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Abstract. It is known that the order of all Postnikov k-invariants of an H-space of
finite type is finite. This paper establishes the finiteness of the order of the k-invariants
km+1(X) of X in dimensions m ≤ 2n if X is an (n − 1)-connected H-space which is not
necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants
if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper
bounds for the order of the k-invariants of X.

Introduction. The Postnikov invariants of a connected simple CW-
complex X are cohomology classes which provide the necessary information
for the reconstruction of X, up to weak homotopy equivalence, from its
homotopy groups. More precisely, let αm : X → X[m] denote the mth
Postnikov section of X for any positive integer m, i.e., X[m] is a CW-
complex obtained from X by adjoining cells of dimensions ≥ m+2 such that
πiX[m] = 0 for i > m and (αm)∗ : πiX → πiX[m] is an isomorphism for
i ≤ m. The Postnikov k-invariants of X are cohomology classes km+1(X) ∈
Hm+1(X[m − 1];πmX) with the property that X[m] is homotopic to the
fibre of the map X[m − 1] → K(πmX,m + 1) corresponding to km+1(X),
for m ≥ 2 (see for instance [WG2], Section IX.2).

A classical result of M. Arkowitz and C. Curjel (see [AC], Proposition 4.1,
and [T], Théorème 6) asserts that if X is an H-space of finite type, then all
its k-invariants are cohomology classes of finite order. The present paper is
devoted to the following two questions:

(A) Is it still true that the k-invariants of an H-space X have finite order
if X is not of finite type?
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(B) Is it possible to approximate the order of the k-invariants of H-spaces
in a universal way?

Of course, both questions are related: an affirmative answer to Question
(B) would imply that Question (A) also has a positive answer. In other
words, if there is an upper bound A(m), depending only on m, for the order
of km+1(X) for all H-spaces of finite type X, then a direct limit argument
shows that A(m)km+1(X) = 0 even if X is an H-space which is not of finite
type.

Partial results on that problem have been previously obtained. C. Soulé
proved that if X is an (n− 1)-connected H-space of finite type with n ≥ 2,
then the k-invariant km+1(X(p)) of the localization of X at the prime p van-
ishes if m ≤ n+2p−4 (see [So], proof of Proposition 3, where the argument
uses an idea of [Sm]). The first author established in [A2], Theorem 1.6, and
[A4], Theorem 1.3, the existence of universal upper bounds for the order
of the k-invariants in the stable range, i.e., for the k-invariants km+1(X)
of (n − 1)-connected r-fold loop spaces X assuming that m ≤ 2n + r − 2
(see Definition 4.4 and Theorem 4.5 below). In the special case where r = 2,
n = 1, m = 2, he was actually able to show that k3(X) = 0 for all connected
double loop spaces X (see [A3], Theorem A).

This paper is devoted to the solution of the problem given by Questions
A and B in the non-stable case. Our first result determines universal upper
bounds for the order of the first k-invariant of an H-space (see Corollary 3.3).
Its proof is based on the study of the cohomology suspension for Eilenberg–
MacLane spaces.

The first k-invariant kn+2(X) ∈ Hn+2(K(πnX,n);πn+1X) of any
(n− 1)-connected H-space X (with n ≥ 1) fulfills

2kn+2(X) = 0.

We are then able to extend this to some k-invariants of H-spaces and
more generally to all higher k-invariants of iterated loop spaces. More pre-
cisely, we define, for r ≥ 1, positive integers Cr(m,n), depending only on
m, n and r, and prove the following theorems (see Corollary 4.8, Theorems
4.10 and 4.11).

For any (n − 1)-connected H-space X (with n ≥ 1) and any integer m
such that n+ 1 ≤ m ≤ 2n, the k-invariant km+1(X) satisfies

C1(m,n)km+1(X) = 0 in Hm+1(X[m− 1];πmX).

For any (n − 1)-connected r-fold loop space X (with n ≥ 1 and r ≥ 2) and
any integer m such that n+ 1 ≤ m ≤ (r+ 1)n+ r, the k-invariant km+1(X)
satisfies

Cr(m,n)km+1(X) = 0 in Hm+1(X[m− 1];πmX).
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In other words, we get an upper bound for the order of the k-invariant
km+1(X) of an (n−1)-connected CW-complex X if X is an

[
m
n+1

]
-fold loop

space, where
[
m
n+1

]
denotes the integral part of m

n+1 , except for the case
m = 2n+ 1 where X needs to be a double loop space (see Corollary 4.12).
Observe that we always consider H-spaces or iterated loop spaces which
are not necessarily of finite type, and that all upper bounds we obtain are
universal in the sense that they only depend on the dimension of the k-
invariant we are looking at and on the connectivity of the space, but not on
the space itself.

As an application, we then approximate the order of the identity of Post-
nikov sections of homotopy associative H-spaces and iterated loop spaces.
We obtain the following results (see Corollaries 5.5 and 5.6).

Let X be an (n−1)-connected homotopy associative H-space (with n ≥ 1),
m an integer satisfying n + 1 ≤ m ≤ 2n, and assume that πiX has finite
exponent si for n ≤ i ≤ m. Then the order of the identity of X[m] divides
the product

lcm(sn, . . . , sm)
m∏

i=n+1

C1(i, n).

Let X be an (n− 1)-connected r-fold loop space (with n ≥ 1 and r ≥ 2), m
an integer satisfying n + 1 ≤ m ≤ (r + 1)n + r, and assume that πiX has
finite exponent si for n ≤ i ≤ m. Then the order of the identity of X[m]
divides the product

lcm(sn, . . . , sm)
m∏

i=n+1

Cr(i, n).

The paper is organized as follows. Section 1 presents the main properties
of spaces with k-invariants of finite order. In Section 2, we recall from [P2]
that the exponent of the image of the cohomology suspension for products of
Eilenberg–MacLane spaces is bounded in a universal way. Section 3 provides
the solution of the above problem for the first k-invariant of an H-space. We
prove our main results on high-dimensional k-invariants of H-spaces and
iterated loop spaces in Section 4. Finally, Section 5 is devoted to the study
of the order of the identity.

Throughout the paper, we use the following notation. For an abelian
group G and a positive integer n, K(G,n) denotes the Eilenberg–MacLane
space having all homotopy groups trivial except for G in dimension n. If
X is an (n − 1)-connected CW-complex (with n ≥ 1) and if m and i are
integers such that n − 1 ≤ i < m, we write αm : X → X[m] for the mth
Postnikov section of X and X(i,m] for the ith connected cover of X[m].
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1. k-invariants of finite order. If X is a connected simple CW-
complex, it is well known that the vanishing of the k-invariant km+1(X) ∈
Hm+1(X[m−1];πmX) is equivalent to the fact that the mth Postnikov sec-
tion X[m] of X is a product X[m] ' X[m−1]×K(πmX,m), and to the split
injectivity of the Hurewicz homomorphism hm : πmX → Hm(X;Z). This
can be generalized when the k-invariant km+1(X) is a cohomology class of
finite order in the group Hm+1(X[m− 1];πmX).

Proposition 1.1. Let X be a connected simple CW-complex , m an in-
teger ≥ 2 and % a positive integer. The following assertions are equivalent :

(a) %km+1(X) = 0 in Hm+1(X[m− 1];πmX).
(b) There is a map fm : X → K(πmX,m) such that the induced homo-

morphism (fm)∗ : πmX → πmX is multiplication by %.
(c) There is a homomorphism θm : Hm(X;Z) → πmX such that the

composition

πmX
hm−→Hm(X;Z) θm−→ πmX

is multiplication by %.

P r o o f. Lemma 4 of [A1] (see also Lemma 1.4 of [A4]) shows that (a)
implies (b). Assertion (c) follows from (b) because of the commutativity of
the diagram

πmX πmX

Hm(X;Z) Hm(K(πmX,m);Z) ∼= πmX

hm
²²

(fm)∗ //

∼=
²²(fm)∗ //

induced by the map fm, where both vertical arrows are Hurewicz homomor-
phisms: we let θm be the bottom horizontal homomorphism (fm)∗ in that
diagram.

In order to prove that (a) follows from (c), let us recall the definition of
the k-invariants of a connected simple CW-complex X (see [WG2], Section
IX.2). Let κm+1 denote the composition

Hm+1(X[m− 1], X[m];Z) (hm+1)−1

−−−−−→ πm+1(X[m− 1], X[m]) ∂→ πmX,

where hm+1 is the Hurewicz isomorphism for them-connected pair (X[m−1],
X[m]) and ∂ the composition of the connecting homomorphism (which is
actually an isomorphism) of the homotopy exact sequence of that pair with
the obvious isomorphism πmX[m] ∼= πmX. Consider the isomorphism

λ : Hom(Hm+1(X[m− 1], X[m];Z), πmX)
∼=→Hm+1(X[m− 1], X[m];πmX)

given by the universal coefficient theorem and the homomorphism

µ : Hm+1(X[m− 1], X[m];πmX)→ Hm+1(X[m− 1];πmX)
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induced by the inclusion of pairs (X[m − 1], ∗) ↪→ (X[m − 1], X[m]). The
k-invariant km+1(X) is defined by

km+1(X) = µλ(κm+1) ∈ Hm+1(X[m− 1|;πmX).

Now let us look at the commutative diagram

πm+1(X[m− 1], X[m]) Hm+1(X[m− 1], X[m];Z)

πmX ∼= πmX[m] Hm(X[m];Z) ∼= Hm(X;Z)

∼= ∂

²²

hm+1

∼=
//

∂̃
²²

hm //

in which the horizontal arrows are Hurewicz homomorphisms and the verti-
cal arrows are connecting homomorphisms. If θm : Hm(X;Z)→ πmX exists
as in (c), we deduce that

θm∂̃ = θmhm∂(hm+1)−1 = %∂(hm+1)−1 = %κm+1

and that %λ(κm+1) belongs to the image of the connecting homomorphism
δ : Hm(X[m];πmX)→ Hm+1(X[m− 1], X[m];πmX). The exactness of the
cohomology sequence

Hm(X[m];πmX) δ→Hm+1(X[m− 1], X[m];πmX)
µ→Hm+1(X[m− 1];πmX)

of the pair (X[m− 1], X[m]) finally implies %km+1 = %µλ(κm+1) = 0.

If X is a homotopy associative H-space, the finiteness of the order of its
k-invariants has another important consequence.

Proposition 1.2. Let X be a connected homotopy associative H-space,
m an integer ≥ 2, and assume that ki+1(X) is of finite order dividing %i(X)
for 2 ≤ i ≤ m. Then there are maps

ϕm : X[m]→
m∏

i=1

K(πiX, i) and ψm :
m∏

i=1

K(πiX, i)→ X[m]

such that the composition ψmϕm : X[m] → X[m] is homotopic to the %th
power map, where % denotes the product

∏m
i=2 %i(X).

P r o o f. The assertion follows from the argument of the proof of Corol-
lary 1.4 of [A5], where the same statement is formulated for spectra.

Because of all these nice properties, it is of particular interest to find
finiteness results for the order of the k-invariants of certain CW-complexes
and to be able to approximate their order: this is the goal of the remainder
of the present paper. Let us conclude this section by mentioning a surprising
observation which illustrates one difference between CW-complexes of finite
type and those which are not of finite type.
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Remark 1.3. The fact that a CW-complex X is rationally a product
of Eilenberg–MacLane spaces (in other words, that the k-invariants of the
rationalization of X are trivial) does not imply that the k-invariants of X
have finite order. Consider the following example. If n is an even integer,
then H2n+1(K(Q, n);Z) = 0 and H2n(K(Q, n);Z) ∼= Q. Thus, the universal
coefficient theorem shows that

H2n+1(K(Q, n);Z) ∼= Ext(H2n(K(Q, n);Z),Z) ∼= Ext(Q,Z) ∼= R.
Now, choose a non-trivial element α in H2n+1(K(Q, n);Z) and denote by
X the fibre of the corresponding map

α : K(Q, n)→ K(Z, 2n+ 1).

The CW-complex X has only two non-trivial homotopy groups, πnX ∼= Q
and π2nX ∼= Z, and its only k-invariant is k2n+1(X) = α, which is of
infinite order. However, the rationalization XQ of X has again two non-
trivial homotopy groups πnXQ ∼= π2nXQ ∼= Q and its k-invariant k2n+1(XQ)
is trivial since it belongs to the group

H2n+1(K(Q, n);Q) ∼= Ext(Q,Q) = 0.

Consequently, XQ is a product of Eilenberg–MacLane spaces:

XQ ' K(Q, n)×K(Q, 2n).

It is however true that if X is a CW-complex of finite type which is rationally
a product of Eilenberg–MacLane spaces, then all k-invariants of X have
finite order.

2. The cohomology suspension. The main results on k-invariants of
(iterated) loop spaces we obtain in this paper rely on the following basic
property: the k-invariants of a loop space are cohomology classes which
belong to the image of the cohomology suspension. More precisely, if Y is a
simply connected CW-complex and m an integer ≥ 3, then the k-invariant
km+1(Y ) ∈ Hm+1(Y [m − 1];πmY ) of Y and the k-invariant km(ΩY ) of
ΩY , which is in fact a cohomology class in Hm(ΩY [m − 2];πmY ) since
πm−1(ΩY ) ∼= πmY , are related by the following formula (see [WG2], p. 438).

Proposition 2.1. Let Y be a simply connected CW-complex and m an
integer ≥ 3. If we denote by σ∗ the cohomology suspension

Hn+1(Y [n− 1];πnY )→ Hn(ΩY [n− 2];πnY ),

then σ∗(kn+1(Y )) = kn(ΩY ).

The goal of this section is to recall a result from [P2] on the cohomol-
ogy suspension of a finite product of Eilenberg–MacLane spaces in unstable
dimensions. It asserts that the exponent of its image is finite and can be
estimated by a universal upper bound. This upper bound only depends on
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the dimension and the connectivity of the space, and not on its homotopy
groups. Although k-invariants do not belong in general to the cohomology of
a product of Eilenberg–MacLane spaces except the first non-trivial one, we
will show in Section 4 how this theorem can provide universal upper bounds
for the order of higher k-invariants of H-spaces and iterated loop spaces.

Definition 2.2 (see [P2]). For integers m > n ≥ 1 and a prime q, let

ϕ(q,m, n) = max
{

1,
[

logq
m

n− 2 + 2q

]
+ 1
}
,

where [−] denotes the integral part. This allows one to define integers
S1(m,n) and S2(m,n) by

S1(m,n) =
∏

q≤(m−n)/2+1
q prime

qϕ(q,m,n), S2(m,n) =
∏

q≤(m−n)/2+1
q prime

qϕ(q,m,n)+1,

and to set

B(m,n) = S1(m+ 1, n+ 1)S2(m+ 1, n+ 1)S2(m,n+ 1)

for m > n ≥ 1.
Notice that a prime p divides B(m,n) if and only if p ≤ (m− n)/2 + 1.
We are now able to state the main theorem of [P2].

Theorem 2.3. Let I be a finite set of positive integers, n = min I and
m > max I. Then for any family {Gi}i∈I of abelian groups and any abelian
group H, the cohomology suspension

σ∗ : Hm+2
(∏

i∈I
K(Gi, i+ 1);H

)
→ Hm+1

(∏

i∈I
K(Gi, i);H

)

satisfies B(m+ 1, n)im(σ∗) = 0.

The proof of this result is given in [P2] and [P1], Chapitres 2 and 3.
It is essentially based on Cartan’s description of the Pontryagin algebra
H∗(K(G,n);Z) where G is an abelian group and n ≥ 1 (see [C], Théo-
rème 1), and on some explicit calculations involving the diagonal map.

Remark 2.4. By definition, B(n + 2, n) = 8 for all n ≥ 1. If σ∗ is the
cohomology suspension

Hn+3(K(G,n+ 1);H)→ Hn+2(K(G,n);H)

for any positive integer n and any abelian groups G and H, it is possible to
get a better result than the one given by Theorem 2.3. In fact one can prove
that

2 im(σ∗) = 0
in this special case. The result is clear for n ≥ 2 because we have
2Hn+3(K(G,n + 1);H) = 0 since Hn+2(K(G,n + 1);Z) = 0 if n ≥ 1 and
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Hn+3(K(G,n + 1);Z) = G ⊗ Z/2 if n ≥ 2 (see [WH], p. 81, and [WG2],
p. 560, Theorem 3.20). In order to get the result for n = 1, we may ap-
ply the argument of the proof of the main theorem of [P2]. Consider the
composition of homomorphisms

H4(K(G, 2) ∧K(G, 2);H) d∗−→H4(K(G, 2);H) σ∗−→H3(K(G, 1);H),

where d∗ is induced by the diagonal map. The group H4(K(G, 2);Z) can be
computed by means of Whitehead’s quadratic functor Γ (see [WH], Theo-
rem 14) or Cartan’s methods (see [C], Théorème 1): it is for instance known
that H4(K(Z/2f , 2);Z) ∼= Z/2f+1 for all f ≥ 1. This calculation enables us
to replace Lemma 6 of [P2] by the assertion that 2H4(K(G, 2);H) ⊂ im(d∗).
Because σ∗d∗ = 0 (see [WG2], p. 383), this finally implies that 2im(σ∗) = 0.

3. The first k-invariant of an H-space. In this section, we show how
it is possible to deduce from Theorem 2.3 a universal upper bound for the
order of the first k-invariant of a loop space. As every H-space can be seen
as a retract of a loop space, this also provides a universal upper bound for
the order of the first k-invariant of an H-space.

Theorem 3.1. Let X be an (n−1)-connected loop space such that πi(X)
= 0 if n < i < m for some integers m > n ≥ 1. Then its first k-invariant
km+1(X) ∈ Hm+1(X[m− 1];πmX) satisfies

B(m+ 1, n)km+1(X) = 0.

P r o o f. The first k-invariant of X is km+1(X) ∈ Hm+1(X[m− 1];πmX)
= Hm+1(K(πnX,n);πmX). According to Proposition 2.1, it lies in the im-
age of the cohomology suspension

σ∗ : Hm+2(K(πnX,n+ 1);πmX)→ Hm+1(K(πnX,n);πmX),

which has finite exponent dividing B(m+ 1, n) by Theorem 2.3.

For the k-invariant kn+2(X) of an (n−1)-connected loop space X (where
n ≥ 1), the result of Theorem 3.1 can be improved by considering Re-
mark 2.4.

Theorem 3.2. Let X be an (n − 1)-connected loop space (with n ≥ 1).
Then

2kn+2(X) = 0.

Remember that the James reduced product construction allows one to
show that a connected CW-complex X admits an H-space structure if and
only if the canonical map X → ΩΣX has a left homotopy splitting (see [J]).
This enables us to apply Theorem 3.2 in order to get an upper bound for
the order of the first k-invariant of an H-space.
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Corollary 3.3. The first k-invariant kn+2(X) of an (n− 1)-connected
H-space X (with n ≥ 1) fulfills

2kn+2(X) = 0.

P r o o f. Let i : X → ΩΣX denote the canonical map given by the adjoint
of the identity in [ΣX,ΣX]. The naturality of k-invariants with respect to
maps provides the following relation between the k-invariants of X and those
of ΩΣX (see [WG2], p. 424, Theorem 2.6). Consider the homomorphism

i∗ : Hn+2(ΩΣX[n];πn+1ΩΣX)→ Hn+2(X[n];πn+1ΩΣX)

and the coefficient homomorphism

i∗ : Hn+2(X[n];πn+1X)→ Hn+2(X[n];πn+1ΩΣX)

induced by the map i. We then have

i∗(kn+2(X)) = i∗(kn+2(ΩΣX)).

The loop space ΩΣX is (n − 1)-connected, and so it follows from Theo-
rem 3.2 that 2kn+2(ΩΣX) = 0. As X is supposed to be an H-space, i has a
left homotopy inverse and i∗ is a split monomorphism. Therefore, we have
2kn+2(X) = 0.

Notice that the results of this section hold for loop spaces and H-spaces
even if they are not of finite type. Therefore Corollary 3.3 is a general-
ization of Arkowitz–Curjel’s theorem for the first k-invariant of H-spaces.
Additionally, it provides a universal upper bound for its order.

4. The order of higher k-invariants of iterated loop spaces. If
one wants to generalize Theorem 3.2 or Corollary 3.3 to higher k-invariants,
one has to assume that the space we are looking at is an iterated loop
space. It is quite easy to check that our argument implies inductively the
existence of a universal upper bound for the order of km+1(X) for all (n−1)-
connected r-fold loop spaces X, where r = m − n (see Théorème 4.18 and
Corollaire 4.19 of [P1]). However, since we want to prove finiteness results
for the order of k-invariants in the unstable range, we would like to assume
that r ≤ m− 2n+ 1 and therefore the only interesting case would be n = 1.
The purpose of this section is to modify our method in order to get results
on km+1(X) for (n − 1)-connected r-fold loop spaces X with r as small as
possible. Observe that throughout this section, the spaces we consider are
again not necessarily of finite type.

Definition 4.1. For k ≥ 1, let Lk denote the product of all prime
numbers p such that there exists a sequence (a1, a2, . . .) of non-negative
integers with

(a) a1 ≡ 0 mod 2p− 2, ai ≡ 1 or 0 mod 2p− 2 for i ≥ 2,
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(b) ai ≥ pai+1 for i ≥ 1,
(c)
∑∞
i=1 ai = k.

For example, L1 = 1, L2 = 2, L3 = 2, L4 = 6, L5 = 6, L6 = 2, . . . Notice
that Lk divides the product of all primes p ≤ k/2 + 1.

The integers Lk occur in the calculation of the stable homology groups
of Eilenberg–MacLane spaces.

Lemma 4.2 ([C], Théorème 2). For any abelian group G and any integer
s ≥ 2, Li−sHi(K(G, s);Z) = 0 whenever s < i < 2s.

Lemma 4.3. Let X be an (n − 1)-connected CW-complex (with n ≥ 2)
for which there is an integer N satisfying n ≤ N ≤ 2n − 2 and such that
πjX = 0 for all j > N .

(a)
∏N
s=n Li−sHi(X;Z) = 0 if N < i < 2n.

(b)
∏N+1
s=n Li−sH

i(X;H) = 0 for any abelian group H if N+1 < i < 2n.

P r o o f. For n ≤ s ≤ N − 1, consider the fibration

K(πs+1X, s+ 1)→ X[s+ 1] αs−→X[s]

and the associated homology exact sequence

Hi(K(πs+1X, s+ 1);Z)→ Hi(X[s+ 1];Z)
(αs)∗−→ Hi(X[s];Z)

provided by the Serre spectral sequence since i < 2n. Notice that X[n] =
K(πnX,n) and X[N ] = X. The assertion (a) then follows inductively from
Lemma 4.2 and (b) is a direct consequence of the universal coefficient the-
orem.

Definition 4.4. For j ≥ 1 let Rj =
∏j
k=1 Lk. For example, R1 = 1,

R2 = 2, R3 = 4, R4 = 24, R5 = 144, R6 = 288, . . . It turns out that a
prime p divides Rj if and only if p ≤ j/2 + 1. For i ≥ 1, let us also define
Ri =

∏i
j=1Rj .

The integers Rj were introduced in [A4] in order to formulate the fol-
lowing result (see [A4], Theorem 1.3).

Theorem 4.5. If X is an (n−1)-connected r-fold loop space (with n ≥ 1
and r ≥ 0), then

Rm−n+1k
m+1(X) = 0 for n+ 1 ≤ m ≤ 2n+ r − 2.

Let us first extend the assertions of Theorem 3.2 and Corollary 3.3 to the
k-invariants of (n−1)-connected loop spaces or H-spaces up to dimension 2n.

Theorem 4.6. Let X ' ΩY be any (n − 1)-connected loop space (with
n ≥ 1), and m any integer such that n+ 1 ≤ m ≤ 2n. Then the k-invariant
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km+1(X) ∈ Hm+1(X[m− 1];πmX) satisfies

C1(m,n)km+1(X) = 0,

where

C1(m,n) =
{
Rm−n+1 if m ≤ 2n− 1,
B(2n+ 1, n)Rn if m = 2n.

Notice that the integers C1(m,n) depend only on m and n and that a prime
p divides C1(m,n) if and only if p ≤ (m− n+ 3)/2.

P r o o f. For m ≤ 2n − 1, the assertion is already provided by Theorem
4.5. In order to get it for m = 2n, consider the fibrations

X(n, 2n− 1]
β−→X[2n− 1] αn−→K(πnX,n),

Y (n+ 1, 2n]
β′−→ Y [2n]

α′n+1−→ K(πnX,n+ 1)

where X(n, 2n−1] and Y (n+1, 2n] denote the n-connected cover of X[2n−1]
and the (n+1)-connected cover of Y [2n] respectively. Denote by H the group
π2nX and look at the induced commutative diagram

H2n+2(K(πnX,n+ 1);H) H2n+1(K(πnX,n);H)

H2n+2(Y [2n];H) H2n+1(X[2n− 1];H)

H2n+2(Y (n+ 1, 2n];H) H2n+1(X(n, 2n− 1];H)

(α′n+1)∗

²²

σ∗ //

α∗n
²²

(β′)∗

²²

σ∗ //

β∗

²²
σ∗ //

where the horizontal arrows are cohomology suspensions and where the left
vertical sequence is exact. It follows from Lemma 4.3(b) that

RnH
2n+2(Y (n+ 1, 2n];H) = 0

and from Theorem 2.3 that the exponent of the image of the top sus-
pension σ∗ divides the integer B(2n + 1, n). Consequently, the image of
σ∗ : H2n+2(Y [2n];H)→ H2n+1(X[2n− 1];H) is of finite exponent dividing
B(2n+ 1, n)Rn and Proposition 2.1 completes the proof.

Remark 4.7. If n = 1, the statement of Theorem 4.6 is actually given
by Theorem 3.1 but can be improved as in Theorem 3.2.

The argument of the proof of Corollary 3.3 produces also the following
result which gives a positive answer in dimensions ≤ 2n to Questions (A)
and (B) for (n− 1)-connected H-spaces.

Corollary 4.8. For any (n − 1)-connected H-space X (with n ≥ 1)
and any integer m such that n + 1 ≤ m ≤ 2n, the k-invariant km+1(X) ∈
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Hm+1(X[m− 1];πmX) fulfills

C1(m,n)km+1(X) = 0.

In order to obtain similar results for k-invariants in dimensions > 2n, we
need to assume that X is an iterated loop space. Let us start by looking at
double loop spaces.

Proposition 4.9. Let X ' Ω2Y be any (n − 1)-connected double loop
space (with n ≥ 1), and m and t positive integers such that 1 ≤ t ≤ n and
m ≥ n+ t+ 2. Let W be the loop space of Y and suppose the order %j(W )
of the k-invariant kj+1(W ) in the cohomology group Hj+1(W [j − 1];πjW )
is finite whenever n + 2 ≤ j ≤ m − t. Then the order of the k-invariant
km+1(X) ∈ Hm+1(X[m− 1];πmX) of X divides the product

%n+2(W )%n+3(W ) . . . %m−t(W )B(m+ 1, n)Rt+1.

P r o o f. Consider the fibrations

X(m− t− 1,m− 1]
β→X[m− 1] αm−t−1−−−−−→X[m− t− 1],

W (m− t,m]
β′→W [m]

α′m−t−−−→W [m− t],
Y (m− t+ 1,m+ 1]

β′′→ Y [m+ 1]
α′′m−t+1−−−−−→Y [m− t+ 1],

and the induced commutative diagrams

Hm+3(Y [m− t+ 1];H) Hm+2(W [m− t];H)

Hm+3(Y [m+ 1];H) Hm+2(W [m];H)

Hm+3(Y (m− t+ 1,m+ 1];H) Hm+2(W (m− t,m];H)

(α′′m−t+1)∗

²²

σ∗ //

(α′m−t)
∗

²²

(β′′)∗

²²

σ∗ //

(β′)∗

²²
σ∗ //

Hm+2(W [m− t];H) Hm+1(X[m− t− 1];H)

Hm+2(W [m];H) Hm+1(X[m− 1];H)

(α′m−t)
∗

²²

σ∗ //

α∗m−t−1

²²
σ∗ //

where the horizontal arrows are cohomology suspensions and where H is
written for the group πmX. The k-invariant we are looking at is km+1(X) ∈
Hm+1(X[m − 1];H), which is related to the corresponding k-invariant
km+3(Y ) ∈ Hm+3(Y [m+ 1];H) by the formula

(σ∗)2(km+3(Y )) = km+1(X)
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because of Proposition 2.1. The left vertical sequence in the first diagram is
exact since t ≤ n. It follows from Lemma 4.3(b) that

Rt+1H
m+3(Y (m− t+ 1,m+ 1];H) = 0

since m ≥ 2t. Consequently, the element (β′′)∗(Rt+1k
m+3(Y )) vanishes and

there exists an element x ∈ Hm+3(Y [m−t+1];H) such that (α′′m−t+1)∗(x) =
Rt+1k

m+3(Y ). Therefore,

Rt+1k
m+1(X) = Rt+1(σ∗)2(km+3(Y )) = (σ∗)2(α′′m−t+1)∗(x)

= α∗m−t−1(σ∗)2(x).

According to Proposition 1.2, there are maps

W [m− t] ϕ→
m−t∏

i=n+1

K(πiW, i)
ψ→W [m− t]

such that the composition ψϕ is exactly the power map χ% : W [m − t] →
W [m− t], where % denotes the product %n+2(W )%n+3(W ) . . . %m−t(W ). The
maps ϕ and ψ induce the commutative diagram

Hm+2(W [m− t];H) Hm+1(X[m− t− 1];H)

Hm+2
( m−t∏

i=n+1

K(πiW, i);H
)

Hm+1
(m−t−1∏

i=n

K(πiX, i);H
)

Hm+2(W [m− t];H) Hm+1(X[m− t− 1];H)

ψ∗

²²

σ∗ //

(Ωψ)∗

²²

ϕ∗

²²

σ∗ //

(Ωϕ)∗

²²
σ∗ //

.

The composition ϕ∗ψ∗ induced by the power map χ% acts on primitive
cohomology classes by multiplication by %, in particular on the class σ∗(x) ∈
Hm+2(W [m− t];H). Thus, one gets ϕ∗ψ∗(σ∗(x)) = %σ∗(x) and

%(σ∗)2(x) = σ∗ϕ∗ψ∗(σ∗(x)) = (Ωϕ)∗σ∗ψ∗σ∗(x) ∈ Hm+1(X[m− t− 1];H).

On the other hand, we know from Theorem 2.3 that the image of the middle
horizontal cohomology suspension is killed by B(m+ 1, n). This enables us
to deduce that %B(m+ 1, n)(σ∗)2(x) = 0 and finally that

%B(m+ 1, n)Rt+1k
m+1(X) = α∗m−t−1(%B(m+ 1, n)(σ∗)2(x)) = 0.

Theorem 4.10. Let X ' Ω2Y be any (n−1)-connected double loop space
(with n ≥ 1) and m any integer such that n + 1 ≤ m ≤ 3n + 2. Then the
k-invariant km+1(X) ∈ Hm+1(X[m− 1];πmX) satisfies

C2(m,n)km+1(X) = 0,
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where the integers C2(m,n) are given by

C2(m,n) =





Rm−n+1 if n+ 1 ≤ m ≤ 2n,

2B(m+ 1, n)Rm−n−1 if m = 2n+ 1 or m = 2n+ 2,

B(2n+ 3, n+ 1)B(m+ 1, n)Rn+1Rn+1Rm−2n−1

if 2n+ 3 ≤ m ≤ 3n+ 2.

Observe that C2(m,n) depends only on m and n and that a prime p divides
C2(m,n) if and only if p ≤ (m− n+ 3)/2.

P r o o f. If n+ 1 ≤ m ≤ 2n, then the assertion is given by Theorem 4.5.
If m = 2n+ 1 (and n ≥ 2) or m = 2n+ 2, one has m ≥ n+ 3 and one can
use Proposition 4.9 with t = m− n− 2; this shows that

%n+2(W )B(m+ 1, n)Rm−n−1k
m+1(X) = 0.

However, since %n+2(W ) is the order of the first k-invariant kn+3(W ) of the
n-connected space W = ΩY , it divides 2, according to Theorem 3.2. We
then obtain

2B(m+ 1, n)Rm−n−1k
m+1(X) = 0.

If n = 1 and m = 3, one can also apply the idea of the proof of Proposi-
tion 4.9. We start with the fibration

K(π2X, 2)→ X[2]→ K(π1X, 1)

and consider the commutative diagram

H6(K(π1X, 3);H) H5(K(π1X, 2);H) H4(K(π1X, 1);H)

H6(Y [4];H) H5(W [3];H) H4(X[2];H)

H6(K(π2X, 4);H) H5(K(π2X, 3);H) H4(K(π2X, 2);H)

²²

σ∗ //

²²

σ∗ //

²²

²²

σ∗ //

²²

σ∗ //

²²
σ∗ // σ∗ //

where W = ΩY , H = π3X and in which the left vertical sequence is exact.
Again, k4(X) = (σ∗)2(k6(Y )) ∈ H4(X[2];H) by Proposition 2.1. Since we
know from Lemma 4.2 that 2H6(K(π2X, 4);H) = 0 and from Theorem 2.3
that B(4, 1) kills the image of the top right cohomology suspension σ∗, we
conclude that 2B(4, 1)k4(X) = 0 (notice that R1 = 1).

For 2n + 3 ≤ m ≤ 3n + 2 choose t = m − 2n − 2 in Proposition 4.9 to
deduce that

%n+2(W )%n+3(W ) . . . %2n+2(W )B(m+ 1, n)Rm−2n−1k
m+1(X) = 0.

Since W is an n-connected loop space, Theorem 4.6 implies that Rn+1 is
a positive multiple of the product %n+2(W )%n+3(W ) . . . %2n+1(W ) and that



Postnikov invariants of H-spaces 31

%2n+2(W ) divides B(2n+ 3, n+ 1)Rn+1. Consequently, we get

B(2n+ 3, n+ 1)B(m+ 1, n)Rn+1Rn+1Rm−2n−1k
m+1(X) = 0.

In the general case, we are able to prove the following solution of Ques-
tions (A) and (B).

Theorem 4.11. Let X be any (n − 1)-connected r-fold loop space (with
n ≥ 1 and r ≥ 2) and m any integer such that n + 1 ≤ m ≤ (r + 1)n + r.
Then the k-invariant km+1(X) ∈ Hm+1(X[m− 1];πmX) satisfies

Cr(m,n)km+1(X) = 0,

where the integers Cr(m,n) are inductively defined for r ≥ 3 by the following
formulae:

Cr(m,n) =





Rm−n+1 if n+ 1 ≤ m ≤ 2n+ r − 2,

( m−n∏

j=n+2

Cr−1(j, n+ 1)
)
B(m+ 1, n)Rn+1

if 2n+ r − 1 ≤ m ≤ (r + 1)n+ r.

Observe that Cr(m,n) depends only on r, m and n and that a prime p divides
Cr(m,n) if and only if p ≤ (m− n+ 3)/2.

P r o o f. If n+1 ≤ m ≤ 2n+r−2, then the assertion follows directly from
Theorem 4.5. Let us prove it for 2n+ r− 1 ≤ m ≤ n(r+ 1) + r by induction
on r. If r = 2, this is given by Theorem 4.10. Now consider an r-fold loop
space X ' ΩrY with r ≥ 3 and suppose that the statement holds for all
(r − 1)-fold loop spaces. By Proposition 4.9 with t = n, we obtain

%n+2(W )%n+3(W ) . . . %m−n(W )B(m+ 1, n)Rn+1k
m+1(X) = 0,

where W is written for the space Ωr−1Y . Since W is an n-connected (r−1)-
fold loop space, we can deduce from the induction hypothesis that %j(W )
divides Cr−1(j, n+ 1) for n+ 2 ≤ j ≤ m− n, because m− n ≤ rn+ 2r− 1.
Consequently,

( m−n∏

j=n+2

Cr−1(j, n+ 1)
)
B(m+ 1, n)Rn+1k

m+1(X) = 0.

There is another way to formulate Theorems 4.6, 4.10 and 4.11.

Corollary 4.12. Let X be any (n − 1)-connected CW-complex and m
any integer ≥ n+ 1. There are integers D(m,n), depending only on m and
n and divisible exactly by the primes p ≤ (m − n + 3)/2, such that if one
assumes that

X '
{
Ω[m/(n+1)]Y if m 6= 2n+ 1,
Ω2Y if m = 2n+ 1,
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for some CW-complex Y , then the k-invariant km+1(X) fulfills

D(m,n)km+1(X) = 0.

P r o o f. Take D(m,n) = C1(m,n) if n + 1 ≤ m ≤ 2n, respectively
D(m,n) = C2(m,n) if 2n + 1 ≤ m ≤ 3n + 2, and apply Theorem 4.6,
respectively Theorem 4.10. When m ≥ 3n + 3, the result is produced by
Theorem 4.11 by setting D(m,n) = C[m/(n+1)](m,n).

Remark 4.13. It is possible to improve these results, i.e., to decrease the
number of iterated loops, if one assumes that some homotopy groups πjX
(for n < j < m) vanish (see [P1], Théorème 4.28).

5. The order of the identity. Our aim in this last section is to apply
some of the results of Sections 3 and 4 in order to obtain an estimate for
the order of the identity of H-spaces and iterated loop spaces. Some of the
results stated below were suggested by F. R. Cohen.

Definition 5.1. Let X be a homotopy associative H-space. We define
the order of the identity of X to be the order of the homotopy class of the
identity X → X in [X,X]. The order of the identity of X can be described
as the least integer s > 0 such that the sth power map χs : X → X satisfies
χs ' ∗. This is sometimes also called the multiplicative exponent of X.

As χs induces multiplication by s on homotopy groups, we deduce that
if X is an H-space with multiplicative exponent s, then all homotopy groups
of X are of finite exponent dividing s. In the following, we are interested
in getting a kind of converse of this statement. This is easy to obtain for
Eilenberg–MacLane spaces.

Lemma 5.2. Let G be an abelian group of finite exponent s and n an
integer ≥ 1. Then the identity of K(G,n) is of order s. If G1, . . . , Gm are
abelian groups with finite exponents s1, . . . , sm, then the order of the identity
of
∏m
i=1K(Gi, i) equals lcm(s1, . . . , sm).

P r o o f. This is clear since [K(G,n),K(G,n)] ∼= Hn(K(G,n);G).

One can generalize this to H-spaces having a finite number of non-trivial
homotopy groups in the following way.

Proposition 5.3. Let X be a homotopy associative H-space such that
πiX is of finite exponent si for 1 ≤ i ≤ m. Then the order of the identity of
X[m] divides

∏m
i=1 si.

P r o o f. Suppose by induction that the order of the identity of X[m− 1]
divides

∏m−1
i=1 si and consider the following diagram, which commutes up to
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homotopy:

K(πmX,m) K(πmX,m)

X[m] X[m] X[m]

X[m− 1] X[m− 1] X[m− 1]

²²

χsm'∗ //

²²

αm−1

²²

χs1...sm−1 //

55

k k k k k k k

αm−1

²²

χsm //

αm−1

²²
χs1...sm−1'∗ // χsm //

where αm−1 denotes the (m−1)st Postnikov section of X[m]. As χs1...sm−1 :
X[m]→ X[m] factors through K(πmX,m) and χsm ' ∗ on K(πmX,m) by
Lemma 5.2, we conclude that χs1...sm ' ∗ on X[m].

Note that the latter argument only requires knowledge of the homotopy
groups of X and fails to use further information on X. Therefore the upper
bound for the order of the identity of X[m] given in Proposition 5.3 may not
be the best possible (see the second statement of Lemma 5.2 for instance). As
we show in the next theorem, the multiplicative exponent of the Postnikov
section X[m] can be given an upper bound in terms of the exponents of the
homotopy groups πiX for 1 ≤ i ≤ m and of the orders of the k-invariants
ki+1(X) for 2 ≤ i ≤ m when assuming all of them finite.

Theorem 5.4. Let X be a homotopy associative H-space and m ≥ 1
and integer. Assume that πiX is of finite exponent si for 1 ≤ i ≤ m and
that ki+1(X) is of finite order %i(X) for 2 ≤ i ≤ m. Then the order of the
identity of X[m] divides the product

lcm(s1, . . . , sm)
m∏

i=2

%i(X).

P r o o f. Let

s = lcm(s1, . . . , sm) and % =
m∏

i=2

%i(X).

According to Proposition 1.2 there are maps

ϕm : X[m]→
m∏

i=1

K(πiX, i) and ψm :
m∏

i=1

K(πiX, i)→ X[m]

such that ψmϕm ' χ% : X[m] → X[m]. As ϕm can be shown to be an
H-map, we may look at the following commutative diagram:
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X[m]
m∏

i=1

K(πiX, i)

X[m]
m∏

i=1

K(πiX, i) X[m]

χs

²²

ϕm //

χs

²² !χ%
OO

ϕm // ψm //

and we get χs% ' χ%χs ' ψmϕmχs ' ψmχsϕm ' ∗ because the order of the
identity of

∏m
i=1K(πiX, i) divides s by Lemma 5.2.

We can now use the upper bounds for the order of k-invariants of H-
spaces and iterated loop spaces obtained in Corollary 4.8 and Theorem 4.11
to give an estimate for the order of the identity of certain Postnikov sections
of H-spaces and iterated loop spaces.

Corollary 5.5. Let X be an (n − 1)-connected homotopy associative
H-space (with n ≥ 1), m an integer satisfying n+ 1 ≤ m ≤ 2n, and assume
that πiX has finite exponent si for n ≤ i ≤ m. Then the order of the identity
of X[m] divides the product

lcm(sn, . . . , sm)
m∏

i=n+1

C1(i, n),

where the integers C1(i, n) were defined in Theorem 4.6.

This shows for example that if the homotopy groups πnX and πn+1X
of an (n− 1)-connected H-space X have finite exponents sn and sn+1, then
the order of the identity of X[n+ 1] divides 2lcm(sn, sn+1).

Corollary 5.6. Let X be an (n − 1)-connected r-fold loop space (with
n ≥ 1 and r ≥ 2), m an integer satisfying n + 1 ≤ m ≤ (r + 1)n + r, and
assume that πiX has finite exponent si for n ≤ i ≤ m. Then the order of
the identity of X[m] divides the product

lcm(sn, . . . , sm)
m∏

i=n+1

Cr(i, n),

where the integers Cr(i, n) were defined in Theorems 4.10 and 4.11.

Remark 5.7. The above results on the order of the identity of some X[m]
can be generalized in an easy way to any element of [Y,X[m]], where Y is
an arbitrary CW-complex. It suffices to notice that f ∈ [Y,X[m]] factors as
idX[m]f , where idX[m] denotes the class of the identity of X[m].
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