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The normalizer splitting conjecture for
p-compact groups

by

Kasper K. S. A n d e r s e n (København)

Abstract. Let X be a p-compact group, with maximal torus BT → BX, maximal
torus normalizer BN and Weyl group WX . We prove that for an odd prime p, the fibration
BT → BN → BWX has a section, which is unique up to vertical homotopy.

1. Introduction. Homotopy Lie groups, or p-compact groups, were in-
troduced by Dwyer and Wilkerson [13] and have since then been investigated
closely by a number of people (cf. the surveys [21, 22, 28]). The basic phi-
losophy in the study of these objects, defined purely in terms of homotopy
theory, is that they behave like compact Lie groups.

To be more precise, fix a prime p. A p-compact group X is a loop space
(X,BX, e) (i.e. BX is a pointed space and e : ΩBX ' X is a homotopy
equivalence) such that BX is p-complete and X is Fp-finite (i.e. H∗(X,Fp)
is finitely generated as an abelian group). The motivating example is given
by the Bousfield–Kan p-completion ([4]) of compact Lie groups: If G is a
compact Lie group then (G∧p , (BG)∧p , e) is a p-compact group if π0(G) is
a finite p-group. Considering the torus (S1)n we get the p-compact torus
BT = K(Zp, 2)n of rank n.

The main result of Dwyer and Wilkerson [13] is that any p-compact group
has a maximal torus, i.e. there is a map Bi : BT → BX satisfying a certain
injectivity and maximality condition, and this is unique up to “conjugacy”.
Moreover they also construct a Weyl group and a maximal torus normalizer
as follows.

We may assume that BT → BX is a fibration, since otherwise we can
just replace it by an equivalent fibration BT ′ → BX. We then define the
Weyl space WT (X) as the topological monoid consisting of self-maps of
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BT over BX. This turns out to be homotopically discrete, and the set of
components π0(WT (X)) is a finite group WX called the Weyl group of X.
This does not depend on the choice of T . The maximal torus normalizer
BN is then defined as the Borel construction of the action of WT (X) on
BT . Thus up to homotopy we have a fibration sequence BT → BN →
BWX . It should be noted that BN is generally not a p-compact group,
since π1(BN) = W need not be a finite p-group.

One would of course like to have a classification of p-compact groups. One
approach to this is via the maximal torus normalizer. In the case of a com-
pact connected semisimple Lie group G it was shown by Curtis, Wiederhold
and Williams [12] that the normalizer N of the maximal torus T deter-
mines G. In the general case of compact connected Lie groups, it was shown
by Notbohm [29] using earlier work of Scheerer [32] for the case of simply
connected compact Lie groups.

Curtis, Wiederhold and Williams also studied the question of when the
extension 0→ T → N →W → 0 is split. This question had also been stud-
ied earlier by Tits [35]. Believing in the philosophy that p-compact groups
behave as compact Lie groups, the conjecture is the following:

Conjecture 1.1 [28, 5.20]. Two connected p-compact groups X and
Y are isomorphic if and only if the normalizers of their maximal tori are
isomorphic (as loop spaces). At odd primes the normalizer splits and the
Weyl group data are sufficient to distinguish between connected p-compact
groups.

A more precise version is given by Lannes [21, 5.2]. The action ofWT (X)
on BT gives a representation WX → GL(LX), where LX := H2(BT,Zp) ∼=
(Zp)n. We will call LX the lattice of X. Since BN fits into a fibration BT →
BN → BWX , where BT = K(LX , 2) is an Eilenberg–MacLane space, the
obstruction to finding a section is given by an element in H3(BWX , C)
([38, IV.6.11]). The local coefficient system C comes from the action of
WX on H2(BT,Zp) = LX . Thus the obstruction is given by an element
γX ∈ H3(WX , LX).

The precise version of the conjecture is that up to isomorphism connected
p-compact groups X are determined by the triple (WX , LX , γX) for p = 2,
and for odd primes that γX = 0 and X is determined by the pair (WX , LX).
Our main result is the following part of the conjecture:

Theorem 1.2. If p is odd and X is a connected p-compact group then
the obstruction γX vanishes, i.e. the fibration BT → BN → BWX has a
section. Moreover this section is unique up to vertical homotopy.

The results of Tits and Curtis, Wiederhold and Williams [35, 12] show
that this is true in the case of compact connected Lie groups. Theorem 1.2
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has also been proved independently by Dwyer and Wilkerson and by Not-
bohm, but their proofs have not yet appeared.

Our approach is the following. Recall that an element w ∈ GLn(Qp) is
called a pseudoreflection if w − 1 has rank 1, that is, w fixes a hyperplane.
Dwyer and Wilkerson [13] show that for connected p-compact groups X,
WX → GL(LX) is a faithful representation of W as a finite p-adic pseudore-
flection group (i.e. the image is generated by pseudoreflections). Since the
finite p-adic pseudoreflection groups have been classified [8], we can directly
compute the cohomology groups H3(WX , LX). The result is the following:

Theorem 1.3. Let W ↪→ GL(L) be a finite irreducible p-adic pseudore-
flection group, p odd. Then H3(W,L) = 0 except for the case W = Σ3,
L = L ̂PU(3) and p = 3 where we have H3(Σ3, L ̂PU(3)) = Z/3.

The paper is organized as follows. In Section 2 we review the classification
of p-adic pseudoreflection groups. This enables us to prove Theorem 1.3,
which will be done in Section 3. Finally Section 4 contains the proof of
Theorem 1.2.

Notation. In the following, p denotes a prime number, Fp the field
with p elements, Zp the ring of p-adic integers and Qp its quotient field,
the field of p-adic rational numbers. If W → GLn(Zp) is a representation
of the group W , we let L = (Zp)n be the natural W -module. We will say
that L is the lattice associated with the representation. The reduction map
Zp → Zp/(p) = Fp induces a representation W → GLn(Fp). For short we
will write L/p for the W -module (Fp)n ∼= L⊗ Fp.
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2. Classification of p-adic pseudoreflection groups. The finite p-
adic pseudoreflection groups were first classified (up to conjugacy over Qp)
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by Clark and Ewing [8], based on the earlier classification of the finite com-
plex pseudoreflection groups by Shephard and Todd [33]. Earlier the real
reflection groups had been classified by Coxeter [10], who established that
they are in bijective correspondence with the so-called Coxeter graphs.

First of all it suffices to consider irreducible pseudoreflection groups,
since any finite pseudoreflection group splits as a direct product of finite
irreducible pseudoreflection groups. The result of Shephard and Todd is that,
up to conjugation, the finite irreducible complex pseudoreflection groups fall
into 3 infinite families, denoted by 1− 3, and 34 sporadic cases, denoted by
4− 37.

Assume that ρ : W ↪→ GLn(C) is a finite irreducible complex pseudore-
flection group. Define the character field Q(χ) as the field obtained from Q
by adjoining all values of the associated character χ. Obviously a necessary
condition for ρ to be equivalent to a representation taking values in Qp is
that we can embed the character field Q(χ) in Qp. Clark and Ewing show
that this is in fact also a sufficient condition.

Thus to classify the finite irreducible p-adic pseudoreflection groups it
suffices to compute the character field Q(χ) for each of the finite irreducible
complex pseudoreflection groups and to determine for each of these the
primes p for which we can embed Q(χ) in Qp. The result is shown in Table 1,
where the numbering is identical to the numbering of Shephard and Todd.
We divide the possible primes into two groups: If p - |W | we say that p is a
nonmodular prime for the p-adic pseudoreflection group W , and if p | |W |
we say that p is a modular prime. In the table ζm denotes a primitive mth
root of unity.

It should be emphasized that Table 1 gives the classification of irreducible
pseudoreflection representations up to conjugacy in GLn(Qp). We return to
this later. Now we describe some of the groups occurring in the table.

The first family consists of the symmetric groups Σn+1, n ≥ 1. The
(n+1)-dimensional representation obtained by permuting coordinates splits
as a direct sum of a one-dimensional representation given by the fixed line
spanned by the vector e1 + . . . + en+1 and its orthogonal complement con-
sisting of all vectors with sum of coordinates equal to 0. This n-dimensional
representation is irreducible, and since the transpositions generate Σn+1

and act as reflections this is actually a pseudoreflection representation. The
representation is defined over Q and is thus among the groups classified
by Coxeter. The associated Coxeter graph has the form An. It is the Weyl
group of the compact Lie groups U(n+ 1) and SU(n+ 1) and their central
quotients.

The second family consists of the groups G(m, r, n) where r |m. They
are defined as follows. Let A(m, r, n) consist of all diagonal matrices of the
form
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Table 1. The finite irreducible p-adic pseudoreflection groups

Number Order Center Character field Primes with p - |W | Primes with p | |W |
1 (n+ 1)! 1 for n ≥ 2 Q p > n+ 1 2 ≤ p ≤ n+ 1

2 for n = 1

2a n!mn/r m(n, r)/r Q(ζm) p ≡ 1 (mod m), p ≡ 1 (mod m),
p > n for m ≥ 3; p ≤ n for m ≥ 3;
p > n for m = 2 p ≤ n for m = 2

2b 2m (2,m) Q(ζm + ζ−1
m ) p ≡ ±1 (mod m) m = 3, 4, 6 for p = 2

(p,m) 6= (2, 3) m = 3, 6 for p = 3

3 n n Q(ζn) p ≡ 1 (mod n) for p > 2 n = 2, p = 2
or n = 1, p = 2

4 24 2 Q(ζ3) p ≡ 1 (mod 3)
5 72 6 Q(ζ3) p ≡ 1 (mod 3)
6 48 4 Q(ζ12) p ≡ 1 (mod 12)
7 144 12 Q(ζ12) p ≡ 1 (mod 12)
8 96 4 Q(ζ4) p ≡ 1 (mod 4)
9 192 8 Q(ζ8) p ≡ 1 (mod 8)
10 288 12 Q(ζ12) p ≡ 1 (mod 12)
11 576 24 Q(ζ24) p ≡ 1 (mod 24)
12 48 2 Q(

√−2) p ≡ 1, 3 (mod 8), p 6= 3 p = 3
13 96 4 Q(ζ8) p ≡ 1 (mod 8)
14 144 6 Q(ζ3,

√−2) p ≡ 1, 19 (mod 24)
15 288 12 Q(ζ24) p ≡ 1 (mod 24)
16 600 10 Q(ζ5) p ≡ 1 (mod 5)
17 1200 20 Q(ζ20) p ≡ 1 (mod 20)
18 1800 30 Q(ζ15) p ≡ 1 (mod 15)
19 3600 60 Q(ζ60) p ≡ 1 (mod 60)
20 360 6 Q(ζ3,

√
5) p ≡ 1, 4 (mod 15)

21 720 12 Q(ζ12,
√

5) p ≡ 1, 49 (mod 60)
22 240 4 Q(ζ4,

√
5) p ≡ 1, 9 (mod 20)

23 120 2 Q(
√

5) p ≡ 1, 4 (mod 5)
24 336 2 Q(

√−7) p ≡ 1, 2, 4 (mod 7), p 6= 2 p = 2
25 648 3 Q(ζ3) p ≡ 1 (mod 3)
26 1296 6 Q(ζ3) p ≡ 1 (mod 3)
27 2160 6 Q(ζ3,

√
5) p ≡ 1, 4 (mod 15)

28 1152 2 Q p 6= 2, 3 p = 2, 3
29 7680 4 Q(ζ4) p ≡ 1 (mod 4), p 6= 5 p = 5
30 14400 2 Q(

√
5) p ≡ 1, 4 (mod 5)

31 64 · 6! 4 Q(ζ4) p ≡ 1 (mod 4), p 6= 5 p = 5
32 216 · 6! 6 Q(ζ3) p ≡ 1 (mod 3)
33 72 · 6! 2 Q(ζ3) p ≡ 1 (mod 3)
34 108 · 9! 6 Q(ζ3) p ≡ 1 (mod 3), p 6= 7 p = 7
35 72 · 6! 1 Q p 6= 2, 3, 5 p = 2, 3, 5
36 8 · 9! 2 Q p 6= 2, 3, 5, 7 p = 2, 3, 5, 7
37 192 · 10! 2 Q p 6= 2, 3, 5, 7 p = 2, 3, 5, 7
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


θ1 0 · · · 0
0 θ2 · · · 0
...

...
. . .

...
0 0 · · · θn




with θmi = 1, 1 ≤ i ≤ n, and (θ1 . . . θn)m/r = 1. This is an abelian group of
order mn/r which has an action of Σn given by permutation of the entries on
the diagonal. Denoting the permutation representation Σn ↪→ GLn(C) by ρ,
the group G(m, r, n) is the subgroup of GLn(C) generated by A(m, r, n) and
ρ(Σn). In other words, G(m, r, n) is the semidirect product A(m, r, n)oΣn,
and its order is n!mn/r.

If n = 1 our group is just a cyclic group of order m/r. These are separated
as a special case and they constitute the third infinite family (see below). For
n ≥ 2 the given representation of the group G(m, r, n) is irreducible iff m ≥ 2
and (m, r, n) 6= (2, 2, 2) (see [9, 2.4]). The group G(2, 2, 2) is isomorphic to
C2 × C2, which is abelian and thus only has irreducible representations of
dimension one. To summarize, the allowed parameters are m ≥ 2, r |m,
n ≥ 2 and (m, r, n) 6= (2, 2, 2), and we will always assume these conditions
to be satisfied when speaking of groups from this family.

The groups G(m, r, n) consist of generalized signed permutation matri-
ces. In particular if m = 2 we have ordinary signed permutation matrices,
and we thus recover (as abstract groups) the Weyl groups of the classical
compact Lie groups.

The groups G(2, 1, n) have Coxeter graphs Bn and are the Weyl groups
of the compact Lie groups SO(2n+ 1) and Sp(n). We also have the groups
G(2, 2, n) with Coxeter graphsDn, which are the Weyl groups of the compact
Lie groups SO(2n).

Also in the case n = 2 and m = r we get a Coxeter group, more precisely
G(m,m, 2) is the dihedral group D2m, with Coxeter graph I2(m). For m = 3,
D6 is isomorphic to Σ3, and thus it is the Weyl group of U(3) and SU(3)
(and their common quotient PU(3)). For m = 4, D8 is the Weyl group of
SO(5) and Sp(2). For m = 6, D12 is the Weyl group of G2.

It should be noted that the groups of type 2 are divided into the two
families 2a and 2b in the table. This is due to the fact that the character
field of G(m, r, n) is Q(ζm) if n ≥ 3 or n = 2 and r < m, while it equals
Q(ζm + ζ−1

m ) if n = 2 and m = r.
The third family consists simply of a cyclic group Cn in the faithful

one-dimensional representation which maps a generator of Cn to a primitive
nth root of unity ζn.

In addition to the above mentioned examples, Coxeter’s classification
of finite real reflection groups consists only of the following examples. We
have the crystallographic groups with numbers 28, 35, 36 and 37 which are
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respectively the Weyl groups of the compact Lie groups F4, E6, E7 and
E8. Furthermore we have the noncrystallographic groups with numbers 23
and 30 which have Coxeter graphs H3 and H4 respectively. They are more
closely discussed in for example [18, Section 2.13], [34, pp. 197–198] and [3,
p. 80].

As mentioned earlier the results above give a classification of finite p-adic
pseudoreflection groups W ↪→ GLn(Qp) up to conjugacy within GLn(Qp).
What we are really interested in for our purposes is a classification of repre-
sentations W ↪→ GLn(Zp) up to conjugacy within GLn(Zp). It is easy to see
that any representation W ↪→ GLn(Qp) is conjugate within GLn(Qp) to a
representation W ↪→ GLn(Zp) (cf. [11, 23.16]). However this representation
need not be uniquely determined up to conjugacy within GLn(Zp).

In other words the problem is that to a rational pseudoreflection repre-
sentation W ↪→ GLn(Qp) there might correspond several different nonequiv-
alent integral representations for W . Fortunately these problems have been
solved by Notbohm [30]. We shall only need the following result here:

Proposition 2.1. (1) Let Σ3 ↪→ GL2(Z3) be an irreducible pseudore-
flection representation with associated lattice L. Then either L ∼= LSU(3)
or L ∼= LPU(3), i.e. L is isomorphic to the lattice of SU(3) or its quotient
PU(3).

(2) Let W denote group number 35 in Table 1, i.e. W is the Weyl group
of the compact Lie group E6, and let W ↪→ GL6(Zp) be an irreducible pseu-
doreflection representation with associated lattice L. Then for p = 3 either
L ∼= LE6 or L ∼= LPE6 , i.e. L is isomorphic to the lattice of E6 or its
quotient PE6. For p = 5 we have a unique lattice, i.e. L ∼= LE6

∼= LPE6 .

P r o o f. This follows directly from [30, 1.2 and 3.2] since for p = 3 the
lattices of both SU(3) and E6 are simply connected with center Z/3 and
for p = 5 the lattices of E6 and PE6 are both simply connected and center-
free.

We end this section by the following observation which will be very
useful in our cohomology computations. For the proof we quickly recall some
invariant theory (for more details see [3, 34] and the references therein).

Let W ⊆ GLn(C) be a finite group. Let V = Cn and S = S(V ∗) be
the symmetric algebra on V ∗. We may identify S with the polynomial ring
C[x1, . . . , xn], where n = dimV . Since W acts on V we get an action of
W on S given by (w · f)(v) = f(w−1 · v). Let R = SW denote the ring
of invariants and let L denote the quotient field of S. Then L also has an
action of W . Galois theory shows that the quotient field of R is LW and
that L/LW is a finite Galois extension with Galois group W .

The main result is the theorem due to Shephard–Todd and Chevalley
that the invariant ring R is a polynomial ring exactly if W is a pseudoreflec-
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tion group. In this case the degrees of the polynomial generators of R are
uniquely determined and are called the degrees of W .

Proposition 2.2. Let W ⊆ GLn(Zp) be an irreducible complex pseu-
doreflection group. Then the center of W is a cyclic group consisting of
scalar matrices, and its order is the one listed in Table 1.

P r o o f. That the center Z(W ) consists of scalar matrices follows directly
from Schur’s lemma. Hence it is cyclic and generated by the scalar matrix
ζm for some m. For a homogeneus polynomial f we have ζk · f = ζ

− deg(f)
k f

so f is fixed by ζk exactly if k |deg(f). By the remark above we then see
that ζk ∈ W exactly if k |deg(f) for all invariant polynomials f . Since the
ring of invariants is polynomial by the Shephard–Todd–Chevalley theorem,
we see that ζk ∈W if and only if k | gcd(d1, . . . , dn) where d1, . . . , dn are the
degrees of W . Thus the order of the center is precisely m = gcd(d1, . . . , dn),
which may be computed from the tables in [33], [3] or [34].

3. Cohomology of Weyl groups. In this section we compute, for
each finite irreducible p-adic pseudoreflection group W ↪→ GL(L), the low-
dimensional cohomology groups H∗(W,L). Throughout this section, p will
denote an odd prime. Some good general references for group cohomology
are [6, 16, 37].

The main result is that H2(W,L) = 0 for all W , and H3(W,L) = 0 if W
is irreducible (with a single exception).

We start by considering trivial coefficients following Notbohm [27]. It
should be noted that our proof is basically identical to Notbohm’s but some-
what shorter since we can refer directly to a known result for Coxeter groups.

Proposition 3.1. Let W be a finite p-adic pseudoreflection group. Then
there exists a subgroup W ′ of W such that W ′ is a Coxeter group and the
index [W : W ′] is coprime to p.

P r o o f. Since W splits as a product of irreducible p-adic pseudoreflection
groups, it suffices to consider W irreducible. If p does not divide |W | we may
just take W ′ = 1. Otherwise we are in the modular case and if W is itself
a Coxeter group then obviously we can take W ′ = W . By comparing with
Table 1 we see that the only cases left are the groups of type 2a and the
cases (G12, p = 3), (G29, p = 5), (G31, p = 5) and (G34, p = 7).

The four last cases have been considered by Aguadé [1], and he shows
that for each of them it is possible to embed the symmetric groupW ′ = Σn+1

(here n denotes the rank of W ) in W . By comparing with Table 1 we see
that W ′ has index coprime to p in all four cases.

For the groups of type 2a recall that G(m, r, n) = A(m, r, n) o Σn has
order n!mn/r. As p is odd and we have the restriction p ≡ 1 (mod m) for
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m ≥ 3 we see that p - m in all cases. We may thus set W ′ = Σn since then
[W : W ′] = mn/r is not divisible by p.

Theorem 3.2 (see [27, 3.1]). Let W be a finite p-adic pseudoreflec-
tion group. Then all the homology and cohomology groups H1(W,Zp),
H1(W,Z/pk), H2(W,Zp), H2(W,Z/pk), H1(W,Zp), H1(W,Z/pk),
H2(W,Zp), H2(W,Z/pk), H3(W,Zp), k ≥ 1, with trivial action on the
coefficients vanish.

P r o o f. By using Proposition 3.1 and a transfer argument we may sup-
pose that W is a Coxeter group. By using the universal coefficient theorems
([37, Theorem 6.1.12, Exercise 6.1.5]) it suffices to show that the groups
H1(W,Z) and H2(W,Z) do not have p-torsion. In fact by a theorem of
Ihara and Yokonuma [19] (see also [17]) both groups are actually elemen-
tary abelian 2-groups, so since we only consider p odd we are done.

It should be noted that the Schur multiplier H2(W,Z) actually has been
calculated for all finite pseudoreflection groups [36, 31].

We next turn to coefficients being the natural action of W on L or L/p.

Theorem 3.3. Let W ↪→ GL(L) be a finite p-adic pseudoreflection group.
Then H2(W,L) = 0.

P r o o f. For Coxeter groups this is known to be true by [20, proof of 3.5]
(see also [23, 5.2]). The general case follows from this by using Proposition
3.1 and a transfer argument.

Theorem 3.4. Let W ↪→ GL(L) be a finite irreducible p-adic pseudore-
flection group. If (W,p) does not belong to the following list :

(1) W ∼= Σn belonging to the family 1, n 6= 2, 4 and 3 ≤ p ≤ n,
(2) W ∼= D6 = G(3, 3, 2) belonging to the family 2b and p = 3,
(3) W ∼= W (E6) (number 35) and p = 3,

then H∗(W,L) = 0 and H∗(W,L/p) = 0.

Remark 3.5. The special case in (2) of D6 = G(3, 3, 2) ∼= Σ3 is in fact
already excluded by (1) since the representation is equivalent to that of Σ3.
This repetition is only made to make the proof and statement of the theorem
clearer. We give the full answer in this case later (see Theorem 3.7).

P r o o f (of Theorem 3.4). Notice first of all that H0(W,L) = 0 since W
is irreducible.

By Proposition 2.2 and Table 1 we see that in all the cases 4 − 37 ex-
cept W (E6) (number 35), W has a nontrivial center Z consisting of scalar
matrices. Moreover we see that p - |Z| since we only consider p odd. Thus
H>0(Z,L) = H>0(Z,L/p) = 0, and since Z acts without fixed points on
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L and L/p we also obtain H0(Z,L) = H0(Z,L/p) = 0. Considering now
the Lyndon–Hochschild–Serre spectral sequence associated with the normal
subgroup Z, we immediately obtain H∗(W,L) = 0 and H∗(W,L/p) = 0.

If p - |W | then obviously H>0(W,L) = H>0(W,L/p) = 0 since |W | is
invertible in Zp and Fp. By considering the long exact sequence in cohomol-
ogy induced by the short exact sequence 0 → L

·p→ L → L/p → 0 we also
get H0(W,L/p) = 0.

We now only have to consider the modular cases among the families 1,
2a, 2b and 3 and the case of W (E6) at p = 5. Comparing with Table 1 we
see that there are no cases to check coming from the family 3 and that the
family 2b gives the two cases D6 and D12 for p = 3. The first case is excluded
and since D12 contains the central element −1 we are done in this case as
well. Concerning cases from the family 1, all of them are excluded except Σ2

and Σ4. Since Σ2 has order 2 this case has already been done above. The
case of Σ4 is handled by observing that Σ4 and G(2, 2, 3) are both Coxeter
groups with the same Coxeter graph A3 = D3. Therefore the groups are
isomorphic and the representations are equivalent. Since G(3, 3, 2) belongs
to the family 2a which we handle now, this will settle the case of Σ4.

Thus the only case left among the three infinite families is the fam-
ily 2a. In this case we have p ≡ 1 (mod m) and p ≤ n for m ≥ 3 and
p ≤ n for m = 2. Since p is odd we actually have p -m in both cases.
The order of the normal subgroup A(m, r, n), mn/r, is thus prime to p.
Using the Lyndon–Hochschild–Serre spectral sequence we thus get Es,t2 = 0
for t > 0. Since p is odd and A(m, r, n) contains all diagonal matrices
diag(1, . . . , ζm, . . . , ζ−1

m , . . . , 1) with all entries equal to 1 except for two
which are respectively ζm and ζ−1

m , and these act without fixed points on L
and L/p, we see that also Es,02 = 0. Thus H∗(W,L) = 0 and H∗(W,L/p)
= 0.

Finally we have to consider W = W (E6) at p = 5. By Proposition 2.1 we
have a unique lattice L. An integral representation can be found from the
root system given in [18, p. 43]. It may be checked directly that H0(W,L/5)
= 0. Using this description we see that W contains the element

σ =




1 1 0 −1 0 0
0 1 1 −1 −1 1
1 1 0 −1 −1 1
0 2 1 −2 −1 1
0 1 1 −1 −1 0
0 0 1 −1 0 0




of order 10. Set N = 1 + σ+ . . .+ σ9; it is easily checked that Ker(σ− 1) =
Im(N) and Ker(N) = Im(σ − 1) as matrices over F5. Using the stan-
dard formula for the cohomology of cyclic groups ([37, 6.2.2]) we find that
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H>0(〈σ〉, L/5) = 0. Since |W | = 27 ·34 ·5, the index of 〈σ〉 is coprime to 5 and
thus we get H>0(W,L/5) = 0 using transfer. Therefore H∗(W,L/5) = 0.

Consider now the short exact sequence 0 → L
·5→ L → L/5 → 0. Since

the order of W is 27 · 34 · 5, multiplication by 5 is zero on H>0(W,L) but
since also H∗(W,L/5) = 0 it has to be an isomorphism as well. We conclude
that H∗(W,L) = 0.

Concerning the excluded cases in the theorem we are able to compute the
low-dimensional cohomology groups. We start by considering the symmetric
groups, i.e. the cases (1) and (2). The module Zp with trivial action will be
denoted by Ltriv and the n-dimensional permutation module for Σn will be
denoted by Lperm.

Theorem 3.6. Let Σn ↪→ GL(L) be any integral representation corre-
sponding to the irreducible pseudoreflection representation Σn ↪→GLn−1(Qp)
coming from family number 1. Then H3(Σn, L) = 0 if n ≥ 4.

P r o o f. By [30, 1.6(2) and 1.2] we have a short exact sequence 0 →
L → LPU(n) → F → 0, where F is finite with trivial Σn-action. By The-
orem 3.2 we see that H2(Σn, F ) = 0. Thus from the long exact sequence
in cohomology we see that it suffices to prove that H3(Σn, LPU(n)) = 0 for
n ≥ 4.

To show this consider the short exact sequence 0 → Ltriv → Lperm →
LPU(n) → 0 of Σn-modules. Since Lperm = (Ltriv↓Σn−1

)↑Σn is induced up
from the trivial action on Zp of the subgroup Σn−1 we get H∗(Σn, Lperm) ∼=
H∗(Σn−1,Zp) by Shapiro’s lemma [37, Section 6.3]. So by Theorem 3.2 we
have H3(Σn, Lperm) = 0. From the short exact sequence we then get an
exact sequence

0→ H3(Σn, LPU(n))→ H4(Σn,Zp)→ H4(Σn, Lperm).

It is not hard to see that the map

H4(Σn,Zp)→ H4(Σn, Lperm)
∼=→ H4(Σn−1,Zp)

is induced by the inclusion Σn−1 ↪→ Σn. The homology and cohomology
groups of the symmetric groups have been computed by Nakaoka [26]. Using
these results we conclude that the map above is an isomorphism for n ≥ 4.
Thus H3(Σn, LPU(n)) = 0 in this case.

In the case of Σ3
∼= D6 = G(3, 3, 2) the proof above yields some informa-

tion, but in fact we can actually compute all its homology and cohomology
groups.

Theorem 3.7. Let p = 3 and W = Σ3. Let Ltriv be the trivial module
and let LSU(3) and LPU(3) be the irreducible lattices corresponding to the
two possible irreducible pseudoreflection representations of Σ3 in GL2(Z3)
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(cf. Proposition 2.1). Then W has periodic cohomology with period 4 and we
have the following table of cohomology and homology groups where n ∈ Z is
arbitrary. Here Ĥ denotes Tate homology/cohomology groups (see [6, VI.4]
or [37, 6.2.4]).

H0 H0 Ĥ4n ∼= Ĥ4n+3 Ĥ4n+1 ∼= Ĥ4n+2 Ĥ4n+2 ∼= Ĥ4n+1 Ĥ4n+3 ∼= Ĥ4n

Ltriv Z3 Z3 Z/3 0 0 0
Ltriv/3 Z/3 Z/3 Z/3 0 0 Z/3
LSU(3) 0 0 0 Z/3 0 0
LSU(3)/3 Z/3 0 Z/3 Z/3 0 0
LPU(3) 0 Z/3 0 0 0 Z/3
LPU(3)/3 0 Z/3 0 0 Z/3 Z/3

P r o o f. The fact that W ∼= D6
∼= Z/3 o Z/2 has periodic cohomology

with period 4 follows from [6, Exercise VI.9.6]. In fact by direct computation
using the Lyndon–Hochschild–Serre spectral sequence we have [37, Example
6.8.5]

Hk(W,Z) =





Z for k = 0,
Z/2 for k ≡ 1 (mod 4),
Z/6 for k ≡ 3 (mod 4),
0 otherwise.

Thus by using the universal coefficient theorems we immediately obtain the
results for trivial coefficients.

For the lattices LSU(3) and LPU(3) and their reductions modulo 3 we
have short exact sequences

0→ LSU(3) → Lperm → Ltriv → 0,

0→ Ltriv → Lperm → LPU(3) → 0,

and similarly after reduction modulo 3. Since Lperm = (Ltriv↓Σ2
)↑Σ3 is equal

to the trivial module of the subgroup Σ2 induced up (and similarly modulo
3), we get Ĥ∗(W,Lperm) = 0 and Ĥ∗(W,Lperm/3) = 0 by Shapiro’s lemma.

By considering the long exact sequences induced from the above short
exact sequences we get isomorphisms Ĥn(W,LSU(3)) ∼= Ĥn−1(W,Ltriv) and
Ĥn(W,LPU(3)) ∼= Ĥn+1(W,Ltriv) and similarly after reduction modulo 3.
Thus the remaining results for Ĥ follow from the calculations for trivial
coefficients.

We are left with determining H0 and H0 for the lattices corresponding
to SU(3) and PU(3) and their mod-3 reductions. This is done directly.

Note that this shows that Theorem 3.2 cannot be improved in general
since all the groupsH3(Σ3,Z3),H3(Σ3,Z/3k),H4(Σ3,Z3) andH3(Σ3,Z/3k)
are isomorphic to Z/3.
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Theorem 3.8. Let W = W (E6), and let W ↪→ GL(L) be any irreducible
3-adic pseudoreflection representation. Then H3(W,L) = 0.

Remark 3.9. The author is grateful to D. Benson for pointing out that
this result may be proved directly using results in his paper [2]. The proof
below is our original proof though.

P r o o f (of Theorem 3.8). By Proposition 2.1 we have either L ∼= LE6

or L ∼= LPE6 . Using the computer algebra system Magma [7] we find that
H2(W,L/3) = 0 for both lattices. Consider now the short exact sequence

0 → L
·3→ L → L/3 → 0. The induced long exact cohomology sequence

shows that multiplication by 3 is injective on H3(W,L). Since this is a finite
abelian 3-group it is trivial.

Collecting the above results together we can now prove Theorem 1.3.

P r o o f o f 1.3. Let W ↪→ GL(L) be a finite irreducible p-adic pseudore-
flection group, p odd. By Theorem 3.4 we have H3(W,L) = 0 except for the
following cases: W ∼= Σn is a symmetric group, n ≥ 3 or W ∼= WE6 , p = 3.
The case of W ∼= WE6 is handled by Theorem 3.8. In the case W ∼= Σn,
n ≥ 4 we are done by Theorem 3.6. Finally the case W ∼= Σ3, p = 3 is
handled by Theorem 3.7.

4. Applications to p-compact groups. To prove our main theorem we
need the following result which establishes the existence of product splittings
for p-compact groups, analogously to a well-known theorem for compact Lie
groups. Let X be a connected p-compact group with Weyl group WX and
associated lattice LX . We say that X is simple if WX → GL(LX) is an
irreducible pseudoreflection representation.

Theorem 4.1 (see [15, 27]). Let p be an odd prime and X a con-
nected p-compact group. If X is simply connected then there exists a splitting
X ∼= X1× . . .×Xr of X into simple simply connected p-compact groups. We
also have corresponding splittings N ∼= N1 × . . .×Nr, W ∼= W1 × . . .×Wr

and L ∼= L1 × . . .× Lr of the maximal torus normalizer N , the Weyl group
W and the associated lattice L for X, such that Ni, Wi and Li are re-
spectively the maximal torus normalizer , Weyl group and associated lattice
for Xi.

P r o o f o f 1.2. Let Z → X be a central monomorphism. By [25, 4.6] and
[24, 3.8] we see that the p-compact group X/Z has maximal torus TX/Z =
T/Z, Weyl group WX/Z = W and maximal torus normalizer NX/Z = N/Z.
This gives a commutative diagram



14 K. K. S. Andersen

T N W

T/Z N/Z W

//

²²

//

²²

������

������
// //

Thus the obstruction class γX/Z is the image of the obstruction class γX , so
by [25, 5.4] it suffices to prove the theorem in the case where X is simply
connected.

Assume now that this is the case. By Theorem 4.1 we may also assume
that X is simple, i.e. that W is an irreducible pseudoreflection group. In
that case Theorem 1.3 shows that H3(W,L) = 0 in all cases, except if p = 3
and X has the same Weyl group data as ̂PU(3). By [5] the 3-compact group
̂PU(3) is determined by its Weyl group data, so BX ∼= B ̂PU(3). Since we

are assuming that X is simply connected this is a contradiction. Thus for
all simple, simply connected X we have H3(WX , LX) = 0 and in particular
γX = 0.

The uniqueness of the section follows from the fact that the set of vertical
homotopy classes of sections is in bijective correspondence with the group
H2(BWX , C) ([38, VI.6.13]), where C is the local coefficient system from
the introduction, coming from the action of WX on LX . As H2(BWX , C) ∼=
H2(WX , LX) = 0 by Theorem 3.3, we are done.

Our results also have the following application to the computation of
self-maps of p-compact groups. We let Out(X) denote the group of invertible
elements in [BX,BX].

Theorem 4.2. Let p be odd and X be a connected p-compact group
with maximal torus normalizer N and Weyl group W with associated lat-
tice L. Then there is a natural isomorphism Out(N) ∼= NGL(L)(W )/W .
In particular if X is totally N -determined in the sense of Møller [23] then
Out(X) ∼= NGL(L)(W )/W .

P r o o f. Denote the discrete approximations of T and N (see [13, 14])
by respectively Ť and Ň . By Theorem 1.2 we see that Ň = Ť o W is a
semidirect product.

Let Aut(W, Ť ) denote the subgroup of Aut(W ) × Aut(Ť ) consisting of
the pairs (χ, ϕ) such that ϕ is χ-equivariant, i.e. ϕ(w · t) = χ(w) ·ϕ(t) for all
w ∈W , t ∈ Ť . We have a natural homomorphism α : Aut(Ň)→ Aut(W, Ť )
since Ť is a characteristic subgroup of Ň . Since Ň = Ť oW it follows that
α is an epimorphism.

Since α is W -equivariant, we obtain an epimorphism Aut(Ň)/W →
Aut(W, Ť )/W . The kernel equals H1(W, Ť ) ∼= H2(W,L), which vanishes by
Theorem 3.3. Thus we have an isomorphism Aut(Ň)/W ∼= Aut(W, Ť )/W .
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The left-hand side is equal to Out(N) and it is easy to see that Aut(W, Ť ) =
NGL(L)(W ).

Finally, if X is totally N -determined then Out(X) ∼= Out(N) by [23].
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