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Splitting obstructions and properties of objects
in the Nil categories

by

Tadeusz K o ź n i e w s k i (Warszawa)

Abstract. We show that the objects of Bass–Farrell categories which represent 0
in the corresponding Nil groups are precisely those which are stably triangular. This
extends to Waldhausen’s Nil group of the amalgamated free product with index 2 factors.
Applications include a description of Cappell’s special UNil group and reformulations of
those splitting and fibering theorems which use the Nil groups.

1. Introduction. We start with a short review of the algebraic sources
of different types of Nil groups. The following theorems relate them to the
K-groups and L-groups.

Theorem 1.1 (Bass [Bs], Farrell, Hsiang [F], [FH1], [FH2]). Let α : R→
R be a ring automorphism and let Rα[u, u−1] be the α-twisted ring of Laurent
polynomials. Then there exists a subgroup Ñil(R,α) ⊂ K1(Rα[u, u−1]) with
the property that Ñil(R,α) ⊕ Ñil(R,α−1) is a direct summand and there is
an exact sequence

K1(R) 1−α∗−−→ K1(R)→ K1(Rα[u, u−1])

Ñil(R,α)⊕ Ñil(R,α−1)
→ K0(R) 1−α∗−−→ K0(R).

In particular if a : H → H is a group automorphism and G = H ×a Z, then
for R = ZH, a induces an automorphism α : R→ R, ZG ∼= Rα[u, u−1] and
we have an exact sequence

Wh(H) 1−α∗−−→ Wh(H)→ Wh(G)

Ñil(R,α)⊕ Ñil(R,α−1)
→ K̃0(R) 1−α∗−−→ K̃0(R).

Also, for α = 1 we have Ñil(R,α) ∼= NK1(R) of Bass.
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Theorem 1.2 (Waldhausen [W1], [W2]). For any two R-bimodules B1,
B2 which are free both as left and as right R-modules there exists an abelian
group Ñil(R;B1, B2) with the following property. If H is a subgroup of G1, G2

and G = G1∗HG2, R = ZH, Bi = Z(Gi\H) for i = 1, 2, then Ñil(R;B1, B2)
is a direct summand of Wh(G) and there is an exact sequence

Wh(H)→Wh(G1)⊕Wh(G2)→ Wh(G)

Ñil(R;B1, B2)

→ K̃0(ZH)→ K̃0(ZG1)⊕ K̃0(ZG2).

Theorem 1.3 (Cappell [C1], [C2]). For any two R-bimodules B1, B2

with involution which are free both as left and right R-modules and for each
natural number n there exists an abelian group UNilhn(R;B1, B2) such that
for G = G1 ∗H G2, R = ZH and Bi = Z(Gi\H) for i = 1, 2 there exists a
split monomorphism % : UNilhn(R;B1, B2) → Lhn(G) with the property that
if Hi(Z/2; ker(K̃0(ZH) → K̃0(ZG1) ⊕ K̃0(ZG2))) = 0 for all i then there
exists an exact sequence

. . .→ Lhn(H)→ Lhn(G1)⊕ Lhn(G2)→ Lhn(G)

UNilhn(R;B1, B2)
→ Lhn−1(H)→ . . .

Cappell also defines a group UNilsn(R;B1, B2) which is similarly related
to Lsn(G).

One of the geometric reasons for the introduction of the Nil groups were
various kinds of splitting problems. Let Y be a closed n-dimensional manifold
with a codimension 1 submanifold X. Let f : M → Y be a homotopy
equivalence from a manifold M to Y . Then f is called splittable along X if
it is homotopic to a map g : M → Y which is transverse regular to X, so
that N = g−1(X) is a manifold and g restricted to N is also a homotopy
equivalence. If f is h-cobordant to such a g we say that f is h-splittable. The
following theorems give necessary and sufficient conditions for a map to be
(h)-splittable.

Theorem 1.4 ([FH2]). Let n ≥ 6 and let π1(Y ) = H ×a Z with π1(X)
= H. Then f : M → Y is splittable along X ⇔ p(τ(f)) = 0 ∈ Ñil(R,α),
where τ(f) ∈ Wh(H ×a Z) is the torsion of f , R = ZH, α : R → R is
induced by a and p : Wh(H ×a Z)→ Ñil(R,α) is the projection map.

Theorem 1.5 ([C2]). Let n ≥ 6 and let π1(Y ) = G1 ∗HG2 with π1(X) =
H. Then for every homotopy equivalence f : M → Y there exist obstructions
χh(f) ∈ UNilhn(R;B1, B2) and χs(f) ∈ UNilsn(R;B1, B2) with the proper-
ties:

(a) f is h-splittable along X ⇔ [∂(τ(f))] = 0 ∈ Hn(Z/2; ker(K̃0(ZH)→
K̃0(ZG1)⊕ K̃0(ZG2))) and χh(f) = 0.
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(b) f is splittable along X ⇔ τ(f) ∈ im(Wh(G1)⊕Wh(G2)) and χs(f)
= 0.

Here, as before, τ(f) is the torsion of f , R = ZH, Bi = Z(Gi \H) and
∂ is the boundary map of 1.2.

The UNil groups are closely related to the structure sets of a manifold.
Cappell shows that if π1(Y ) = G = G1 ∗H G2, then for x = h, s the group
UNilxn(R;B1, B2) acts freely on the structure set Sx(Y ). In particular if Y is
aspherical with universal cover Rn then free actions of G on Rn are h-rigid
(resp. rigid) only if UNilhn(R;B1, B2) = 0 (UNilsn(R;B1, B2) = 0). For some
of the newest results on the Nil groups and their applications see [Bd], [CK],
[KS], [R].

2. Triangular objects in the Farrell category. In this section we
analyze the properties of the Farrell category Nil(R,α).

Let R be a ring and let α : R → R be an automorphism of R. We
say that a map ϕ : P → Q of right R-modules is α-linear if ϕ is additive
and ϕ(zr) = ϕ(z)α(r) for each z ∈ P , r ∈ R. An object of the category
Nil(R,α) is a pair (P, ν), where P is a stably free, finitely generated right
R-module and ν : P → P is an α-linear endomorphism which is nilpotent,
i.e. νn = 0 for some n. Let Rα[u] denote the α-twisted polynomial ring,
with ru = uα(r) and let Rn = Rα[u]/(un). Then the objects of Nil(R,α)
in which νn = 0 are precisely those right Rn-modules which are stably free
as R-modules.

A morphism in Nil(R,α) from (P, ν) to (P ′, ν′) is an R-homomorphism
f : P → P ′ such that ν′f = fν. A sequence of morphisms in Nil(R,α) is
exact if it is exact in the category of R-modules, after we forget about the
endomorphisms.

Let Nil(R,α) := K0(Nil(R,α)). This means that Nil(R,α) is the Gro-
thendieck group of the isomorphism classes of objects of Nil(R,α) modulo
the relation generated by short exact sequences. Let FR be the category of
finitely generated, free right R-modules. The functor ι : FR → Nil(R,α)
which assigns to a module P the object (P, 0) induces on K0 a group homo-
morphism ι∗ : Z→ Nil(R,α). One then defines Ñil(R,α) := coker ι∗.

We say that an object x = (P, ν) in Nil(R,α) is triangular if there is
a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ En = P such that for each i the module
Ei+1/Ei is free and ν(Ei) ⊂ Ei−1. For example, Rn with the endomorphism
given by the right multiplication by u is triangular. Also, if P is a free right
R-module, then P ⊗R Rn with ν(

∑
piu

i) =
∑
piu

i+1 is triangular.

Lemma 2.1 (Farrell [F]). If x is triangular , then [x] = 0 ∈ Ñil(R,α).

We call x a stably triangular object if there exists a triangular object t
such that x⊕ t is triangular.
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Corollary 2.2. If x is stably triangular , then [x] = 0.

Lemma 2.3. If 0 → t′ → t → t′′ → 0 is an exact sequence of objects of
Nil(R,α) and t′, t′′ are triangular , then t is triangular.

P r o o f. A triangular filtration of t′′ pulled back to t and combined with
a triangular filtration of t′ provides a triangular filtration of t.

Following Waldhausen [W1], we say that y is a suspension of x if there
is an exact sequence 0 → y → t → x → 0 of objects in Nil(R,α) with t
triangular. If t is Rn-free, then we say that y is an Rn-suspension of x.

Lemma 2.4. (i) Each object has a suspension.
(ii) Triangular objects admit Rn-suspensions which are triangular.

P r o o f. (i) Let x = (P, ν). We can assume that P is free, if not we can add
to x a free module with a trivial endomorphism and consider the natural
projection from the resulting sum to x. Now P ⊗R Rn is free and maps
epimorphically onto x by ε(

∑
piu

i) =
∑
νi(pi). So ker ε is a suspension

of x.
(ii) Let t be a triangular object. We proceed by induction on l(t), the

length of the shortest triangular filtration of t. If l(t) = 1, then ker(ε :
P ⊗R Rn → P ) = Pu + . . . + Pun−1 is a stably free Rn−1-module, and
therefore triangular.

If l(t) = k, then there is an exact sequence 0 → t′ → t → t′′ → 0 where
l(t′′) = 1 and l(t′) = k − 1. Because ⊗RRn is an exact functor we can use
the construction of (i) to get an exact sequence 0 → u′ → u → u′′ → 0 of
Rn-suspensions. By the induction hypothesis u′ and u′′ are now triangular,
so u is also triangular, by Lemma 2.3.

Lemma 2.5. A suspension of a triangular object is stably triangular.

P r o o f. Let y be a suspension of x, i.e. y = ker ε1 where 0 → ker ε1 →
t1 → x → 0 is exact and t1 is triangular. We have to show that y is stably
triangular.

Let z be a triangular Rn-suspension of x, where n ≥ l(x), l(t). So z =
ker ε2 for an exact sequence 0→ ker ε2 → t2 → x→ 0 with t2 Rn-free. Such
a z exists by Lemma 2.4(ii).

We define t1 ×x t2 in Nil(R,α) as (P, µ) where

P = {(c1, c2) ∈ T1 × T2 | ε1(c1) = ε2(c2)}, µ = ν1 × ν2|P .
This gives a commutative diagram with exact columns and rows:
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0 0

ker ε2 ker ε2

0 ker ε1 t1 ×x t2 t2 0

0 ker ε1 t1 x 0

0 0

²² ²²

²²

____________

²²
//

�����

�����

//

²²

//

ε2

²²

//

// //

²²

ε1
//

²²

//

Since t1 and ker ε2 are triangular, Lemma 2.3 implies that t1 ×x t2 is
triangular. Moreover t2 is Rn-free, so the row containing t1×x t2 splits, and
t1 ×x t2 = ker ε1 ⊕ t2. We conclude that ker ε1 is stably triangular.

Lemma 2.6. If an object of Nil(R,α) has a triangular suspension, then
it is stably triangular.

P r o o f. For any object x = (P, ν) in Nil(R,α) let P ∗ = HomR(P,R) and
let ν∗ : P ∗ → P ∗ be given by ν∗(ϕ) = α−1 ◦ϕ◦ν. Then P ∗ has the structure
of a left R-module ((rϕ)(c) = rϕ(c)) and ν∗ is an α−1-linear endomorphism.
This gives a (contravariant) functor # : Nil(R,α) → Nil′(R,α−1) where
(P, ν)# = (P ∗, ν∗) and where Nil′(R, β) denotes the analog of Nil(R, β)
with left modules used instead of right modules. Then x ∈ Nil(R,α) is
triangular ⇔ x# is triangular.

Now let x be an object in Nil(R,α) with a triangular suspension. This
means that we have an exact sequence

0→ t1 → t→ x→ 0
where t and t1 are triangular. Applying # we get a sequence

0→ x# → t# → t#1 → 0
which is also exact (because our sequences split as sequences of R-modules).
From Lemma 2.5 it follows that x# is stably triangular, so x itself is stably
triangular.

As a corollary we get the following

Proposition 2.7. If in an exact sequence of objects in Nil(R,α)
0→ x→ y → z → 0

two objects are stably triangular , then the third is also stably triangular.

Theorem 2.8. If x1 is a suspension of x2 then x1 ⊕ x2 is stably trian-
gular.
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P r o o f. Consider exact sequences

0→ x1 → x→ x2 → 0 and 0→ yi → ti → xi → 0

for i = 1, 2, with x, t1, t2 triangular. To show that x1⊕x2 is stably triangular
we use the following construction which is due to Waldhausen [W1], [W2].
There exists a commutative diagram of objects in Nil(R,α) with exact rows:

0 0 0

0 y1 y1 ⊕ y2 y2 0

0 t1 t t2 0

0 x1 x x2 0

0 0 0

²² ²² ²²
//

²²

//

²²

// //

²²
//

²²

//

²²

//

²²

//

//

²²

//

²²

//

²²

//

where for x = (Px, νx), xi = (Pxi , νxi), ti = (Pti , νti), i = 1, 2, one defines
t = (Pt, νt) by

Pt = Pt1 ⊕ Pt2 , νt =
(
νt1 c
0 νt2

)

with c : Pt2 → Pt1 specified as follows. We have Px ∼= Px1 ⊕ Px2 and
νx =

( νx1 γ

0 νx2

)
where γ : Px2 → Px1 . Then Pti = Pyi ⊕ Pxi for i = 1, 2 and

c :=
( 0 0

0 γ

)
.

All the rows and columns are exact. Also, since t1, t2 are triangular, t
is triangular (Lemma 2.3). Now x, t triangular imply that y1 ⊕ y2 is stably
triangular (Lemma 2.5). Finally y1 ⊕ y2 and t1 ⊕ t2 stably triangular make
x1 ⊕ x2 stably triangular (Lemma 2.6).

We now give another description of Ñil(R,α). Let N be the set of iso-
morphism classes of objects in Nil(R,α). Then N has the structure of an
abelian semigroup with addition given by ⊕. We introduce an equivalence
relation in N by

x1 ∼ x2 ⇔ ∃t1, t2 triangular such that x1 ⊕ t1 = x2 ⊕ t2.
Remark 2.9. (a) x ∼ 0⇔ x is stably triangular.
(b) N/∼ is an abelian group. The inverse of x is given by a suspension

of x.
(c) If 0→ x1 → x→ x2 → 0 is exact , then [x1] + [x2] = [x] in N/∼.
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P r o o f. (a) is clear. To see (b) note that if y is a suspension of x, then
(by Theorem 2.8) x⊕ y is stably triangular, so [x] + [y] = 0 in N/∼.

(c) Let yi be a suspension of xi, i = 1, 2. By the construction given in
Theorem 2.8 it follows that y1⊕y2 is a suspension of x. So [x] = −[y1⊕y2] =
−(−[x1]− [x2]) = [x1] + [x2].

Corollary 2.10. The natural epimorphism j : N/∼ → Ñil(R,α) is an
isomorphism.

As a consequence we get

Theorem 2.11. Two objects x1, x2 of the category Nil(R,α) represent
the same element of Ñil(R,α) ⇔ there exist triangular objects t1, t2 such
that x1 ⊕ t1 ∼= x2 ⊕ t2.

Corollary 2.12. An object x of Nil(R,α) represents 0 ∈ Ñil(R,α)⇔
x is stably triangular.

3. Waldhausen’s Nil group. In this section we show how to extend
the results of §2 to some other types of Nil categories.

For any two R-bimodules B1, B2 which are free both as left and as
right R-modules let Nil(R;B1, B2) be the following category. An object of
Nil(R;B1, B2) is a quadruple (P,Q, p, q) where P,Q are finitely generated,
stably free right R-modules and p : P → Q⊗RB1 and q : Q→ P ⊗RB2 are
R-homomorphisms which satisfy the following nilpotency condition. There
exist filtrations 0 = P0 ⊂ P1 ⊂ . . . ⊂ Pn = P and 0 = Q0 ⊂ Q1 ⊂ . . . ⊂
Qn = Q so that p(Pi) ⊂ Qi−1 ⊗R B1 and q(Qi) ⊂ Pi−1 ⊗R B2 for all i ≥ 1.

A morphism (P,Q, p, q)→ (P ′, Q′, p′, q′) is a pair of R-homomorphisms
f : P → P ′, g : Q→ Q′ so that one has the commutative diagrams

P Q⊗R B1

P ′ Q′ ⊗R B1

p //

f

²²
g⊗1
²²

p′ //

Q P ⊗R B2

Q′ P ′ ⊗R B2

q //

g

²²
f⊗1
²²

q′ //

Forming K0 of this category we get the natural homomorphism

Z⊕ Z j−→ K0(Nil(R;B1, B2))

defined by j(k, l) = (Rk, Rl, 0, 0) for k, l ≥ 0. Waldhausen defines
Ñil(R;B1, B2) as the cokernel of j. His notation for this group in [W1] is
C̃(R;B1, B2).

We will discuss the group Ñil(R;B1, B2) in the special case when there
are ring automorphisms β1, β2 : R→ R such that:
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(a) B1, B2 are isomorphic to R as left modules via isomorphisms

B1
Φ1−→ R

Φ2←− B2,

(b) the map Φi is βi-linear, i.e. Φi(zr) = Φi(z)βi(r) for all z ∈ Bi, r ∈ R
and i = 1, 2.

When B1, B2 satisfy conditions (a), (b) we write Rβi for Bi and
Ñil(R, β1, β2) for Ñil(R;B1, B2).

The importance of this special case follows from the following remark.
Let

1→ C → Γ
q−→ D∞ → 1

be an exact sequence of groups, where D∞ = 〈s1, s2 : s2
1 = s2

2 = 1〉 is the
infinite dihedral group. Set R = ZC, Γi = q−1(〈si〉) and Bi = Z(Γi \ C)
for i = 1, 2. Then Γ = Γ1 ∗C Γ2 and Bi is isomorphic to R as a left R-
module by the isomorphism Φi : Bi → R, Φi(x) = xbi for x ∈ Bi, where
bi is some chosen element of Γi \ C for i = 1, 2. The elements b1, b2 specify
two automorphisms βi of R: βi(r) = b−1

i rbi for r ∈ R. As a map of right
R-modules, Φi is βi-linear. Therefore in this case we get Ñil(R;B1, B2) =
Ñil(R, β1, β2).

We say that an object (P,Q, p, q) of Nil(R;B1, B2) is triangular if there
exist filtrations 0 = P0 ⊂ P1 ⊂ . . . ⊂ Pn = P and 0 = Q0 ⊂ Q1 ⊂ . . . ⊂
Qn = Q so that p(Pi) ⊂ Qi−1 ⊗R B1 and q(Qi) ⊂ Pi−1 ⊗R B2 for all i ≥ 1
with the extra property that for all i the modules Pi/Pi−1 and Qi/Qi−1

are free. An object x is called stably triangular if x ⊕ t is triangular for
some triangular t. Our goal is to show that an object in Nil(R;Rβ1 , Rβ2)
represents 0 in Ñil(R, β1, β2) precisely when it is stably triangular. In order
to do this we first observe that Nil(R;Rβ1 , Rβ2) is isomorphic to another
category, Nil(R, β1, β2), which we now describe.

An object of Nil(R, β1, β2) is a quadruple (P,Q, p, q), where P,Q are
finitely generated, stably free right R-modules, p : P → Q is β1-linear,
q : Q → P is β2-linear and qp : P → P is nilpotent ((qp)n = 0 for some
n). A morphism from (P,Q, p, q) to (P ′, Q′, p′, q′) is a pair (f, g), where
f : P → P ′ and g : Q→ Q′ are R-homomorphisms and p′f = gp, q′g = fq.
An object of Nil(R, β1, β2) is triangular if there exist filtrations 0 = P0 ⊂
P1 ⊂ . . . ⊂ Pn = P and 0 = Q0 ⊂ Q1 ⊂ . . . ⊂ Qn = Q so that for all i
p(Pi) ⊂ Qi−1, q(Qi) ⊂ Pi−1 and the modules Pi/Pi−1 and Qi/Qi−1 are free.
An object is called stably triangular if it becomes triangular after adding
some triangular object.

Note that for any right R-module M there is a βi-linear isomorphism
M ⊗R Rβi → M given by x ⊗ s 7→ xΦi(s). So any R-homomorphism
P → Q⊗R Rβ1 specifies uniquely a β1-linear homomorphism P → Q. Sim-
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ilarly, any R-homomorphism Q → P ⊗R Rβ2 determines a β2-linear homo-
morphism Q → P . This provides an obvious isomorphism of the categories
Nil(R;Rβ1 , Rβ2) and Nil(R, β1, β2) under which triangular objects go to
triangular objects.

We now give a characterization of the objects representing 0 in
Ñil(R, β1, β2), by showing that for any ring R and any two automorphisms
β1, β2 of R the following holds.

Theorem 3.1. Two objects x, y in Nil(R, β1, β2) represent the same el-
ement in Ñil(R, β1, β2)⇔ x⊕ t is isomorphic to y ⊕ t′ for some triangular
objects t, t′.

P r o o f. If (P,Q, p, q) is an object of Nil(R, β1, β2) we can add a trian-
gular object t to it if necessary, so that x⊕ t = (P ′, Q′, p′, q′) and P ′ ∼= Q′ as
right R-modules (t has the form (Rk, 0, 0, 0) or (0, Rk, 0, 0)). Therefore it is
sufficient to prove 3.1 in the full subcategory Nil′(R, β1, β2) whose objects
(P,Q, p, q) satisfy P ∼= Q.

Let S be the ring R×R. Let α : S → S be the ring automorphism

α(x, y) = (β2(y), β1(x)) ∀(x, y) ∈ R×R.
Let e = (1, 0) and f = (0, 1) in S. If F is a free right S-module, say

F ∼= Sk, then P = Fe and Q = Ff are right free R-modules and F = P⊕Q.
If ν : F → F is an α-linear map, then ν(P ) ⊂ Q, ν(Q) ⊂ P and ν can

be written as
( 0 q

p 0

)
: P ⊕ Q → P ⊕ Q where p : P → Q is β1-linear and

q : Q→ P is β2-linear. Also, if ν2n = 0 then (pq)n = 0.
So an object (F, ν) in Nil(S, α) determines an object (P,Q, p, q) in

Nil′(R, β1, β2). Conversely, if (P,Q, p, q) is an object in Nil′(R, β1, β2) then
F = P ⊕Q is a stably free right S-module with nilpotent α-linear endomor-
phism ν =

( 0 q

p 0

)
.

This gives an equivalence of categories E : Nil(S, α) → Nil′(R, β1, β2).
It preserves sums and exact sequences, and E(t) is triangular if t is. Con-
versely, suppose E(t) = (P,Q, p, q) is triangular. By refining the filtration
if necessary, we can assume that Pi/Pi−1 and Qi/Qi−1 have rank 1 for all
i ≥ 1. This means that Fi := Pi ⊕ Qi is a free R × R-module and so is
Fi/Fi−1. Moreover, ν(Fi) ⊂ Fi−1. So t itself is triangular.

It follows from the above discussion that E induces an isomorphism
Ñil(S, α) ∼= Ñil(R, β1, β2). Our theorem now follows from 2.11.

Corollary 3.2. An object in Nil(R, β1, β2) represents 0 in Ñil(R, β1, β2)
⇔ it is stably triangular.

Cappell defines simple UNil forms as those UNil forms for which the
corresponding objects in Ñil(R;B1, B2) are trivial.
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Corollary 3.3. If G = G1 ∗H G2 with |Gi : H| = 2, R = ZH, Bi =
Z(Gi \H) for i = 1, 2, then the simple (−1)k UNil forms over (B1, B2) are
pairs (x1, x2) where xi = (Pi, λi, µi) is a (−1)k Hermitian form over Bi (in
the sense of Wall [W1], [W2]), P2 = P ∗1 and (P1, P2, adλ1, adλ2) is a stably
triangular object of Nil(R;B1, B2).

4. Applications. We now give examples of some geometric applications
of the above theorems. Here is the main idea of getting them.

In the topological theorems which make use of the Nil groups one usu-
ally tries to carry out a geometric construction in order to prove a general
statement. It turns out that the completion of the construction is not always
possible. What one gets is a geometrically defined module with a nilpotent
endomorphism. The construction can be completed if and only if this object
represents 0 in the appropriate Nil group. One shows that the choices which
are made during the attempt of the construction do not alter the class of the
module and its endomorphism in the Nil group. This gives a Nil obstruction.

From Corollary 2.12 it now follows that to decide whether the construc-
tion can always be completed it is enough to attempt the construction,
making any choices, and check if the resulting module with endomorphism
is stably triangular. Below we give an example of the above method. It is
based on the construction in [F]. Similar examples, related to the splitting
theorems 1.4, 1.5, can be obtained using [FH2], [C2], [C3].

Let M be a closed, n-dimensional manifold with n ≥ 6 and let f : M →
S1 be a continuous map. Assume that f# : π1(M) → Z is onto and let
H = kerf#. So π1(M) = H ×a Z and a induces an automorphism α of ZH.
Let X be the covering space of M corresponding to H. Assume that X has
the homotopy type of a finite CW complex. The group π1(M)/H ∼= Z acts
on X. A closed, framed, (n − 1)-dimensional submanifold (N,µ) of M is
called a splitting of f if it corresponds to f under the Pontryagin–Thom
construction. Then W = M\(a tubular neighborhood of N) is a cobordism
on N . Lift (N,µ) to a framed submanifold (N̂ , µ̂) of X. Then X \ N̂ has
two components, say A and B, where B denotes the component to which
µ̂ points. Let T be the generator of π1(M)/H for which A ⊂ T (A). Then
T−1 induces an α-linear endomorphism T−1

∗ of Hi(X,A;ZH). Farrell shows
that one can always find (N,µ) so that Hi(X,A;ZH) = 0 for i ≤ 2 and
Hi(X,B;ZH) = 0 for i ≤ n − 3, in which case H3(X,A;ZH) is a finitely
generated, projective ZH-module and T−1

∗ is nilpotent. Pick any such (N,µ)
and denote (H3(X,A;ZH), T−1

∗ ) as (P, ν).
Then Farrell’s results can be stated in the following way:

Theorem 4.1. (a) There exists a splitting for which W is an h-cobordism
⇔ P is stably free and (P, ν) is stably triangular.
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Also, if these conditions are satisfied then the class τ(f) in Wh(H)/
(1 − α∗) Wh(H) of the torsion of such an h-cobordism W does not depend
on the choice of the splitting.

(b) There exists a splitting for which W is a product cobordism (equiva-
lently : f is homotopic to a locally trivial bundle map) ⇔ the conditions of
(a) hold and τ(f) = 0.
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