor normal form and let |af| = >";_;a; - (14 |las||). The following fact
strengthens Lemma 2(ix) so that b may be chosen to depend only on a.

LEMMA 9. (i) For every a < gg if a > ||| then for every > a we have
B =4 a and hence {#}(a) > a.

(ii) For every o and every B3, if o(8) > o and a = ||| then {B}(a) > w®
and {B}(a) + w™ < .

Proof. For (i) see Ketonen—Solovay [5]. We prove (ii). We write 5 =
§ 4+ wP where § > w?'. By the assumption, 5’ > «a. If 3/ = 3” + 1 then
{B}(a) =6 +w’" - a with 87 > a, so the first conclusion is immediate. The
second one follows from the fact that in the decisive step the exponent 3’
was changed to the smaller one, i.e. #”. If 3 is limit then {§ + w” }(a) =
§ +wlPHa) By (i), {#}(a) > «, so the first conclusion holds. The second
does as well because in the decisive step the exponent 3’ was lowered to

{#'}(a). =
We shall need an additional lemma.

LEMMA 10. (i) Vy >0 Vo> 0 v = 1.

(i) Vo> w Yu > b > 1 {a}(u) = {a}(b) + 1.

(iil) Yo > w V6 > w® Yu > b > 1 § + wlet® = 5 4 oled®) . p,

(iv) If a set D is (6 + wl® W) large and b = min D satisfies u > b > 1
then D is (6 + wlet®) . p)-large.

Proof. (i) is immediate by induction on ~. (ii) is proved by induction
on «, the cases @ = w and @ — a + w being immediate, so we show only the
step a > w?. Write o = 6 + w”™, where § > w™. Thus, 7 > 1. If T =p+ 1
then

{at(u) ={0+w?}(u) =0+ w? - u=56+w? -b+w? (u—0>).
We use (i) to infer {a}(u) = {a}(b) +1 as required. So let 7 be limit. Then
{7} u) =p {7}(b) + 1 by the inductive assumption, so by Lemma 2(iii),
{a}(u) = {6 +w}(u) = § + W = § 4 W{THE+T

Moreover, wi{THO)+1 =/, I7H0) . = H{THE) 4 7). (h — 1) and the same
argument as above works.

(iii) follows from (ii) and Lemma 2(iii).

In order to prove part (iv), let D, u,b satisfy the assumption. That is,
we have Ay (o) (min D)|. By (iii) and Lemma 4, hs {yay(p).5(min D) | as
required. m

The main lemma needed for the proof of Theorem 1 is as follows.
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LEMMA 11. For every «, every 3 > w® and every A, B, if min A > 0
and A is (B 4+ w®)-large, B C A and B is w®-small then A\ B is (-large.

Proof. Let T(f3, ) be the following property:

for every A, B, if Ais (8 + w®)-large and B C A is w®-small then A\ B
is B-large

and we shall prove the statement Yo V3 > w® T'(3, «) by induction on «.

CASE a = 0. Then A is (8+w°)-large, i.e. (3+1)-large, and B is 1-small.
If 8 = 0 then A is 1-large, i.e., has at least two elements, but B being 1-small
has at most one element, so A \ B is nonempty, so 0-large. If 5 > 0 then
Ais (B + 1)-large so A\ {ap} is f-large. Also, B being 1-small has at most
one element. It follows that A\ {ag} and A\ B satisfy the assumption of
Lemma 5 (these sets have the same cardinality and the ith element of A\ B
is < the ith element of A\ {ag}), hence A\ B is (-large.

CASE a = 1. Exactly as above, the case 8 = 0 is obvious. For other cases
we proceed by induction on (.

Let f = w. So let A be (w + w)-large and let B C A be w-small. Let
U= (hA)w(a())'

Case 1: by > u. Then {z € A:z <wu} C A\ B. The first of these sets is
w-large, so the second is as well by Lemma 5.

Case 2: by = u. Then there exists z € A\ B with z > u (otherwise
{r € A:u < 2} C B, so B is w-large by Lemma 5). It follows that
{reA:z<u}U{z} C A\ B, so this set is w-large, again by Lemma 5.

Case 3: ag < by < u. In order to show that A\ B is w-large it suffices
to show that it has more than ag elements, indeed, min(A \ B) = ag. But
A has more than ag + u elements and B, being w-small, has at most by < u
elements.

Case 4: ag = bg. Then B has at most ag elements, so A \ B has more
than u elements. If min(A \ B) < u then we are done. Otherwise {z € A :
x <u} C B, so this set is w-large, contrary to assumption.

Assume T'((,1); we prove T'(f +w,1). So let A be (54w + w)-large and
let B C A be w-small. Let u = (h),(ag) and w = (h*), (u).

Case 1: by > u. Let A’ = A\{x € A: 2 <u}. Thus BC A’. By T'(5,1),
A"\ B is (-large, hence {r € A:x <u}U(A'\ B) = A\ B is (8 + w)-large
by Lemma 8.

Case 2:bg =u.Let A’ be{z € A:u<z}.ByT(3,1), theset C = A’\B
is B-large. Let ¢ be, as usual, the smallest element of C'. Then A\ B = {z €
Az <uluC={zre Az <u}U{c})UC is (f+w)-large by Lemma 8.

Case 3: ap < by < u. Obviously, B has at most by elements (otherwise it
is w-large), so B has less than u elements. Let k = card({z € A : w < z}).
Thus, A\ B has at least agp + k + 1 elements. Let ¢y = agp,c1,...,cq, be
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the list of the first ag + 1 elements of A\ B in increasing order. We claim
that ¢4, < w. For otherwise there are at least k elements of A\ B which
are > cq, > w. But this is impossible, as there are only k£ — 1 such elements
of A. Let E = {eq,...,ex} be the set of the k + 1 consecutive elements of
A\ B, beginning with ey = ¢,,. Then F is (-large, indeed, its cardinality is
k+1 and its elements are < the corresponding elements of {z € A: w < z}.
It follows that A\ B contains {cg,...,cq,} U E, so it is (8 + w)-large by
Lemma 8.

Case 4: by = ag. Then B, being w-small, has at most ag elements, hence
A\ B has more than u + k elements. Let E = {ey,...,eu+r} be the set of
the first w4k + 1 of them. Then E is (5 + w)-large because its elements are
< the corresponding elements of {z € A : u < x}.

Assume V3" < g T(4,1) and o(3) > 1; we check T(8,1). So let A
be (B + w)-large. Let u = (h?),(ag) as usual, so A = {z € A : z <
ufU{z € A : u < z}. The first of these sets is w-large and the second
one is f-large, i.e., {8} (u)-large. As o(8) > 1 we have (i) {6} (u) > w
and (ii) {8}(u) + w < B. Let B be an w-small subset of A. The set A is
({6} (u) + w)-large and by T'({8}(u),1), A\ B is {}(u)-large. Observe that
min(A \ B) = ¢y < u, for otherwise {z € A : xz < wu} C B, so B is w-large
contrary to assumption. If ¢y = u then obviously A\ B is (-large, so assume
that ¢ < u. By Lemma 2(vi), {8}(u) =1 {8}(co), so {B}(u) =, {8} (co)
by (vii) of the same lemma. By Lemma 4, (h\B) 4y 0 (co) exists, so A\ B
is B-large.

We show the nonlimit step in the proof of Lemma 11, i.e.,
Vo [(V8 > w* T(B,a)) = (V6 > v T(8,a + 1))].

Once again, the case 3 = 0 is obvious. Indeed, if A is w**!-large and B is
its wtl-small subset, then A\ B is nonempty, so 0-large.

CASE 8 = w®T! Let A be (Wt 4+ w®t)-large. Let u = (h?) a+1(ag).
Then A={z € A:x <u}lU{r € A:u <z} and both of these sets are
w1l large. Let B be an w*t!-small subset of A.

Case 1: bg > u. Then {z € A: x < u} is contained in A\ B, so this set
is w*t ! large.

Case 2: by = u. Then there exists z € A\ B with z > u (otherwise
{r € A:u < 2} C B and hence B is w®"!large, which contradicts the
assumption), so {x € A : x < u} U {z} is contained in A\ B, so this set is
w1 large.

Case 3: ag < by < u. We let ¢y = by = min B and c;41 = (hB),a(c;).
This induction breaks after r steps, where r < bg, otherwise B is w®*!-large.
That is, the last ¢; is ¢,—1. Welet Ag = Aand A;1 =4, \{r€B:¢; <z <
cit1tand A, = A,_1\{z € B : ¢,_1 < x}. Observe that Ay is (w*-(ap+u))-
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large, and (by the inductive assumption), A; is (w® - (ag + u — 7))-large. In
particular, A, is (w® - ag)-large, i.e., w®T1-large, indeed ag = min(4 \ B).

Case 4: by = ag. Arguing as in case 3 we see that A\ B is (w® - u)-large.
Thus if min(A \ B) = u this set is w®™!-large. If d = min(A \ B) < u then
{woth(u) =1 {w*1}(d) by Lemma 2(vi), hence w® -u =4 w*-d by (vii) of
the same lemma. By Lemma 4, (h4\B) o 4(d) exists (because (h4\B) o, (d)
exists).

We prove the implication T'(3, a+1) = T(B+w* ™!, a+1) for > wTh
So let A be (8 4+ w®*! . 2)-large and let B be its w®*!-small subset. Let
u = (h*)yet1(ag) and w = (h4) a1 (u).

Case 1: by > u.Let A’ ={x € A: x> u}. Then BC A". By T'(B,a+1),
A"\ B is f-large, hence A\ B = ({r € A:z <u}U{c})U(A"\ B), where
co = min(A"\ B), is (8 + w®1)-large.

Case 2: ag < by < u. We put dg = by = min B and d; 1 = (h?),a(d;).
Let r be the greatest ¢ such that d; exists. We must have r < by for otherwise
B would be w**large. Let D; = {z € B:d; <x <d;y1} and D, = {x €
B :d, <z}. Observe that none of these sets is w-large. On the other hand,
Ais (B+w*(u+ag))-large. It follows that A\ Dy is (f4+w®:(u+ag—1))-large,
etc., A\ B = A\ U<, D; is (f+w® - (u+ag—r))-large. But 7 +1 < u, hence
A\ Bis (B4 w® - ap)-large, so it is (8 + w*™!)-large because its minimum
is agp.

Case 3: by = ag. Exactly as above, by subtracting B from A in parts
which are not w®-large we derive that A\ B is (3+w®-u)-large. Indeed, there
are only ag parts as above because min B = ag and this set is w®*!-small.
If min(A \ B) = u then we are done. Otherwise e = min(A \ B) < u. But
w* - u =71 w* - e by Lemma 2(vi), and hence w® - u =, w® - e by (vii) of
the same lemma. By Lemma 4, (h\B)_a . (e) exists because (h4\5) o, ()
exists.

Thus in order to prove the nonlimit step o+ 1 in the proof of Lemma 11
it remains to check the case o(8) > a+ 1. So let p(5) > a + 1 and assume
that for all 3’ < 3, T(B',a + 1) holds. Let A be (8 + w*™1)-large and let
B be its w®*l-small subset. As usual, we let u = (h?),a+1(ag), so that
A={r e A:2 <ujU{r e A:u < z}; the first of these sets is wTi-
large, the second being (-large. It follows that A is ({3}(u) + w®*!)-large.
Observe that u = (h?)gat1(ag) > ||a + 1||. By Lemma 9, {3}(u) > wo*!
and {8} (u) +wt! < 3. By T({B}(u),a+1), A\ B is {8}(u)-large. Observe
that min(A\ B) = ¢ < u, otherwise {x € A: z <u} C B, so B isw*™1-large,
contrary to assumption. If ¢ = u then we are done, A\ B is {#}(min(A\ B))-
large. So assume that ¢ < u. Then (h4\B) 4y, (c) . Also we have {8} (u) =
{B}(c) by Lemma 2(vi), hence, by Lemma 2(vii), {8}(u) =. {8}(c). By
Lemma 4, (hA\B){ﬁ}(C) (¢)| and A\ B is p-large.
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CASE « limit. So, by assumption we have Yo/ < a V3 > w® T(8,a);
we want to prove V3 > w® T((3,a). As usual, the case f = 0 is obvious.

Let § = w®. Let A be (w* 4+ w®)-large and let B be its w®-small subset.
As usual, let u = (h*) o (ag).

Case 1:bg > u. Then {x € A: x <u} C A\ B, so this set is w-large as
required.

Case 2: by = u. Then there exists z > u with z € A\ B, for otherwise
{r € A:u <z} C B, so B is w*large contrary to assumption. Thus
{reAd:z<ufU{z} CA\Band A\ B is w*large.

Case 3: ag < by < u (the main case). Let D = {& € A : by < z}
and let £ = {x € A : u < z}. Then E is w®large, i.e. it is w{®}(®.
large. It follows that D is wi®(*)_large, indeed, it contains E. By Lemma
10(iv), D is ({w®}(bg) - bg)-large, in particular, it is ({w®}(bo) + {w*}(bo))-
large (reason: ag < by, hence by > 1). We apply the inductive assumption
T({w*}(by), {a}(bg)) and infer that D \ B is {w®}(bp)-large. By Lemma
5(iii), A\ B is {w*}(bg)-large. We also have {w}(by) =4, {w*}(ao) by
Lemma 2(vii), hence A\ B is {w®}(ap)-large, i.e., w*-large.

Case J: by = ag. In this case B is {w*}(ag)-small. But A is ({w*}(u) +
{w*}(agp))-large. By the inductive assumption T'({w®}(u), {a}(ap)), A\ B
is {w}(u)-large. Let s = min(A \ B). If s = u then we are done. If s < u
then {w®}(u) =5 {w*}(s), hence A\ B is {w*}(s)-large, i.e., w*-large. The
case s > u cannot happen, for if it does then {x € A: 2z <u} C B, so B is
w-large, contrary to assumption.

Assume T'(3, ), where 5 > w®; we prove T'(f+w®, a). So let a set A be
(64w 4+ w*)-large and let B be its w®-small subset. Let u, w be as before,
ie., u=(h") a(ag) and w = (h*) a (u).

Case 1: by > u. Then B C {z € A : u < z} and by the inductive
assumption T'(3,a), {x € A\ B : u < z} is B-large. It follows that A\ B =
{reA:z<u}u{re A\B:u<uz}is (8+w")-large.

Case 2: a9 <bp <u.Let E={r € A:u<z}and D ={z € A:
bp < z}. Then E is (8 +w®)-large, hence it is (8 + {w® }(u))-large. It follows
that D is (6 + {w*}(u))-large as well. Exactly as above, it follows that D is
(B+{w*}(bo) - bo)-large, hence it is (B+ {w*}(bg) - 2)-large. By the inductive
assumption T'(8 + {w*}(bo), {a}(bo)), D\ B is (8 + {w*}(bo))-large, i.e.
(6 4+ w*)-large. Hence A\ B is ( 4+ w®)-large as a superset of D \ B.

Case 3: bg = ag. Then B is {w“}(ag)-small. By the inductive assumption
T(8 4+ w* + {w*}(ao),{a}(an)), A\ B is (8 + w®)-large.

Finally, let o(3) > «. Let, as usual, A be (34 w®)-large and let B be its
w®-small subset. Let also u = (h*),a(ag). Clearly u > || + 1|, hence A is
({8} (u)+w*)-large. By Lemma 9, {8} (u) > w® and {}(u)+w® < . By the
inductive assumption T'({5}(u), ), A\ B is {8} (u)-large. Let s = min(A\B).
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Exactly as above, s < u for otherwise {z € A: z < u} C B, so B is w*-large
contrary to assumption. If s = u then we are done. Otherwise, s < u, hence

{B}(u) =5 {B}(s), so A\ B is {}(s)-large, i.e. B-large. m
It should be noticed that Lemma 11 admits a generalization in which we
speak not only about ordinals of the form w®. It is as follows.

THEOREM 12. For every a and 3> « and every A, B, if A is 8+«-large,
B C A and B is a-small, then A\ B is [(3-large.

Proof. Let A be (8 + a)-large where 3 > «, and let B be its a-small
subset. Write a = w®s +...+w, where ag > ... > ap. Let e = max{i < s:
Bis (w® 4 ... 4 w*)-large}. Let h denote the successor in the sense of B.
Let By = {x € B : 2 < hyeo(minB)}, Bit1 = {z € B : hye; (min B;) <
T < hyeitt (hwai (HIIHBZ))} for i < e. We let Be+1 =B \ UOSiﬁeBi- Then
B = Up<i<et1B;. Observe that no B;, 7 < e+1, is w-large. By Lemma 11,
by induction on i, we infer that A\ (BoU...UB;) is (f+w® +...+w*+!)-
large. It follows that A\ B is 3-large. m

Proof of Theorem 1. By induction on «. The case a = 1 is obvious,
indeed, if a partition is 1-small then there is only one part.

Assume the conclusion holds for «; we derive it for o + 1. Let A be an
(w? - (a+ 1))-large subset of w and let A = Up<;<.B; be an (a + 1)-small
partition of A. Let E = {min By,...,minB.}, so E is (« + 1)-small. We
may assume that min £ = min By. We put C = A\ By. If By is w’-small
then by Lemma 11, C'is (w” - a)-large. Consider the partition C' = Uj<;<.B;
of C. Let E; = {min By, ..., min B, }. But the partition of A is (a+1)-small,
hence hq41(min By)T (where h denotes the successor in the sense of F). It
follows that h,(h(min By))T. We have h(min By) = min F;. Thus the above
partition of C' is a-small. We apply the inductive assumption to the set
C and the above-mentioned partition. Summing up, By or at least one of
B;,1 <i<e,is wPl-large.

Assume the conclusion for all ordinals smaller than A, A limit. Let A be
an (w? - \)-large set, where 3 > LM()). Let a partition A = Up<;<.B; be
given and A-small. Exactly as above, let E' = {min By, ..., min B.}. Then A
is ({w” - A} (min A))-large. Thus A is (w? - {\}(min A))-large by Lemma 3.
Obviously, E is {A}(min A)-small and > LM({\}(min A)). By the induc-
tive assumption, at least one of B;, i < e, is w”-large. m

We show that the result of Theorem 1 is the best possible. Let A be a

finite subset of w, let § < g9 and let A = Up<;<.B; be the partition of A
determined by the following conditions:

(i) Each B; is of the form A N [u,w] for some u,w € A.
(ii) min By = min A and for all i = 0,...,e—1, min B;41 = h s (min B;).
(iii) hys(min Be)T.
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Of course, h denotes the successor in the sense of A. Let, as usual, ¥ denote
the set {min B; : i < e}. Let H denote the successor in the sense of E.
Obviously, H(n) = hys(n) for n € E'\ {max E'}. We show that

(x) if A is (w? - a)large, where 8 > LM(a), then H,(minA) =
hes.o(min A).

We prove (%) by induction on «, the steps & = 0 and @ — «a + 1 being
evident. In the limit step one uses Lemma 3.

If Ais (w”-(a+1))-small, where 3> o(«a), then by (%) we infer immedi-
ately that the partition of A determined by the above mentioned conditions
is (a + 1)-small. But none of the sets B; is w”-large.
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