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Embedding lattices in the Kleene degrees
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Hisato Muraki (Nagoya)

Abstract. Under ZFC+CH, we prove that some lattices whose cardinalities do not
exceed Nj can be embedded in some local structures of Kleene degrees.

0. We denote by 2F the existential integer quantifier and by y4 the
characteristic function of A, ie. v € A< xa(z) =1, andz € A & xa(x) =
0. Kleene reducibility is defined as follows: for A, B C “w, A <x B iff there
is a € “w such that x4 is recursive in a, xp, and 2E.

We introduce the following notations. K denotes the upper semilattice
of all Kleene degrees with the order induced by <yx. For X,Y C “w, we
set X @Y ={(0)xz |z e X}U{(l)xxz | 2 € Y}. Then deg(X & Y)
is the supremum of deg(X) and deg(Y). The superjump of X is the set
X5 = {(e)xx € “w | {e}((x)o, (7)1, xx,2E)|}. Here, (e) x x is the real such
that ((e) * 2)(0) = e and ({(e) x x)(n + 1) = x(n) for n € w. More generally,
for m € w, (eq,...,em) * x is the real such that ({eg,...,emn) *z)(n) = e,
for n < m and ({(eg,...,em) * x)(n + m + 1) = x(n) for n € w. Further,
(x)o = An.z(2n) and (x); = An.z(2n + 1). We identify ((z)o, (x)1) with .
An X-admissible set is closed under Az.wj ™ iff it is XS7-admissible.

The following conditions (1) and (2) are equivalent to A <x B ([8]).

(1) There is y € “w such that A is uniformly A;-definable over all (B;y)-
admissible sets; i.e. there are X;(B) formulas ¢g and ¢; such that for any
(B;y)-admissible set M and for all z € “wnN M,

reAs MEpo(z,y) & ME-pi(x,y).

(2) There are y € “w and X (B) formulas @y and ¢; such that for all
T € Yw,

reEAs LwlB;w,y[B; z,y] = polz,y) < LwlB;m,y[B;m, y] E o1z, y).
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Here, we are thinking of the language of set theory with an additional unary
predicate symbol B. A set M is said to be (B;y)-admissible iff the structure
(M,e,B N M) is admissible and y € M. Next, L,[B;y] denotes the ath
stage of the hierarchy constructible from {y} relative to a unary predicate
B, and wf;y denotes the least (B;y)-admissible ordinal.

For K, K' C “w, we set K[K, K'] = {deg(X) | K <x X <x K'}. In §3,
we will prove that under ZFC+CH, for some K C “w, lattices whose fields
C “w and which are Kleene recursive in K57 can be embedded in K[K, K57].
Without CH, it is unknown whether our Theorem can be proved or not.

1. Similarly to [3] and [6], we use lattice tables (lattice representations
in [6]), on which lattices are represented by dual lattices of equivalence
relations. For every lattice £ with cardinality < 2%, we denote the field of
L also by £ and regard £ C “w. We denote by 0 the identically 0 function
from w to w.

DEFINITION. Let £ be a lattice with relations <., V., and A¢. For a,b €
£(ww) and [ € L, we define a =; b by a(l) = b(l). © C *(“w) is called an
upper semilattice table of L iff © satisfies:

(R.0)  If there is the least element 0 of £, then for all a € ©, a(0,) = 0.

(R.1)  (Ordering) For all a,b € © and i,j € L, if i <, j and a =, b, then
a =; b.

(R.2)  (Non-ordering) For all 4,5 € L, if ¢ £, j, then there are a,b € ©
such that a =; b and a %, b.

(R.3)  (Join) For all a,b € © and 4,5,k € L,if i Vg j = k, a =; b, and
a =; b, then a =, b.

In addition, if © satisfies (R.4) below, then O is called a lattice table of L:

(R.4)  (Meet) For all a,b € © and i,j,k € L, if i * j = k and a =}, b,
then there are cg, c1,c2 € © such that a =; co =5 ¢1 =; 2 =5 b.

For every lattice £ with relations <, Vz, A%, and £ C “w, we say
that (£, <r, Ve, AF) is Kleene recursive in X C “w iff £ & {(i,5) | i <¢ j}
& {(i,5.k) [ivej =k} & {(i.5.k) | i A j =k} <k X.

In this paper, we need suitable restrictions in (R.2) and (R.4).

PROPOSITION 1.1. Let L be a lattice with relations <, Ve, N, and £ C
“w. Let X C%w. If (L,<g,Ve, ) is Kleene recursive in X, then there are
a lattice table © of L and F C “w x L x “w such that © = {FP | z € “w},
F <x X, and F satisfies:

(R.2*)  Foralli,j€ L, ifi L, j, then there are a,b € “wN L, [i, 7] such
that Flal =, FIl gnd Flal 2, Flbl,
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(R.4*)  For all a,b € “w and i,j,k € L, if i N°j = k and Fl* =,
F then there are co, c1,c0 € “wN wa,b,i,j,k la,b,1,7, k] such that
Flal =, pleo] =; Flal =, ple] =; Fl

(R.5) For all a € “w, Rng(F!)) C Lyq[a).

Here, for x € “w, we set FI¥ = {(1,y) | (x,1,y) € F} and regard F*! :
L —“w.

Proof. We fix X and £ as in the proposition. We assume that there
is the least element 0, of £. We will construct @ and F' with the required
properties.

For z € “w and m € w, we define the function f{O™* . £ — @y as
follows: If x € L or m # 2, then

f(O,m)*:c(l) _ { 0 if I =0,

(0,m) *x otherwise.
If x € £ and m = 2, then
0 if | =0,

f(0,2>*z(l) — <0’ 1> xqx if Of 7é l <rx,
(0,2) * x otherwise.

For z € “w and n,m € w, we define the function f{rthmixz . £ _, @,
inductively as follows: If x = (a,b,4,j,k), a # b, max{a(0),b(0)} = n,
ik € LyiNE =k, ide ], jEei, f4(k) = fO(k), and m <2, then
f<n+1,0)>k:r(l) _ fa<l) if Sﬁ'i,
(n+1,0) xz otherwise,
foArO(l) it < g,
forttbeqy =3 in 41,1« ifl<giandl £z j,
(n+1,2) xx otherwise,
MO if 1 <z j,
flntb2pe ) — (n+1,1)xx ifl<giand!l £, j,
(n+1,3)*x otherwise.

In the other case,

f(n+1,m)*a:(l) _ { 0 if l = Oc,
(n+1,m+1)*z otherwise.

We set @ = {f* |z € “w} and F = {{x,l,y) € “w x L x “w | f*(]) = y}.
Then FI*l = £ for x € “w. (To define 7 for all 2 € “w, we make © contain
some excess elements.)

We prove that © and F' have the required properties. By definition,
6 ={Fl*l |z € “w}, F <x X, and F satisfies (R.5).

For n € w, we set O, ={f* | x € “w A z(0) <n}.
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LEMMA 1.2. (1) Oq is an upper semilattice table of L.
(2) F satisfies (R.2%).

Proof. (1) We check that Oy satisfies (R.0)—(R.3).
(R.0) By definition, for all f* € @, f*(0,) = 0.

(R.1) Suppose f<0 m>*ﬂ” ,fOomha’ e 9o and i j € L satisfy i <, j and
Om)*x( ) f(Om xz’ ( ) If f(O SMY) T f(Om )*x or i = Oz, then clearly
fOmyee Gy = £, m’)xa’ (1). Suppose f{Om)=z £ f<0 m)*xt and i # 0z. Clearly
j # 0. By definition and fOm*r(j) = fOm)*"(5) e have {m,m'} =
{1,2}, 2 = 2/ € £, and j < z (moreover, f{Om)*e () = fOm)xa’ () —
(0,1) % x). Hence, i <, x and so f{Om*(3) = (0,1) x x = fOm*"(;) by
definition.

(R.2) Let i,j € £ and i £, j. We choose f{O1* and f{®2+ in Q.
Since i £ j, we have fOU% (i) = (0,1)  j # (0,2) x j = fO2*(i). I
j = 0g, then f%1*(j) =0 = fO2+(j), and if j # O, then fO1*(j) =
(0.1) % j = FO2%(j)’

(R.3) Suppose f<0 mpxa fO.m )’ e @0 and j, k€ L satisty i Ve j =k,
f(O m)*z( ) f<0 ,m’yxz’ () and f (0,m *z( ) f(O ,m’yxz’ ( ) We may suppose
flomysz £ g0m)xa" and k # 0. By definition, we have {m,m'} = {1,2},
r=2a' €L, and i,j <, z. Hence, k <, x and so f{Om* (k) = (0,1) x 2 =
fLOm)a" (1) by definition.

(2) Since (0,1) *j,(0,2) *j € L [, 7], (2) is clear from the proof of
(R2)in (1). m

LEMMA 1.3. For alln € w, if O, is an upper semilattice table of L, then
Op41 s an upper semilattice table of L.

Proof. By definition, 6,11 satisfies (R.0). Since O,, C O,11, Opy1
satisfies (R.2). It is routine to check that @, satisfies (R.1) and (R.3).
Below, we check (R.1) in a few cases, and leave the check of (R.1) in the
other cases and of (R.3) to the reader.

Suppose f{momayxz  glmgmi)«’ o On11 and 1,1 € L satisfy | <, I’ and
f(mo,ml)*x(l/) _ f(m&,mi)*x'(l/) We may assume f(mo,ml)*x +# f(m{),m'l)*x’
and [ # O,. Since ©,, is an upper semilattice table of £, we may also assume
that f(mom)* & 9 or f{mo.my)xa’ ¢ O,,. We notice that if f(mom)*e op

(mo:m1)*z’ s defined by “In the other case” in the construction of Ont1,
then f{momu)sz (1) = flmo.mi)=" (") does not occur.

CASE 1: f<m5’m/1>*””, € O,, and there are a,b € Yw and i, j,k € L such
that mo = n+1, my = 1, x = (a,b,i,7,k), a # b, max{a(0),b(0)} = n,
iNG=k,iLcr g, L i, and fo(k) = fo(k).

Since f{mom)*" ¢ @, it follows that f{mo™1**'(1')(0) < n and so
L2 (1Y(0) < n. Then, by definition, I’ </ j, I’ < i, and frThLh*e (")
= ft10xa (1)) = fa(]'). Hence fo(I') = f{momu)*z’ (1) Since f* € O,
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and ©,, satisfies (R.1), fo(I) = f{mom)*'(]). Clearly, | </ i A j, hence
f(n-i—l,l)*ac(l) — f{n—i—l,O)*m(Z) — fa(l) — f<m6’m,1>*x/(l).

CASE 2: There are a,b,a’,b’ € “w and 1, 5, k,7, 7', k' € L such that mg =
my=n+1,m; =1, m} =2 = (abijk),a = b, j k), a#b,
a’ # b, max{a(0),b(0)} = max{a’(0),'(0)} =n, i - j =k, ' N°j' =K/,
i%ej,j Lot i £ g 3 Loty fO(k) = fO(k), and f (k) = f¥' (k).

By definition, we have two subcases.

SUBCASE 2.1: I! < i Af j AP §" and firthlse )y = fndl0pxx(ry —
ey = fr) = o2 (1), Then, similarly to Case 1, we obtain
f<n+1,1>*1:(l) _ fa(l) _ fb/(l) _ f<n+1,2)*a:'(l).

SUBCASE 2.2: ' <p i, ' £, j, x = 2', and fOHE0 (1) = (n+41,1) %z =
ftL2=e" (1 Theni =i, j=j,k=Fk,a=ad,and b = b clearly. If
I £, j, then fintbl=e(]) = (n 4 1,1) %z = fF+1L2*" (1) Suppose | <. j.
Since | <p i AL j, fintbh=e(]) = fo(]) and ftL2*" (1) = f5(]). Since
iNf G =k, fo(k) = f°(k), and O, satisfies (R.1), we have fo(I) = f°(l).
Hence, f(n—i—l,l)*z(l) — f<n+1,2)*w'(l). -

By Lemmas 1.2 and 1.3, © is an upper semilattice table of L.
LEMMA 1.4. F satisfies (R.4%). Hence, © is a lattice table of L.

Proof. Suppose a,b € “w and i, j, k € L satisfy i A j = k and fo(k) =
fb(K). In the case of i <y jor j <pi,weset co=ci=cy=borcy=c, =
co = a, and then ¢g, c1, o have the required properties. Suppose i £, 7,
Jj £c i, and a # b. We set n = max{a(0),b(0)} and ¢,, = (n + 1,m) =
(a,b,i,7,k) for m < 2. Then cg,c1,c2 € Lw?,b,i,j,k[a, b, i, j, k]. By definition,

f@=i f = f and f@ = fb. Since i L, j, we have f1 =; f©2. m
This completes the proof of Proposition 1.1. m

2. We start this section with

LEMMA 2.1 (ZFC+CH). There is S C Ry such that “w C Ly, [S].
Proof. We take a bijection f:N; — “w and set

S={eN |Fy<EEmnecw(=w-7+2"-3"A f(y)(m) =n)}.

Notice that for all £ < Ny, there are unique v < ¢ and unique k € w such
that £ = w- v+ k. Let © € “w be arbitrary. We choose v € Xy such that
f(y) = z; then x(m) =n & w-vy+2™-3" € S for all m,n € w. Hence,
T € LN1 [S] n

We fix S C Ny such that “w C Ly, [S]. We define the function rk :
“w — Ny by rk(z) = min{a € ¥y | ¥ € Lyy1[S]} for 2 € “w. We set
Ky ={zx € WO |o.t.(zr) € S} and
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Ky ={(m,n)xz € “w| 3w € WO(rk(z) = o.t.(w) A V' € WO(w' <pg w
= o.t.(w') # rk(x)) Aw(m) = n)}.

Here, WO denotes the set of all x € “w which code a well-ordering relation
on w, and o.t.(w) denotes the order type of w.

If e.g. Al-determinacy (2 < n € w) is assumed, then by the localiza-
tion of the theorem of Solovay [7], for any Al set K C “w, K[K, K%] =
{deg(K),deg(K5?)}. Under ZFC+CH (even if some determinacy axiom is
assumed), if Ky <x K C “w, then K[K, K5] # {deg(K),deg(K>")} ([5];
in fact we can prove that K[K, K] contains many elements). To prove the
Theorem in §3, we use K7 in addition to Ky. We note that under ZFC+CH,
{d € K| deg(Ky® K1) <) d} is dense, which can be proved similarly to [2]
and [4].

LEMMA 2.2 (ZFC+CH). Let Ko @ K1 <x K C“w and T = SUK.
(1) For all x € “w, Lw{(;x[K;m] is S-admissible, and so T-admissible.
(2) If M is K-admissible, then for all x € “wnN M, rk(zx) € M.
(3) For all x € “w, x € L r:=[T}, hence Lz [T; 2] = L 7 |T].

(4) If M is T-admissible and OnNM = «, then “wN M = {z € “w |
rk(z) < a}.

Proof. (1) It is sufficient to prove that S is A; over wam[K; x]. For
all £ € w7 since there is an injection from ¢ to w in L [K; x], there is
w € WO ﬁwam[K ; ] which codes a well-ordering of order type &. Hence,

for all £ € wi”,

£€S & LK) | “Tw € Koot (w) =€)
& L ce[K;a] | “Vw € WO(o.t.(w) = € = w € Ko)".

Therefore, S is 2y and IIy over Lk [K; ).

(2) Let w be the <p[g-least element of WO such that o.t.(w) = rk(z).
By definition, for all m,n € w, w(m) = n < (m,n) *x € K;. Since M is
K;-admissible, w € M and hence rk(z) = o.t.(w) € M.

(3) Since z € L7« [T'; 2] and L r:«[T; 2] is K-admissible, rk(z) < Wl
by (2). Since L [T] is S-admissible, Lyk(z)4+1[S] € L, 7 [T]. By definition,
T € Lyk(z)4+1[5], hence z € LwlT;z[T].

(4) Suppose = € “w and rk(z) < a. Since M is S-admissible, Lyy(z)+1[5]
C M, hence x € M. Conversely, if x € “wNM, then since M is K-admissible,
rk(z) < a by (2). =
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3. Let 5, rk, Ky, and K; be as in §2.

THEOREM (ZFC+CH). Let Ky @ K; <x K C “w. For any lattice L,
if £LC“%w and (L,<z,Ve, ) is Kleene recursive in K>, then L can be
embedded in K[K, K57].

This section is entirely devoted to proving the Theorem. We use AC and
CH without notice in the proof.

We fix K C “w such that Ko ® K <x K, and a lattice £ such that £ C
“wand (£, <g, Ve, A°) is Kleene recursive in K57, We set T'= S UK. Then
every T-admissible set is S-admissible and K-admissible, and “w C Ly, [T].
We fix a lattice table © of £ and F' C “w x £ x “Yw which are obtained
by Proposition 1.1. For simplicity, we assume that (£, <., V., AY) is Kleene
recursive in K57 with no additional real parameter and F <x K with no
additional real parameter. For z € “w, we denote FI* by f* as in the proof
of Proposition 1.1. We may assume that f© is identically 0 on £ and 0 is
the <rp-least real.

For every total or partial function p from “w to “w, we define the pro-
jections of p by

P, = {(z, fP@(1)) | z € Dom(p)} forle L.

We will construct a total function ¢ : “w — “w such that [ € £ —
deg(K ®G)) € K[K, K%'] is a lattice embedding. Recall that G; denotes the
projection of g on the coordinate [.

By recursion, we define a strictly increasing sequence (7, | @ € X;) of
countable ordinals which satisfies:

(T.1)  7at1 is the least T-admissible ordinal such that “w N (L
L, [T]) is not empty.
(T.2)  If ais a limit ordinal, then 7, = U, 8-

T] —

Ta+1[

The following is proved by routine work.

LEMMA 3.1. (1) The graph of (1o | @ € N1) is uniformly X1(T)-definable
over all T-admissible sets.

(2) For any T-admissible set M, if o € ¥y N M and (153 | f € a) C M,
then (13| B € a) € M.

LEMMA 3.2. For all a € 8y and z € “wn (L
LTa+1 [T] = Lw{(,w [K; JZ].

rasi L] = L7, [T]), we have

Proof. By Lemma 2.2, x € Lw’ll“;m[T], hence it follows by the definition
of To11 that 7441 < wlﬂz. Since wa(;z [K; x] is T-admissible by Lemma 2.2,
L ,[T] € Lr[T] © L x=[K;2]. Conversely, since Lr, ., [T] is (K;z)-
admissible, we have L [K;x] C L T]. m

Ta+1

Ta+1 [
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Remember that for any K-admissible set NV, N is closed under )\x.w{( e
iff N is KS7-admissible, and moreover N is closed under Az.wi * iff Vz €
“wN Nda € OnNN(Ly[K; 2] is (K; x)-admissible)”. Hence the quantifiers
in the statement “N is K5J-admissible” are bounded by N. Moreover, note
that F' is uniformly A; over all K57-admissible sets, since F' <, K57.

LEMMA 3.3. Let p be a partial function from “w to “w, M be a T-
admissible set, p € M and | € LN M. If for all x € Dom(p), there is
o € OnNM such that L,[T) is K3 -admissible and p(zx),l € L,[T], then
PeM.

Proof. By Xj-collection, there exists v € OnNM such that for all x €
Dom(p) there is 0 < y such that L, [T is K5’-admissible and p(z),l € L,[T]
(moreover fP®)(1) € L,[T] by (R.5)). Then for all x,y € “w we have

(x,y) € < M |= “c € Dom(p) A y € L, [T

AJo < 3z € L, [T)(Ly[T] is K57-admissible
Ay € Lo[TI Az = plz) A ((z,1,y) € F)E ).
Hence, P, € M by Aj-separation. m

We construct g% (o € Ry) of the parts of ¢ as follows:

STAGE 0. We set ¢g° = 0.

STAGE a LIMIT. We set g% = [Jsc,, 9°-

STAGE o + 1.

CASE 1: There is t € “w N L, [T] which satisfies (G.1) or (G.2) below:

(G.1) There are e € w, v € “w, i,j € L, and 0 < 7, such that
t =(0,e) * (v,4,7), i £, 7, Ly|[T] is K3'-admissible, t € L,[T],
and Vz € “w N Ly, [T](xae (2) = {e}(z, v, xKocs, °F))-

(G.2)  There are eg,e1 € w, vo,v1 € “w, 0,5,k € L, and o < 7, such
that t = (1,eg,e1) * (vo,v1,14,75,k), i A° j = k, L,[T] is K5-
admissible, t € L, [T], Vo € “w N L, [T]({eo }(z, v0, xkaG2, °F)
&~ {el}(a;,vl,XK@G;;,2E)), and there is a partial function p €
L. ., [T] from “w to “w such that ¢g* C p, Rng(p — g%)
C L,[T], and 3z € “w N L., [T]({eo}(z,v0, XK P,+0,E)
2 {e1}(z,v1, XKeP,«0,°E)). Here, P+ 0 = P U{(y,0) | y €
“w — Dom(p)} for [ € L.

We choose the <pjp)-least t € “wn L [T] which satisfies (G.1) or (G.2)

and distinguish two subcases.

SUBCASE 1.1: t satisfies (G.1). We choose the <pp-least z € “w N
(Lry i [T) = L7, [T]) and the <pp)-least (a,b) € “w x “w such that f*(j) =
() and fe(i) # fb(@i) by (R.2). Notice that if ¢ is as in (G.1), then
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a,b, f*(i) € L,[T] by (R.2*) and (R.5). We set 2/ = (z, f*(i)) and define
partial functions p?, p® by

a b _ 9% (@) if z € Dom(g?),
p"(z) (p(z) resp.) = {a (b resp.) if x =z
Then Pj = P]l?, 2 € P% and 2 ¢ PP.If {e}(z’,v,XK@qu*o,zE) = (, then
we define

g

0 fre“wnlL

a _ [ p%(=) if x € Dom(p?),
)= { (7] Dom(p"),

Ta+1

and if {e}(2’, v, XK Pe 0, 2E) 2 0, then we define

atl(z) = p’(x) if x € Dom(p?),
g 0 if r €“wn L, [T]— Dom(p).

SUBCASE 1.2: t satisfies (G.2). We choose the <j7)-least partial function
p€ L, [T]asin (G.2) and define

¢+ (z) = {p(a:) if x € Dom(p),

0 ifx € “wn L,  [T] — Dom(p).
CASE 2: Otherwise. We define
a+1 ($) _ ga(x) lf S DOm(ga),
g ~\o if £ € “wN Ly, [T] — Dom(g®).

In the construction at Stage o 4+ 1 above, notice that for [ € L, Gl°‘+1
Pt+0NL,, [T or=PPx0NL,,  [T] (Subcase 1.1), or = P*0NL
(Subcase 1.2), or = Gf* * 0N L, [T] (Case 2) respectively.

We define g = (J, ey, 9% Then, for all o € Ny, g[“w N L [T] = g% and
g% :“wnL. [T] — “wNL, [T]. Moreover g*! : “wnL. ., [T] — “wNL,,[T]
by definition. If there is no o < 7, such that L, [T] is K5’-admissible, then
Rng(g®™1) = {0}. As for projections, for all « € Xy and [ € LN L, [T], we
have G; N L, [T] = Gf".

7]

Ta+1 [

LEMMA 3.4. Let o € Ry and L,[T] be K5 -admissible.

(1) For all a < XNy, if o < T4, then there is 0 < 7 such that L, [T)] is
K57 -admissible and Rng(g®*tt — g%) C L,[T].

(2) For all x € “w, there is ¢ < max{rk(z), o} such that L,[T] is K-
admissible and g(x) € L,[T].

Proof. (1) We distinguish three cases at Stage a + 1.

CASE 1: g®T1 is constructed in Subcase 1.1 at Stage a + 1. We choose o
as in (G.1). By definition, there is ¢ € “w N L,[T] (¢ = a or = b in Subcase
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1.1) such that Rng(¢g®*! —¢®) = {¢,0}. Since 0 € L, [T], Rng(g*™! — g*) C
L,[T].
CASE 2: g®T1 is constructed in Subcase 1.2 at Stage o+ 1. We choose the

<rjr)-least partial function p and o as in (G.2). By (G.2), Rng(p — g%) C
L, |T], hence Rng(g*™ — g%) C L,[T).

CASE 3: g®*! is constructed in Case 2 at Stage o + 1. By definition,
Rng (g — g%) = {0} C L,[T].

(2) We choose o < Ny such that « € L, [T] — Ly, [T]. By Lemma 2.2,
To < 1k(2). If 0 < 74, then by (1) there is o < rk(x) such that L,[T)] is K57-
admissible and g(z) = g**!(z) € L, [T]. If 7, < 0, then since Rng(g**!) C
L, [T], we have g(x) € L,[T]. m

Since Ly, [T] is K5’-admissible and “w C Ly, [T], for all € “w there
exists o < Ny such that L,[T] is K®'-admissible and x € L,[T] (using the
Léwenheim—Skolem Theorem). For x € “w, we set p(x) = min{oc < ¥y |
L, [T] is K3-admissible and = € L, [T]}.

LEMMA 3.5. Let « € Xy and l € L.

(1) For any T-admissible set M, if 1, € M, then g* € M.
(2) For any T-admissible set M, if 1, 0(l) € M, then Gi* € M.
(3) If o(l) < Tag1, then L., [T] is Gi-admissible.

Proof. (1) We prove
Va € X)VM : T-admissible set (7, € M = (¢° | B < o) € M)

by induction.

If o = 0, then this is clear.

Let 0 < a € Ny. We assume that for all § € a and every T-admissible
set M we have (13 € M = (g7 | v < ) € M). Let M be a T-admissible set
and 7, € M.

Let a = 3+ 1 for some (3. By assumption, g° € L,_[T]. In the construc-
tion at Stage B+1, p%, p® in Subcase 1.1 and p in Subcase 1.2 are elements of
L, [T)]. Since L,_[T] € M, by definition ¢g°+! € M. Hence (¢° | 3 < a) € M.

Let a be a limit ordinal. For every limit ordinal § € a, since (g7 | v < )
€ L, [T}, the construction at Stage 3 can be expressed over L., [T]. And
for every 41 € «, since the conditions of every case at Stage 3+ 1 can be
expressed over L, [T] (notice that if ¢ = (...)*(...,4,7,...) and o(t) < 7,
then G7, G]ﬁ» € L, ,[T] by Lemmas 3.4 and 3.3, hence we can express (G.1)
(G.2); otherwise, we proceed to Case 2 immediately), the construction at
Stage 8 + 1 can be expressed over L., ,[T]. Thus, (¢° | 8 € a) is A;-
definable over M with parameter (75 | 3 < ), hence (¢° | 3 € a) € M. (By
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Lemma 3.1, (13 | § < a) € M.) Therefore, by definition, ¢* € M, and so
(¢° | B<a)e M.

(2) By (1), g € M. For all z € Dom(g®), since rk(x) € M, there is
o € OnNM such that L,[T] is KS-admissible and ¢®(x),l € L,[T] by
Lemma 3.4. Hence, Gj* € M by Lemma 3.3.

(3) By (2), G € L., ,[T). In the construction at Stage a + 1, p, p® in
Subcase 1.1 and p in Subcase 1.2 are elements of L [T], hence similarly
to (2), P*, P}, P, € L., ,,[T] by Lemma 3.3. Since G{*' = P#+0N L, ,[T]
or=P’+«0NL, , [T)or=Px0NL,, [T)or=G*0NL T}, we see
that L., ., [T] is G{**'-admissible and so Gj-admissible. m

LEMMA 3.6. For all | € £, G; <xc K57, hence deg(K ©G)) € K[K, K%].

Ta+1 [

Proof. For a € Ny, similarly to Lemma 3.5, the construction of g% (i.e.
constructions till Stage o)) and the conditions of every case at Stage o + 1
can be expressed over L T]. Hence, there are formulas 11 and 5 such
that:

LTa+1 [T] ': wl (p7 Oé)
< There is t € “w N L, [T] which satisfies (G.1) or (G.2) at

Ta+1[

Stage o + 1 and let ¢ be the <j)-least such real,
if t = (0,e) * (v,1, ) satisfies (G.1) and z, a, b, p®, p® are
as in Subcase 1.1
then {e}((z, f*(7)), v, XK@qu,QE) =0Ap=p"
or {e}({z, f*(i)), v, xxors, E) £ 0 Ap=p’,
and if t = (1, eg, e1) * (vo,v1,1, ], k) satisfies (G.2),
then p is the <p[7j-least partial function as in (G.2).
Lro[T] = t2(p, )
< There is no t € “w N L, [T] which satisfies (G.1) or (G.2)

at Stage o+ 1 and p = g“.

Here, 11 and 15 correspond to Case 1 and Case 2 respectively.
We choose r € WO such that o.t.(r) = o(I). We prove G; <x K3 via r
using (2) of §0. Let x,y € “w be arbitrary and M = L yss.,, . [K>);2,9,7].
w1
Notice that if z € L., [T]—L-, [T}, then by Lemma 3.2 and K>’-admissibi-
lity of M, we have L, [T] = waﬂm[K;l'] € M. By Lemma 3.4, there is

o < max{rk(z), (1)} such that L,[T]is K5’-admissible and g(z),l € L,[T];
moreover, f9)(1) € L,[T]. Hence,
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() € Gl M = “Ja e wl “Ip e L [K; x]
(L x [K;x] =L, [T \Nx & L. [T]

A LTa+1 [T] >: ¢1 (p) Oé) \ ¢2(p7 O{)
A (Jo < max{rk(x), o(1)}(z € Dom(p) A p(x), | € L,[T]
A L, [T) is K3 -admissible A (y = fP@) (1)) L=T1)
V (z ¢ Dom(p) Ay = 0)))".
« Kz

Notice that the quantifiers in the statement “wj ™ = 7,41” are bounded

by L xw[K;2], since Wi = 7oy iff 231 € wi(r, < 7 AT satisfies

L K;I[KW] .
(T.1)) « . Hence “(x,3)€G,” is Ay over M. Therefore, G; <x K. m

LEMMA 3.7. (1) Gy, =k 0.

(2) Foralli,je L, if i <pj, then K& G; <x K& G,.

(3) For alli,j, k € L, if iVgj =k, then (K®G,)®(K®G;) =¢ KOGy

Proof. (1) By definition, Gy, = {(z, f9®)(0,)) | € “w} = {{(z,0) |
x €“Yw} = 0.

(2) We choose r € WO such that o.t.(r) = o(4, 7). To prove K & G; <y
K ® G}, it is sufficient to prove that for all z,y € “w,

(x,y) € G; & M = “Jo < max{rk(z), o(¢,7)}3a,z € L, [T
(Lo [T] is K®-admissible A i, j € L,[T]
Aw,z) € Gy A(fG) = 2 A f20) = y) P IT),
where M = L KeBGj;i,j,m,y,r[K S Gj; 1], %, Y, T]'
w1

Suppose (z,y) € G;. By Lemma 2.2, rk(z) € M. By Lemma 3.4, there is
o < max{rk(z), o(i,j)} such that L,[T] is K5’-admissible and g(x), i,j €
Lo[T]. By (R.5), we have f9() (i), f9(*)(j) € L,[T]. Thus, if we set a = g(z)
and z = f%(j), then since y = f%(i) and F <, K97, the right-hand side
holds. Conversely, suppose that x,y € “w satisfy the right-hand side. Let
a, z be as in the right-hand side. By (z,2) € G, f9®)(j) = z = f(j). Then,
by (R.1), f9%) (i) = f(i). Hence, y = f9*)(4), and so (z,y) € G;.

(3) By (2), K@ G; & G; <x K @ G}j. We choose m € WO such that
o.t.(r) = o(i, j, k). To prove K& G, <x K®G; ®Gj, it is sufficient to prove
that for all z,y € “w,

(x,y) € G, & M E “Jo < max{rk(z), 0(3, 7, k)}3a, 2,2 € L,[T]

(Lo [T is K®’-admissible A i, j, k € Ly[T]

ANz, z) € Gy ANz, 2') € G

A(FHE) = 2 A fAG) = 2 A f(R) = y) BTy,
where M = LWK@Gi@Gj;i,j,k,w,w[K © G ® Gy, 5,k x,y,7].
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Suppose (z,y) € Gj. Similarly to (2), we set a = g(z), z = f%(i),
2 = f%(4) and choose o < max{rk(z), (4,4, k)} such that L,[T] is K5’-
admissible and g(x),i,j,k € L,[T]. Then the right-hand side holds. Con-
versely, suppose that x,y € “w satisfy the right-hand side. Let a, z, 2’ be as
in the right-hand side. Similarly to (2), we have f9®) (k) = f*(k) = y by
(R.3), and so (z,y) € Gi. =

LEMMA 3.8. Let o € 8y and t € “wN L, [T] be the <p)-least real which
satisfies (G.1) or (G.2) at Stage o + 1.

(1) If t = (0,¢€) * (v,14,j) satisfies (G.1), then there is v € “w N L
such that

T

Ta+1 [

XG?+1 (CL’) % {6}(x707XK@G?+172E)
and so XGi (.’11) {e}(x7v7XK®G’j72E)'
(2) If t = (1,ep,e1) * (vo,v1,1,7, k) satisfies (G.2), then there is © €
“wN Ly, [T] such that

{60}(567 vaXK@G?+172E) % {61}($, UleK@G;?‘*laZE)

and so {60}(:67U07XKEBG¢’2E) % {61}(3371)1’XK€BGJ-72E)'

Proof. Bothin (1) andin (2) (i.e. in (G.1) and in (G.2)), since o(t) < 74,
ras1 [ I] is Gi-admissible and G'j-admissible by Lemma 3.5.

(1) We choose the <pp-least z € “w N (L, ,,[T] — L., [T]) and the
<pjrp-least (a,b) € “w x “w such that f(j) = fo(j) A (i) # f°(i). We set
2 = (z,f%1)). Then 2’ € L T]. Let p® and p® be as in Subcase 1.1 at
Stage o + 1.

Cask 1: {e}(, v, xKk o Pa0, ’E) = 0. Then, for | € {i,j}, GiNL., ,[T] =
G = P*«0N L, [T] by definition. Since L., [T] is (Gj;v, 2’)-admis-
sible, {e}(2',v,xKaa,,’F) = {e}(z',v,xgggot1,°F) = 0. By definition,
2 e G?H C G;. Hence,

L

Ta+1 [

{6}(z,, v, XK@G‘J?“"l , QE) 7'% 1= XG?+1 (Z/)
and {e}(?',v, xKaa,, °F) # xc.(?)-
Cask 2: {e}(¥,v, xKkaPs+0, 2E) 2 0. Similarly to Case 1,
{e}(#,v, XK@GJ-72E) =~ fe}(2,v, XKEBG;?“’2E) 20.

Since g(2) = g®*1(2) = band fb(i) # f%(i), we have 2/ ¢ G and 2 ¢ G;.
Hence,

{e}(ZI,U7XK@G?‘+172E) % 0 = XG?+1 (z/)
and {6}(2/7U,XK@GJ_72E) ";é XG; (Z/)'
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(2) We choose the <pp-least partial function p € L, [T] from “w to
“w as in (G.2). Then, for I € {i,j}, GiNL. [T = G} = Px0NnL., [T).
Hence, by (G.2), there is z € “wN L, ,[T] such that

Ta+1 [

Ta+1

{60}(567 Vo, XK@G?+172E) % {61}(%, U1, XK@G?+172E)

and hence {eg}(z,vo, XKaq,, °F) & {el}(zv,vl,XK@Gj,zE). n

LEMMA 3.9. For all t € “w, {a € Ny | t satisfies (G.1) or (G.2) at
Stage o + 1} is countable. Hence Ut<LmS{a € Ny | t satisfies (G.1) or
(G.2) at Stage a + 1} is countable and so bounded for all s € “w (since
{t €e“w |t <y s} is countable).

Proof. Weset X; = {a € Xy | ¢ satisfies (G.1) or (G.2) at Stage o + 1}
for t € “w. We prove that for all t € “w, X; is countable by induction on t¢.

Let ¢ € “w and assume that for all u € “w, if u <z ¢ then X, is count-
able. Suppose that, on the contrary, X; is uncountable. By the inductive as-
sumption UU<L[T]t X, is countable, hence we can take 3 € Xt—Uu<L[T]t X..
Then t is the <pp)-least real which satisfies (G.1) or (G.2) at Stage 5+ 1.
Since X; is uncountable, there is o € X; such that 8+ 1 < a.

CASE 1: t satisfies (G.1) at Stage +1. There are e € w, v € “w, and i,j €
L such that ¢t = (0,e) * (v,1, j). By Lemma 3.8, there is x € “wN L, [T] (C
L, [T)]) such that Xgo+ (x) 2 {e}(z,v, XKoaott 2E). Then, similarly to the
proof of Lemma 3.8, since Gi* N L., [T] = GV for I € {i,j} and L, [T]
is Gj-admissible, we have xgo (v) 2 {e}(z, v, XK@G?,QE). Hence, t does not
satisfy (G.1) at Stage o + 1. Moreover, since ¢(0) = 0, ¢ does not satisfy
(G.2) at Stage o + 1. This contradicts «a € X;.

CASE 2: t satisfies (G.2) at Stage 5 + 1. There are eg,e1 € w, vg,v1 €
“w, and 14,7,k € L such that ¢t = (1,eq,e1) * (vg,v1,1, ], k). Similarly to
Case 1, there is # € “w N L, ,[T] such that {eo}(z,v0, xkage,’E) %
{er} (@, vi, xkaay, ’E). Hence, t does not satisfy (G.2) at Stage o+ 1. More-
over, since t(0) = 1, t does not satisfy (G.1) at Stage o+ 1. This contradicts
(NS Xt. ]

LEMMA 3.10. For all i,5 € L, if 1 £¢ j, then K ® G; £x K © Gj.

Proof. Assume ¢ £, j and G; <x K @ G;. We choose e € w and
v € “w such that for all € “w, xq,(z) = {e}(z,v, xkaq, . ’E). We set
t = (0,e) x (v,1,7). By Lemma 3.9, we can choose o € N; such that for
all u <rj7) t, u does not satisfy (G.1) or (G.2) (taking v in place of t) at
Stage a + 1. Choosing « sufficiently large, we may assume that there is
o' < a such that a = o/ + 1 and p(t) < 7. Then, by Lemma 3.5, L,_[T]
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is G;-admissible, and so by the choice of e, v, for all x € “wN L, [T], we
have xgeo (x) = {e}(m,v,XK@G?,QE). Hence, t satsfies (G.1) at Stage o + 1.
Moreover, t is the <pj-least real which satisfies (G.1) or (G.2) at Stage
a + 1. Therefore, by Lemma 3.8, there is € “w N L., [T] such that
xa: () # {e}(z,v, xkaq,,?E). This is a contradiction. m

LEMMA 3.11. Let i,j,k € L, i N°j =k, a € Ry, eg,e1 € w, and vy, v, €
“w. Assume that there are partial functions p,p’ € L, [T] from “w to “w,
0 < T, and x € “w such that g¢* C p,p’, Dom(p) = Dom(p’), P, = P,
L, [T) is K57 -admissible, i, 5,k € L,[T], Rng(p—g®), Rng(p’ — g%) C L,[T],
and {eo}(z,v0, XK p;+0, °E) % {e1}(x, U1, XK@ P/+0; 2E). Then there is a par-
tial function p” € L [T] from “w to“w such that g* C p”, Rug(p” —g*) C
LO'[T]a and {60}(%’,1}0, XK®P}'%0, 2E) % {61}('%7,017XK$P]{/*0) QE)

Proof. We set D = Dom(p) — Dom(g®). Since P, = Py, for all y € D,
PO (k) = 7@ (k). By (R.4*%), for all y € D there are ¢, ¢/, ¢4 € “wNLy[T]
such that fP) =; f6 =; fid = f% =, f'®) Since p,p', D, L,|T] €
L, .. [T] and F <x K%, there exists ((c},c},cy) | y € D) € L,_,,[T] such
that for all y € D, ¢, ¢¥, ¢y € “wN L, [T] and fPW) =, f =; fi =, f% =;
fP'®) by A;-separation. We define p™ : Dom(p) — “w (n € 3) by

n, v [9%(y) ify € Dom(g?),
p"(y) = .
c’ ifyeD.

Then p™ € L, ., [T] and Rng(p” — ¢g%) C Lo[T] for n € 3. By defini-
tion, P, = P, P) = P}, P! = P?, and P} = P}. If we assume that for
all n € 3, {eo}(x,v0, XKkePrs0,°E) = {61}(.%',@1,XK@PJTL*0,2E), then we ob-
tain {eo}(z, vo, XK@ p,«0, F) = {e1 Hx, v1, XK@ Pl+0; 2E), a contradiction. So

there is n € 3 such that {eo}(z,vo, xxapr,*E) % {e1}(x, vy, XK@p;»,QE). "

LEMMA 3.12. For all i,7,k € L, if i N°j =k, then deg(K @© G}) is the
<i-infimum of deg(K & G;) and deg(K & G;).

Proof. It is sufficient to prove that for all X C “w, if X <x K®G; and
X <k K® Gy, then X <x K®Gj. We fix X C “w such that X < K®G;
and X <x K @ G}, and choose e, e; € w and vy, v; € “w such that for all
z € “w, xx(z) = {eo}(w,v0, XKaa,: °E) = {e1}(z,v1, XKkaa,, E). We set
t = (1,ep,e1) * (vg,v1,1,J, k). By Lemma 3.9, we choose v € N; such that
sup(Uu<L[T]t{a € Ny | u satisfies (G.1) or (G.2) at Stage a + 1}) < v and

o(t) < 7y.

CrLaM 1. For all a € Ny, if v < «, then there is no partial function
p€ L, [T] from“w to“w as in (G.2) at Stage a + 1.
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Proof. Assume v < o € 8y and there is a partial function p € L, [T]
from “w to “w as in (G.2) at Stage a + 1. Then ¢ satisfies (G.2) at Stage
a + 1 by the choice of e, e1,v9,v1. Since v < a, t is the <pp)-least real
which satisfies (G.1) or (G.2) at Stage o+ 1. Thus, by Lemma 3.8, there is
@ € “w such that {eo}(z,v0, XxKaa,, °E) # {e1}(z,v1, xkac,, *F). This is a
contradiction and completes the proof of Claim 1.

Cram 2. For all o € Ny with v < «a and for all partial functions
P € Ly, [T] from “w to “w, if go C p,p’, Dom(p) = Dom(p'), Py =
P}, and there is 0 < 74 such that L,[T] is K> -admissible, t € L,[T],
and Rng(p — g*), Rng(p’ — g*) C L,[T], then for all x € “wN L T],
{eo} (@, v0, XK@ P 0, °E) = {eo}(x, v0, XK P/+0: °E).

Tu+1[

Proof. Assume v < o < X7 and Claim 2 does not hold for some partial
functions p,p’. Then there is x € “w N L, [T] such that

Ta+1
{eo}(z,v0, XK@ P,+0, QE) # {eo}(x, vo, XK®P}*0) QE)-

Since Claim 1 implies that p’ is not as in (G.2) at Stage a + 1,

{60}(337U0,XK@P;*0,2E) = {61}($7U1,XK@PJ4*0,2E)-
Hence

{eo}(w, v0, XK@ Piv0, E) % {e1}(x,v1, XK@ P0: ).

Thus, by Lemma 3.11, there is a partial function p” € L, [T] as in
(G.2) at Stage a + 1. This contradicts Claim 1 and completes the proof
of Claim 2.

CLAIM 3. For all « € Ny with v < «, set H, = G¢ U {(z,y) € “w |
r & L [T] A 3Ja € “wly = f(i) A a is the <pip-least real such that
(x, f*(k)) € Gi)}. Then:

(1) Hy is uniformly Aq-definable over all T, Gy -admissible sets of which
To 18 an element.

(2) Forallx e “wNL T,

Ta+1[
{60}(1"7007 XKEBGH2E) = {60}(x7UO’XKGBHa>2E)'

Proof. (1) It is sufficient to prove that H, — G is uniformly A;-
definable over all T, G-admissible sets of which 7, is an element. By Lemma
3.4, for all z € “w — L, [T] (notice o(t) < 7, < 7, < rk(x)), there is
o < rk(z) such that L,[T] is K%’-admissible and g(z),i,k € L,[T], and
moreover if a is the <ppj-least real such that (z, f*(k)) € G, then since
a <rim 9(x), we have a € L, [T] and so f*(k), f*(i) € L,[T]. Hence, for any
T, Gp-admissible set M with 7, € M and for all z,y € “wNnN M,
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(x,y) € Hq __(;?
e ME“cdg L [T]ANJo <rk(x)Ja € “wN L[]
(Lo [T] is K57-admissible A,k € Ly[T]
A3z € Lo[T)((z = £ (k)" A (2, 2) € Gi)
AV, z € “w N Lo[T)((b <ppry a Az = fo(k) ") = (2,2) & Gy)
Ay = f @)1y,
i.e. the quantifiers in the formula which states “(z,y) € H, — G are
bounded by L,[T] and rk(z).
(2) By definition, there is a partial function p € L., [T] such that
g* C p and

¢ () = {p(m) if x € Dom(p),

0 ifx €“wnL; [T] — Dom(p).

Then P *0N L., [T] = G¢' = G; N L,,,[T]. By Lemma 3.4, there is
o < T4 such that L,[T] is K5'-admissible, t € L,[T], and Rng(p — g%) C
L,[T]. We define p’ : Dom(p) — “w by

g% (x) if x € Dom(g%),
p'(x) = ¢ the <ppp-least a € “w
such that (z, f*(k)) € G, if x € Dom(p) — Dom(g%).

Then for all z € Dom(p) we have fP'(*)(k) = f9@) (k) = fP@)(k), and
so P = Pg. Since p'(x) <rr g(x) for all z € Dom(p), it follows that
Rng(p' — g*) € L,[T]. Since L, [T] is Gy-admissible, similarly to (1),
p'is Ay over L, [T] and so p' € L.  [T] by A;-separation. More-
over, P/*0NL._ . [T] = HyN L, [T] by definition (notice the assumption
that 0 is the <pp-least real). Thus, by Claim 2, for all z € “wN L 7],
{eo} (@, v0, XK@P+0, °E) = {eo}(x, v0, XKa P+, °E) and hence

Ta+1[

{60}(x7007XK®G¢72E) = {60}(1.71)07XK€BHQ72E)'
This completes the proof of Claim 3.
Let z € “w — L. [T] and n € 2, and M = L _rec,=[K ® Gi;z]. By

Lemma 2.2, M is T-admissible, and if x € L, [T] — L, [T], then v < «
and 7, < rk(z) € 7441 N M. Hence by Claim 3,

xx(x) =n
& 3o eNy(z € Ly, [T) — L [T] A {eo (2, v0, XKoH.» °E) = n)
< M E “Ga <rk(z)(1y < rk(z)
A =31 <rtk(x)(1h < 7 AT satisfies (T.1))

A{eo}(x,v0, XK@ H, °F) 2 n)”.
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Therefore, X — L, [T] and (“w — X) — L, [T] are uniformly Y;-definable
over all (K @& Gj;w)-admissible sets, where w is a real in WO such that
o.t.(w) = 7. Since L, [T7] is countable, X <x K ® Gj. =

This completes the proof of the Theorem.

REMARK. In the Theorem, we may replace “(L, <., Vs, A°) is Kleene
recursive in K77 by “(L, <z, Ve, /\5) is Kleene recursive in the finite times
superjump of K”.

Concerning, for example, (K57)57 for any K-admissible set N, N is

closed under Az.w!** and )\:z.wf{SJ;x iff N is (K57)%)-admissible, and the

J
T

quantifiers in the statement “N is closed under )\x.wf{ %7 are bounded
by N as “Vx € Yw N N3a € OnNN(Ly[K;z] is (K;x)-admissibleAVy €
“wN Lo [K;2]38 < a(LgK;y] is (K;y)-admissible))V”. Replacing “L,[T]
is K57-admissible” by “L,[T] is (K57)%)-admissible” in the proof of the
Theorem, we can prove the following:

THEOREM' (ZFC+CH). Let Ko @ K1 <x K C “w. For any lattice L, if
L C“w and (L,<z,Ve, N°) is Kleene recursive in (K57)3 then L can be
embedded in K[K, K57].
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