Partition properties of subsets of $\mathcal{P}_{\kappa}\lambda$

by

Masahiro Shioya (Tsukuba)

Abstract. Let $\kappa > \omega$ be a regular cardinal and $\lambda > \kappa$ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any $f: \bigcup_{n < \omega} [X]^n_{\subset} \to \gamma$ with $X \subset \mathcal{P}_{\kappa}\lambda$ unbounded and $1 < \gamma < \kappa$ there is an unbounded $Y \subset X$ with $|f^{"}[Y]^n_{\subset}| = 1$ for any $n < \omega$.

Let κ be a regular cardinal $> \omega$, λ a cardinal $\ge \kappa$ and F a filter on $\mathcal{P}_{\kappa}\lambda$. Partition properties of the form $\mathcal{P}_{\kappa}\lambda \to (F^+)_2^2$ (see below for the definition) were introduced by Jech [6]. The case where F is the club filter $\mathcal{C}_{\kappa\lambda}$ was particularly studied in connection with a supercompact cardinal: Menas [14] proved $\mathcal{P}_{\kappa}\lambda \to (\mathcal{C}_{\kappa\lambda}^+)_2^2$ for a $2^{\lambda^{<\kappa}}$ -supercompact κ via a normal ultrafilter U with $\mathcal{P}_{\kappa}\lambda \to (U^+)_2^2$. As noted by Kamo [9], Menas' argument can be modified to give the partition property of $\mathcal{P}_{\kappa}\lambda$ for κ just λ -supercompact. For the converse direction Di Prisco and Zwicker [4] and others refined the global result of Magidor [12]: The partition property of $\mathcal{P}_{\kappa}2^{\lambda^{<\kappa}}$ implies that κ is λ -supercompact.

In [8] Johnson introduced properties of the form $X \to (F^+)_2^2$ for $X \in F^+$, which means that for any $f: [X]_{\subset}^2 \to 2$ there is $Y \in F^+$ with $Y \subset X$ and $|f''[Y]_{\subset}^2| = 1$, as well as $F^+ \to (F^+)_2^2$, which means $X \to (F^+)_2^2$ for any $X \in F^+$. Abe [1] asked whether $\mathcal{F}_{\kappa\lambda}^+ \to (\mathcal{F}_{\kappa\lambda}^+)_2^2$ would fail in ZFC, where $\mathcal{F}_{\kappa\lambda}$ denotes the minimal fine filter on $\mathcal{P}_{\kappa\lambda}$.

In this note we answer the question of Abe:

THEOREM. Let κ be a supercompact cardinal and λ a cardinal $> \kappa$. Then there is a κ^+ -c.c. poset forcing that κ is supercompact and $\mathcal{F}^+_{\kappa\lambda} \to (\mathcal{F}^+_{\kappa\lambda})^{<\omega}_{\gamma}$ for any $1 < \gamma < \kappa$.

¹⁹⁹¹ Mathematics Subject Classification: 03E05, 03E55.

The author enjoyed Prof. Kanamori's hospitality while staying at Boston University as a Japanese Overseas Research Fellow. He also wishes to thank Prof. Abe for helpful conversations, and the referee for improving the presentation.

^[325]

Here $F^+ \to (F^+)^{<\omega}_{\gamma}$ means that for any $f: \bigcup_{n < \omega} [X]^n_{\subset} \to \gamma$ with $X \in F^+$ there is $Y \in F^+$ with $Y \subset X$ and $|f^{"}[Y]^n_{\subset}| = 1$ for any $n < \omega$. Note that κ is Ramsey iff $\mathcal{F}^+_{\kappa\kappa} \to (\mathcal{F}^+_{\kappa\kappa})^{<\omega}_{\gamma}$ for any $1 < \gamma < \kappa$.

We generally follow the terminology of Kanamori [10] with the following exception: For a cardinal $\mu \geq \omega$ we set $[X]^{\mu} = \{x \subset X : |x| = \mu\}, [X]^{<\mu} = \{x \subset X : |x| < \mu\}$ and $\lim A = \{\alpha < \mu : \sup(A \cap \alpha) = \alpha > 0\}$ for $A \subset \mu$. We understand $\bigcup a \subsetneq \bigcap b$ whenever the union $a \cup b$ of $a \in [\mathcal{P}_{\kappa}\lambda]^m_{\subset}$ and $b \in [\mathcal{P}_{\kappa}\lambda]^n_{\subset}$ with $m, n < \omega$ is formed.

We first give two negative partition results, which motivated Abe's question. In [1] Abe proved $\mathcal{F}^+_{\kappa\lambda} \not\rightarrow (\mathcal{F}^+_{\kappa\lambda})_2^2$ under $\lambda^{<\kappa} = 2^{\lambda}$. On the other hand, Matet [13], extending a result of Laver (see [7]), got the same conclusion from the opposite assumption:

PROPOSITION 1. Assume $\lambda^{\kappa} = \lambda$. Then $\mathcal{F}^+_{\kappa\lambda} \not\to (\mathcal{F}^+_{\kappa\lambda})^2_2$.

Proof. First set $\mathcal{P}_{\kappa}\lambda = \{x_{\xi} : \xi < \lambda\}$ and $[\mathcal{P}_{\kappa}\lambda]^{\kappa} = \{Y_{\alpha} : \alpha < \lambda\}$. By induction on $\xi < \lambda$ we construct $z_{\xi} \in \mathcal{P}_{\kappa}\lambda$ and $\{y_{\xi}^{\alpha i} : \alpha \in z_{\xi} \land i < 2\}$ so that $x_{\xi} \subset z_{\xi}, z_{\xi} \neq z_{\zeta}, y_{\xi}^{\alpha i} \in Y_{\alpha}, y_{\xi}^{\alpha i} \subseteq z_{\xi} \text{ and } y_{\xi}^{\alpha 0} \neq y_{\xi}^{\beta 1}$ for any $\zeta < \xi, i < 2$ and $\alpha, \beta \in z_{\xi}$ as follows: At stage $\xi < \lambda$ by induction on $n < \omega$ build $z_{\xi n} \in \mathcal{P}_{\kappa}\lambda$ and $\{y_{\xi}^{\alpha i} : \alpha \in z_{\xi n} \land i < 2\}$ so that $x_{\xi} \subset z_{\xi 0} \not\subset \bigcup_{\zeta < \xi} z_{\zeta}, y_{\xi}^{\alpha i} \in Y_{\alpha}, y_{\xi}^{\alpha 0} \neq y_{\xi}^{\beta 1}$ and $z_{\xi n} \cup \bigcup \{y_{\xi}^{\alpha i} : \alpha \in z_{\xi n} \land i < 2\} \subsetneq z_{\xi n+1}$. Finally set $z_{\xi} = \bigcup_{n < \omega} z_{\xi n}$. We claim that f defined by $f(\{y_{\xi}^{\alpha i}, z_{\xi}\}) = i$ witnesses $\{z_{\xi} : \xi < \lambda\} \neq (\mathcal{F}_{\kappa}^{+})_{2}^{2}$.

Fix an unbounded set $X \subset \{z_{\xi} : \xi < \lambda\}$. We show $f^{*}[X]_{\subset}^{2} = 2$. Take $\alpha < \lambda$ with $Y_{\alpha} \in [X]^{\kappa}$, and $\xi < \lambda$ with $\alpha \in z_{\xi} \in X$. Then $f(\{y_{\xi}^{\alpha i}, z_{\xi}\}) = i$ for i < 2 by definition, as desired.

The above proof yields in fact for any $\gamma < \kappa$ an unbounded set $X \subset \mathcal{P}_{\kappa}\lambda$ and $f: [X]^2_{\subset} \to \gamma$ such that $f''[Y]^2_{\subset} = \gamma$ for any unbounded $Y \subset X$.

The analogous problem for the club filter has been solved by Abe [2] via an extension of Magidor's theorem [12]: $\mathcal{C}^+_{\kappa\lambda} \not\rightarrow (\mathcal{C}^+_{\kappa\lambda})^2_2$. Let us give a canonical witness to his observation by appealing to Magidor's idea more directly:

PROPOSITION 2. Let $\mu < \kappa$ be regular. Then $\{x \in \mathcal{P}_{\kappa}\lambda : \operatorname{cf}(x \cap \kappa) = \mu\}$ $\neq (\mathcal{C}^+_{\kappa\lambda})^2_2$.

Proof. Set $S = \{x \in \mathcal{P}_{\kappa}\lambda : cf(x \cap \kappa) = \mu\}$ and for $x \in S$ fix an unbounded set $c_x \subset x \cap \kappa$ of order type μ . For $\{x, y\} \in [S]_{\subset}^2$ let $f(\{x, y\})$ be 0 when $\min(c_x \Delta c_y) \in c_x$, and 1 otherwise. Fix a stationary set $T \subset S$. We show $f''[T]_{\subset}^2 = 2$.

First, we have $\gamma < \kappa$ such that for any $w \in \mathcal{P}_{\kappa}\lambda$ there are $w \subset x, y \in T$ with $\gamma \in c_x - c_y$: Let $g: \kappa \to \mathcal{P}_{\kappa}\lambda$ witness the contrary, i.e. $\gamma \in c_x$ iff $\gamma \in c_y$ for any $\gamma < \kappa$ and $g(\gamma) \subset x, y \in T$. Take $x, y \in C(g) \cap T$ with $x \cap \kappa < y \cap \kappa$ by the stationarity of $\{z \cap \kappa : z \in C(g) \cap T\}$ in κ . Then $c_x = c_y \cap x \cap \kappa$ has order type μ , contradicting the choice of c_y .

Now, let $\gamma < \kappa$ be minimal as above. Then for $\alpha < \gamma$ we have $w_{\alpha} \in \mathcal{P}_{\kappa}\lambda$ such that $\alpha \in c_x$ iff $\alpha \in c_y$ for any $w_{\alpha} \subset x, y \in T$. Set $w = \bigcup_{\alpha < \gamma} w_{\alpha} \in \mathcal{P}_{\kappa}\lambda$. Take $w \subset x \subset y \subset z$ from T with $\gamma \in c_x \cap c_z - c_y$. Then $\min(c_x \Delta c_y) = \min(c_y \Delta c_z) = \gamma$ by $w_{\alpha} \subset x \subset y \subset z$ for any $\alpha < \gamma$, and hence $f(\{x, y\}) = 0$ and $f(\{y, z\}) = 1$ by definition, as desired.

The rest of the paper is devoted to establishing our Theorem. We refer to Baumgartner's expository paper [3] for the rudiments of iterated forcings. We call a poset κ -centered closed when any centered subset of size $< \kappa$ has a lower bound.

Assume for the moment that κ is a compact cardinal and $\lambda \leq 2^{\kappa}$. Fix a coloring $f: \bigcup_{n < \omega} [S]^n_{\subset} \to \gamma$ with $S \subset \mathcal{P}_{\kappa} \lambda$ unbounded and $1 < \gamma < \kappa$. Our definition of the poset Q_f below owes much to Galvin (see [7]), who proved under MA(λ) that for any $f: [X]^2_{\subset} \to 2$ with $X \subset [\lambda]^{<\omega}$ cofinal there is a cofinal $Y \subset X$ with $|f''[Y]^2_{\subset}| = 1$.

Fix a fine ultrafilter U on S and define inductively a κ -complete ultrafilter U_n on $[S]^n_{\subset}$ by $U_0 = \{\{\emptyset\}\}$ and $U_{n+1} = \{X : \{x : \{a : \{x\} \cup a \in X\} \in U_n\} \in U\}$. For $n < \omega$ let β_n be the unique $\beta < \gamma$ with $\{a \in [S]^n_{\subset} : f(a) = \beta\} \in U_n$. Let $Q_f = \{p \in [S]^{<\kappa} : \forall m, n < \omega \forall a \in [p]^m_{\subset} (\{b \in [S]^n_{\subset} : f(a \cup b) = \beta_{m+n}\} \in U_n)\}$, and $q \leq p$ iff $q \supset p$ and $y \not\subset x$ for any $x \in p$ and $y \in q - p$. Let us observe some basic properties of Q_f .

First, for a generic filter $G \subset Q_f$, $\bigcup G$ is unbounded in $\mathcal{P}_{\kappa}\lambda$ by the density of $\{q \in Q_f : \exists y \in q(x \subset y)\}$ for any $x \in \mathcal{P}_{\kappa}\lambda$, and homogeneous for $f: f^{"}[\bigcup G]_{\subset}^{n} = \{\beta_n\}$ for any $n < \omega$.

Next, we have the κ -centered closure of $Q_f: \bigcup D$ is a lower bound of a centered set $D \in [Q_f]^{<\kappa}$.

Finally, we invoke an argument of Engelking and Karłowicz [5] to show that Q_f is κ -linked. Fix an injection $\pi : \mathcal{P}_{\kappa}\lambda \to {}^{\kappa}2$. For $A \subset {}^{\alpha}2$ with $\alpha < \kappa$ set $Q_{f,A} = \{p \in Q_f : \{\pi(x) | \alpha : x \in p\} = A \land \langle \pi(z) | \alpha : z \in \bigcup_{x \in p} \mathcal{P}x \rangle$ is injective}. Then $Q_f = \bigcup \{Q_{f,A} : \exists \alpha < \kappa(A \subset {}^{\alpha}2)\}$ by the inaccessibility of κ . To see that $Q_{f,A}$ is linked, fix $p, q \in Q_{f,A}$. Then $x \not \subset y$ for any $x \in p - q$ and $y \in q$: Otherwise we would have x = z for some $x \in p - q, y \in q$ with $x \subset y$ and $z \in q$ with $\pi(x) | \alpha = \pi(z) | \alpha$. Similarly, $y \not \subset x$ for any $x \in p$ and $y \in q - p$. Thus $p \cup q \leq p, q$, as desired.

Before starting the proof of our Theorem, we need to generalize a result of Baumgartner [3]:

LEMMA. Assume $2^{<\kappa} = \kappa$. Let $\langle P_{\alpha}, \dot{Q}_{\alpha} : \alpha < \beta \rangle$ be a $<\kappa$ -support iteration such that \Vdash_{α} " \dot{Q}_{α} is κ -centered closed and κ -linked" for any $\alpha < \beta$. Then P_{β} is κ -directed closed and κ^+ -c.c. Proof. It is easily seen that the κ -centered closure implies the κ -directed closure, which is preserved by $< \kappa$ -support iterations.

To see the κ^+ -c.c., fix $X \in [P_\beta]^{\kappa^+}$. For $\alpha < \beta$ let $\Vdash_\alpha ``\dot{Q}_\alpha = \bigcup_{\gamma < \kappa} \dot{Q}_{\alpha\gamma}$ with $\dot{Q}_{\alpha\gamma}$ linked for any $\gamma < \kappa$ ''. For $p \in X$ by induction on $\xi < \kappa$ build $p_\xi \leq p$, $\alpha_\xi^p \in \operatorname{supp}(p_\xi)$ and $\gamma_\xi^p < \kappa$ so that $p_\xi \leq p_\zeta$ for any $\zeta < \xi$, $p_{\xi+1}|\alpha_\xi^p \Vdash_{\alpha_\xi^p} ``p_\xi(\alpha_\xi^p) \in \dot{Q}_{\alpha_\xi^p\gamma_\xi^p}"$, and $\{\xi < \kappa : \alpha_\xi^p = \alpha\}$ is unbounded for any $\alpha \in \bigcup_{\zeta < \kappa} \operatorname{supp}(p_\zeta)$. Take $Y \in [X]^{\kappa^+}$ and $\delta < \kappa$ so that $\delta \in \Delta_{\zeta < \kappa} \bigcap\{\lim\{\xi < \kappa : \alpha_\xi^p = \alpha\} : \alpha \in \operatorname{supp}(p_\zeta)\}\)$ for any $p \in Y$. Note that $\{\alpha_\xi^p : \xi < \delta\} = \bigcup_{\zeta < \delta} \operatorname{supp}(p_\zeta)\)$ for any $p \in Y$. Next take $Z \in [Y]^{\kappa^+}$ so that $\{\alpha_\xi^p : \xi < \delta\} : p \in Z\}\)$ forms a Δ -system with root $d \in [\beta]^{<\kappa}$. Finally, take $W \in [Z]^{\kappa^+}\)$ and $H \in [\delta \times d \times \kappa]^{<\kappa}\)$ so that $\{(\xi, \alpha_\xi^p, \gamma_\xi^p) : \xi < \delta \land \alpha_\xi^p \in d\} = H\)$ for any $p \in W$. We show that W is linked, as desired.

Fix $p, q \in W$. Inductively we build a lower bound $r \in P_{\beta}$ of $\{p_{\xi} : \xi < \delta\}$ $\cup \{q_{\xi} : \xi < \delta\}$ with support $\bigcup_{\zeta < \delta} \operatorname{supp}(p_{\zeta}) \cup \bigcup_{\zeta < \delta} \operatorname{supp}(q_{\zeta})$. At stage $\alpha < \beta$ we claim that $\{\xi < \delta : r | \alpha \Vdash_{\alpha} "p_{\xi}(\alpha) \parallel q_{\xi}(\alpha) "\}$ is unbounded, which implies $r | \alpha \Vdash_{\alpha} "\{p_{\xi}(\alpha) : \xi < \delta\} \cup \{q_{\xi}(\alpha) : \xi < \delta\}$ is centered", as desired, since $r | \alpha \Vdash_{\alpha} "\{p_{\xi}(\alpha) : \xi < \delta\}$ and $\{q_{\xi}(\alpha) : \xi < \delta\}$ are descending". Let us concentrate on the nontrivial case where $\alpha \in d = \bigcup_{\zeta < \delta} \operatorname{supp}(p_{\zeta}) \cap \bigcup_{\zeta < \delta} \operatorname{supp}(q_{\zeta})$.

Fix $\xi < \delta$ with $\alpha_{\xi}^{p} = \alpha$. Then $r | \alpha \leq p_{\xi+1} | \alpha, q_{\xi+1} | \alpha$ forces " $p_{\xi}(\alpha), q_{\xi}(\alpha) \in \dot{Q}_{\alpha\gamma}$ ", where $(\xi, \alpha, \gamma) \in H$. Now the claim follows, since $\{\xi < \delta : \alpha_{\xi}^{p} = \alpha\}$ is unbounded by the choice of δ .

Proof of Theorem. First, we force with the Laver poset [11] for κ and then add λ Cohen subsets of κ to ensure that κ is supercompact and $\lambda \leq 2^{\kappa}$ in the further extensions. Next, we perform a $\langle \kappa$ -support iteration $\langle P_{\alpha}, \dot{Q}_{\alpha} : \alpha < 2^{\lambda^{<\kappa}} \rangle$ with $\Vdash_{\alpha} "\dot{Q}_{\alpha} = Q_{f}"$ for some canonical P_{α} -name \dot{f} for a coloring. The standard inductive argument, together with the κ -closure and the κ^+ -c.c. of P_{α} , shows that for any $\alpha < 2^{\lambda^{<\kappa}}$, P_{α} is of size $\leq 2^{\lambda^{<\kappa}}$, and so is the set of canonical P_{α} -names for colorings, whose union can be identified with that of canonical $P_{2\lambda^{<\kappa}}$ -names for colorings. Thus the iteration can be arranged so that a homogeneous set for a coloring in the final model by $P_{2^{\lambda^{<\kappa}}}$ appears in an intermediate model, which, by absoluteness of $\mathcal{P}_{\kappa}\lambda$, remains unbounded, as desired.

References

- [1] Y. Abe, Combinatorics for small ideals on $\mathcal{P}_{\kappa}\lambda$, Math. Logic Quart. 43 (1997), 541–549.
- [2] —, private communication.

- J. Baumgartner, *Iterated forcing*, in: Surveys in Set Theory, A. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, Cambridge, 1983, 1-59.
- C. Di Prisco and W. Zwicker, Flipping properties and supercompact cardinals, Fund. Math. 109 (1980), 31–36.
- [5] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, ibid. 57 (1965), 275-285.
- T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165–198.
- [7] T. Jech and S. Shelah, A partition theorem for pairs of finite sets, J. Amer. Math. Soc. 4 (1991), 647–656.
- [8] C. Johnson, Some partition relations for ideals on $\mathcal{P}_{\kappa}\lambda$, Acta Math. Hungar. 56 (1990), 269–282.
- [9] S. Kamo, Ineffability and partition property on $\mathcal{P}_{\kappa}\lambda$, J. Math. Soc. Japan 49 (1997), 125–143.
- [10] A. Kanamori, The Higher Infinite, Springer, Berlin, 1994.
- [11] R. Laver, Making the supercompactness of κ indestructible under κ -directed closed forcing, Israel J. Math. 29 (1978), 385–388.
- [12] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279–285.
- [13] P. Matet, handwritten notes.
- [14] T. Menas, A combinatorial property of $\mathcal{P}_{\kappa}\lambda$, J. Symbolic Logic 41 (1976), 225–234.

Institute of Mathematics University of Tsukuba Tsukuba, 305-8571 Japan E-mail: shioya@math.tsukuba.ac.jp

> Received 21 September 1998; in revised form 10 May 1999