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Embedding lattices in the Kleene degrees

by

Hisato M u r a k i (Nagoya)

Abstract. Under ZFC+CH, we prove that some lattices whose cardinalities do not
exceed ℵ1 can be embedded in some local structures of Kleene degrees.

0. We denote by 2E the existential integer quantifier and by χA the
characteristic function of A, i.e. x ∈ A⇔ χA(x) = 1, and x 6∈ A⇔ χA(x) =
0. Kleene reducibility is defined as follows: for A,B ⊆ ωω, A ≤K B iff there
is a ∈ ωω such that χA is recursive in a, χB , and 2E.

We introduce the following notations. K denotes the upper semilattice
of all Kleene degrees with the order induced by ≤K. For X,Y ⊆ ωω, we
set X ⊕ Y = {〈0〉 ∗ x | x ∈ X} ∪ {〈1〉 ∗ x | x ∈ Y }. Then deg(X ⊕ Y )
is the supremum of deg(X) and deg(Y ). The superjump of X is the set
XSJ = {〈e〉 ∗x ∈ ωω | {e}((x)0, (x)1, χX ,

2E)↓}. Here, 〈e〉 ∗x is the real such
that (〈e〉 ∗ x)(0) = e and (〈e〉 ∗ x)(n+ 1) = x(n) for n ∈ ω. More generally,
for m ∈ ω, 〈e0, . . . , em〉 ∗ x is the real such that (〈e0, . . . , em〉 ∗ x)(n) = en
for n ≤ m and (〈e0, . . . , em〉 ∗ x)(n + m + 1) = x(n) for n ∈ ω. Further,
(x)0 = λn.x(2n) and (x)1 = λn.x(2n + 1). We identify 〈(x)0, (x)1〉 with x.
An X-admissible set is closed under λx.ωX;x

1 iff it is XSJ-admissible.
The following conditions (1) and (2) are equivalent to A ≤K B ([8]).

(1) There is y ∈ ωω such that A is uniformly ∆1-definable over all (B; y)-
admissible sets; i.e. there are Σ1(Ḃ) formulas ϕ0 and ϕ1 such that for any
(B; y)-admissible set M and for all x ∈ ωω ∩M ,

x ∈ A⇔M |= ϕ0(x, y)⇔M |= ¬ϕ1(x, y).

(2) There are y ∈ ωω and Σ1(Ḃ) formulas ϕ0 and ϕ1 such that for all
x ∈ ωω,

x ∈ A⇔ LωB;x,y
1

[B;x, y] |= ϕ0(x, y)⇔ LωB;x,y
1

[B;x, y] |= ¬ϕ1(x, y).
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Here, we are thinking of the language of set theory with an additional unary
predicate symbol Ḃ. A set M is said to be (B; y)-admissible iff the structure
〈M,∈, B ∩M〉 is admissible and y ∈ M . Next, Lα[B; y] denotes the αth
stage of the hierarchy constructible from {y} relative to a unary predicate
B, and ωB;y

1 denotes the least (B; y)-admissible ordinal.
For K,K ′ ⊆ ωω, we set K[K,K ′] = {deg(X) | K ≤K X ≤K K ′}. In §3,

we will prove that under ZFC+CH, for some K ⊆ ωω, lattices whose fields
⊆ ωω and which are Kleene recursive in KSJ can be embedded in K[K,KSJ].
Without CH, it is unknown whether our Theorem can be proved or not.

1. Similarly to [3] and [6], we use lattice tables (lattice representations
in [6]), on which lattices are represented by dual lattices of equivalence
relations. For every lattice L with cardinality ≤ 2ℵ0 , we denote the field of
L also by L and regard L ⊆ ωω. We denote by 0 the identically 0 function
from ω to ω.

Definition. Let L be a lattice with relations ≤L, ∨L, and ∧L. For a, b ∈
L(ωω) and l ∈ L, we define a ≡l b by a(l) = b(l). Θ ⊆ L(ωω) is called an
upper semilattice table of L iff Θ satisfies:

(R.0) If there is the least element 0L of L, then for all a ∈ Θ, a(0L) = 0.
(R.1) (Ordering) For all a, b ∈ Θ and i, j ∈ L, if i ≤L j and a ≡j b, then

a ≡i b.
(R.2) (Non-ordering) For all i, j ∈ L, if i 6≤L j, then there are a, b ∈ Θ

such that a ≡j b and a 6≡i b.
(R.3) (Join) For all a, b ∈ Θ and i, j, k ∈ L, if i ∨L j = k, a ≡i b, and

a ≡j b, then a ≡k b.
In addition, if Θ satisfies (R.4) below, then Θ is called a lattice table of L:

(R.4) (Meet) For all a, b ∈ Θ and i, j, k ∈ L, if i ∧L j = k and a ≡k b,
then there are c0, c1, c2 ∈ Θ such that a ≡i c0 ≡j c1 ≡i c2 ≡j b.

For every lattice L with relations ≤L, ∨L, ∧L, and L ⊆ ωω, we say
that (L,≤L,∨L,∧L) is Kleene recursive in X ⊆ ωω iff L ⊕ {〈i, j〉 | i ≤L j}
⊕ {〈i, j, k〉 | i ∨L j = k} ⊕ {〈i, j, k〉 | i ∧L j = k} ≤K X.

In this paper, we need suitable restrictions in (R.2) and (R.4).

Proposition 1.1. Let L be a lattice with relations ≤L, ∨L, ∧L, and L ⊆
ωω. Let X ⊆ ωω. If (L,≤L,∨L,∧L) is Kleene recursive in X, then there are
a lattice table Θ of L and F ⊆ ωω×L× ωω such that Θ = {F [x] | x ∈ ωω},
F ≤K X, and F satisfies:

(R.2*) For all i, j ∈ L, if i 6≤L j, then there are a, b ∈ ωω∩Lωi,j1
[i, j] such

that F [a] ≡j F [b] and F [a] 6≡i F [b].
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(R.4*) For all a, b ∈ ωω and i, j, k ∈ L, if i ∧L j = k and F [a] ≡k
F [b], then there are c0, c1, c2 ∈ ωω ∩ Lωa,b,i,j,k1

[a, b, i, j, k] such that

F [a] ≡i F [c0] ≡j F [c1] ≡i F [c2] ≡j F [b].
(R.5) For all a ∈ ωω, Rng(F [a]) ⊆ Lωa1 [a].

Here, for x ∈ ωω, we set F [x] = {〈l, y〉 | 〈x, l, y〉 ∈ F} and regard F [x] :
L → ωω.

P r o o f. We fix X and L as in the proposition. We assume that there
is the least element 0L of L. We will construct Θ and F with the required
properties.

For x ∈ ωω and m ∈ ω, we define the function f 〈0,m〉∗x : L → ωω as
follows: If x 6∈ L or m 6= 2, then

f 〈0,m〉∗x(l) =
{

0 if l = 0L,
〈0,m〉 ∗ x otherwise.

If x ∈ L and m = 2, then

f 〈0,2〉∗x(l) =





0 if l = 0L,
〈0, 1〉 ∗ x if 0L 6= l ≤L x,
〈0, 2〉 ∗ x otherwise.

For x ∈ ωω and n,m ∈ ω, we define the function f 〈n+1,m〉∗x : L → ωω
inductively as follows: If x = 〈a, b, i, j, k〉, a 6= b, max{a(0), b(0)} = n,
i, j, k ∈ L, i ∧L j = k, i 6≤L j, j 6≤L i, fa(k) = f b(k), and m ≤ 2, then

f 〈n+1,0〉∗x(l) =
{
fa(l) if l ≤L i,
〈n+ 1, 0〉 ∗ x otherwise,

f 〈n+1,1〉∗x(l) =




f 〈n+1,0〉∗x(l) if l ≤L j,
〈n+ 1, 1〉 ∗ x if l ≤L i and l 6≤L j,
〈n+ 1, 2〉 ∗ x otherwise,

f 〈n+1,2〉∗x(l) =




f b(l) if l ≤L j,
〈n+ 1, 1〉 ∗ x if l ≤L i and l 6≤L j,
〈n+ 1, 3〉 ∗ x otherwise.

In the other case,

f 〈n+1,m〉∗x(l) =
{

0 if l = 0L,
〈n+ 1,m+ 1〉 ∗ x otherwise.

We set Θ = {fx | x ∈ ωω} and F = {〈x, l, y〉 ∈ ωω × L × ωω | fx(l) = y}.
Then F [x] = fx for x ∈ ωω. (To define fx for all x ∈ ωω, we make Θ contain
some excess elements.)

We prove that Θ and F have the required properties. By definition,
Θ = {F [x] | x ∈ ωω}, F ≤K X, and F satisfies (R.5).

For n ∈ ω, we set Θn = {fx | x ∈ ωω ∧ x(0) ≤ n}.
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Lemma 1.2. (1) Θ0 is an upper semilattice table of L.
(2) F satisfies (R.2*).

P r o o f. (1) We check that Θ0 satisfies (R.0)–(R.3).
(R.0) By definition, for all fx ∈ Θ0, fx(0L) = 0.
(R.1) Suppose f 〈0,m〉∗x, f 〈0,m

′〉∗x′ ∈ Θ0 and i, j ∈ L satisfy i ≤L j and
f 〈0,m〉∗x(j) = f 〈0,m

′〉∗x′(j). If f 〈0,m〉∗x = f 〈0,m
′〉∗x′ or i = 0L, then clearly

f 〈0,m〉∗x(i) = f 〈0,m
′〉∗x′(i). Suppose f 〈0,m〉∗x 6= f 〈0,m

′〉∗x′ and i 6= 0L. Clearly
j 6= 0L. By definition and f 〈0,m〉∗x(j) = f 〈0,m

′〉∗x′(j), we have {m,m′} =
{1, 2}, x = x′ ∈ L, and j ≤L x (moreover, f 〈0,m〉∗x(j) = f 〈0,m

′〉∗x′(j) =
〈0, 1〉 ∗ x). Hence, i ≤L x and so f 〈0,m〉∗x(i) = 〈0, 1〉 ∗ x = f 〈0,m

′〉∗x′(i) by
definition.

(R.2) Let i, j ∈ L and i 6≤L j. We choose f 〈0,1〉∗j and f 〈0,2〉∗j in Θ0.
Since i 6≤L j, we have f 〈0,1〉∗j(i) = 〈0, 1〉 ∗ j 6= 〈0, 2〉 ∗ j = f 〈0,2〉∗j(i). If
j = 0L, then f 〈0,1〉∗j(j) = 0 = f 〈0,2〉∗j(j), and if j 6= 0L, then f 〈0,1〉∗j(j) =
〈0, 1〉 ∗ j = f 〈0,2〉∗j(j).

(R.3) Suppose f 〈0,m〉∗x, f 〈0,m
′〉∗x′ ∈ Θ0 and i, j, k ∈ L satisfy i ∨L j = k,

f 〈0,m〉∗x(i) = f 〈0,m
′〉∗x′(i), and f 〈0,m〉∗x(j) = f 〈0,m

′〉∗x′(j). We may suppose
f 〈0,m〉∗x 6= f 〈0,m

′〉∗x′ and k 6= 0L. By definition, we have {m,m′} = {1, 2},
x = x′ ∈ L, and i, j ≤L x. Hence, k ≤L x and so f 〈0,m〉∗x(k) = 〈0, 1〉 ∗ x =
f 〈0,m

′〉∗x′(k) by definition.
(2) Since 〈0, 1〉 ∗ j, 〈0, 2〉 ∗ j ∈ Lωi,j1

[i, j], (2) is clear from the proof of
(R.2) in (1).

Lemma 1.3. For all n ∈ ω, if Θn is an upper semilattice table of L, then
Θn+1 is an upper semilattice table of L.

P r o o f. By definition, Θn+1 satisfies (R.0). Since Θn ⊆ Θn+1, Θn+1

satisfies (R.2). It is routine to check that Θn+1 satisfies (R.1) and (R.3).
Below, we check (R.1) in a few cases, and leave the check of (R.1) in the
other cases and of (R.3) to the reader.

Suppose f 〈m0,m1〉∗x, f 〈m
′
0,m
′
1〉∗x′ ∈ Θn+1 and l, l′ ∈ L satisfy l ≤L l′ and

f 〈m0,m1〉∗x(l′) = f 〈m
′
0,m
′
1〉∗x′(l′). We may assume f 〈m0,m1〉∗x 6= f 〈m

′
0,m
′
1〉∗x′

and l 6= 0L. Since Θn is an upper semilattice table of L, we may also assume
that f 〈m0,m1〉∗x 6∈ Θn or f 〈m

′
0,m
′
1〉∗x′ 6∈ Θn. We notice that if f 〈m0,m1〉∗x or

f 〈m
′
0,m
′
1〉∗x′ is defined by “In the other case” in the construction of Θn+1,

then f 〈m0,m1〉∗x(l′) = f 〈m
′
0,m
′
1〉∗x′(l′) does not occur.

Case 1: f 〈m
′
0,m
′
1〉∗x′ ∈ Θn and there are a, b ∈ ωω and i, j, k ∈ L such

that m0 = n + 1, m1 = 1, x = 〈a, b, i, j, k〉, a 6= b, max{a(0), b(0)} = n,
i ∧L j = k, i 6≤L j, j 6≤L i, and fa(k) = f b(k).

Since f 〈m
′
0,m
′
1〉∗x′ ∈ Θn, it follows that f 〈m

′
0,m
′
1〉∗x′(l′)(0) ≤ n and so

f 〈n+1,1〉∗x(l′)(0) ≤ n. Then, by definition, l′ ≤L j, l′ ≤L i, and f 〈n+1,1〉∗x(l′)
= f 〈n+1,0〉∗x(l′) = fa(l′). Hence fa(l′) = f 〈m

′
0,m
′
1〉∗x′(l′). Since fa ∈ Θn
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and Θn satisfies (R.1), fa(l) = f 〈m
′
0,m
′
1〉∗x′(l). Clearly, l ≤L i ∧L j, hence

f 〈n+1,1〉∗x(l) = f 〈n+1,0〉∗x(l) = fa(l) = f 〈m
′
0,m
′
1〉∗x′(l).

Case 2: There are a, b, a′, b′ ∈ ωω and i, j, k, i′, j′, k′ ∈ L such that m0 =
m′0 = n + 1, m1 = 1, m′1 = 2, x = 〈a, b, i, j, k〉, x′ = 〈a′, b′, i′, j′, k′〉, a 6= b,
a′ 6= b′, max{a(0), b(0)} = max{a′(0), b′(0)} = n, i ∧L j = k, i′ ∧L j′ = k′,
i 6≤L j, j 6≤L i, i′ 6≤L j′, j′ 6≤L i′, fa(k) = f b(k), and fa

′
(k′) = f b

′
(k′).

By definition, we have two subcases.

Subcase 2.1: l′ ≤L i ∧L j ∧L j′ and f 〈n+1,1〉∗x(l′) = f 〈n+1,0〉∗x(l′) =
fa(l′) = f b

′
(l′) = f 〈n+1,2〉∗x′(l′). Then, similarly to Case 1, we obtain

f 〈n+1,1〉∗x(l) = fa(l) = f b
′
(l) = f 〈n+1,2〉∗x′(l).

Subcase 2.2: l′ ≤L i, l′ 6≤L j, x = x′, and f 〈n+1,1〉∗x(l′) = 〈n+1, 1〉∗x =
f 〈n+1,2〉∗x′(l′). Then i = i′, j = j′, k = k′, a = a′, and b = b′ clearly. If
l 6≤L j, then f 〈n+1,1〉∗x(l) = 〈n + 1, 1〉 ∗ x = f 〈n+1,2〉∗x′(l). Suppose l ≤L j.
Since l ≤L i ∧L j, f 〈n+1,1〉∗x(l) = fa(l) and f 〈n+1,2〉∗x′(l) = f b(l). Since
i ∧L j = k, fa(k) = f b(k), and Θn satisfies (R.1), we have fa(l) = f b(l).
Hence, f 〈n+1,1〉∗x(l) = f 〈n+1,2〉∗x′(l).

By Lemmas 1.2 and 1.3, Θ is an upper semilattice table of L.

Lemma 1.4. F satisfies (R.4*). Hence, Θ is a lattice table of L.

P r o o f. Suppose a, b ∈ ωω and i, j, k ∈ L satisfy i ∧L j = k and fa(k) =
f b(k). In the case of i ≤L j or j ≤L i, we set c0 = c1 = c2 = b or c0 = c1 =
c2 = a, and then c0, c1, c2 have the required properties. Suppose i 6≤L j,
j 6≤L i, and a 6= b. We set n = max{a(0), b(0)} and cm = 〈n + 1,m〉 ∗
〈a, b, i, j, k〉 for m ≤ 2. Then c0, c1, c2 ∈ Lωa,b,i,j,k1

[a, b, i, j, k]. By definition,

fa ≡i f c0 ≡j f c1 and f c2 ≡j f b. Since i 6≤L j, we have fc1 ≡i f c2 .

This completes the proof of Proposition 1.1.

2. We start this section with

Lemma 2.1 (ZFC+CH). There is S ⊆ ℵ1 such that ωω ⊆ Lℵ1 [S].

P r o o f. We take a bijection f : ℵ1 → ωω and set

S = {ξ ∈ ℵ1 | ∃γ ≤ ξ∃m,n ∈ ω( ξ = ω · γ + 2m · 3n ∧ f(γ)(m) = n)}.
Notice that for all ξ < ℵ1, there are unique γ ≤ ξ and unique k ∈ ω such
that ξ = ω · γ + k. Let x ∈ ωω be arbitrary. We choose γ ∈ ℵ1 such that
f(γ) = x; then x(m) = n ⇔ ω · γ + 2m · 3n ∈ S for all m,n ∈ ω. Hence,
x ∈ Lℵ1 [S].

We fix S ⊆ ℵ1 such that ωω ⊆ Lℵ1 [S]. We define the function rk :
ωω → ℵ1 by rk(x) = min{α ∈ ℵ1 | x ∈ Lα+1[S]} for x ∈ ωω. We set
K0 = {x ∈WO | o.t.(x) ∈ S} and
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K1 = {〈m,n〉 ∗ x ∈ ωω | ∃w ∈WO(rk(x) = o.t.(w) ∧ ∀w′ ∈WO(w′ <L[S] w

⇒ o.t.(w′) 6= rk(x)) ∧ w(m) = n)}.
Here, WO denotes the set of all x ∈ ωω which code a well-ordering relation
on ω, and o.t.(w) denotes the order type of w.

If e.g. ∆1
n-determinacy (2 ≤ n ∈ ω) is assumed, then by the localiza-

tion of the theorem of Solovay [7], for any ∆1
n set K ⊆ ωω, K[K,KSJ] =

{deg(K),deg(KSJ)}. Under ZFC+CH (even if some determinacy axiom is
assumed), if K0 ≤K K ⊆ ωω, then K[K,KSJ] 6= {deg(K),deg(KSJ)} ([5];
in fact we can prove that K[K,KSJ] contains many elements). To prove the
Theorem in §3, we use K1 in addition to K0. We note that under ZFC+CH,
{d ∈ K | deg(K0⊕K1) ≤K d} is dense, which can be proved similarly to [2]
and [4].

Lemma 2.2 (ZFC+CH). Let K0 ⊕K1 ≤K K ⊆ ωω and T = S ∪K.

(1) For all x ∈ ωω, LωK;x
1

[K;x] is S-admissible, and so T -admissible.

(2) If M is K-admissible, then for all x ∈ ωω ∩M , rk(x) ∈M .
(3) For all x ∈ ωω, x ∈ LωT ;x

1
[T ], hence LωT ;x

1
[T ;x] = LωT ;x

1
[T ].

(4) If M is T -admissible and On∩M = α, then ωω ∩M = {x ∈ ωω |
rk(x) < α}.

P r o o f. (1) It is sufficient to prove that S is ∆1 over LωK;x
1

[K;x]. For

all ξ ∈ ωK;x
1 , since there is an injection from ξ to ω in LωK;x

1
[K;x], there is

w ∈ WO∩LωK;x
1

[K;x] which codes a well-ordering of order type ξ. Hence,

for all ξ ∈ ωK;x
1 ,

ξ ∈ S ⇔ LωK;x
1

[K;x] |= “∃w ∈ K0(o.t.(w) = ξ)”

⇔ LωK;x
1

[K;x] |= “∀w ∈WO(o.t.(w) = ξ ⇒ w ∈ K0)”.

Therefore, S is Σ1 and Π1 over LωK;x
1

[K;x].

(2) Let w be the ≤L[S]-least element of WO such that o.t.(w) = rk(x).
By definition, for all m,n ∈ ω, w(m) = n ⇔ 〈m,n〉 ∗ x ∈ K1. Since M is
K1-admissible, w ∈M and hence rk(x) = o.t.(w) ∈M .

(3) Since x ∈ LωT ;x
1

[T ;x] and LωT ;x
1

[T ;x] is K-admissible, rk(x) < ωT ;x
1

by (2). Since LωT ;x
1

[T ] is S-admissible, Lrk(x)+1[S] ⊆ LωT ;x
1

[T ]. By definition,
x ∈ Lrk(x)+1[S], hence x ∈ LωT ;x

1
[T ].

(4) Suppose x ∈ ωω and rk(x) < α. Since M is S-admissible, Lrk(x)+1[S]
⊆M , hence x ∈M . Conversely, if x ∈ ωω∩M , then since M is K-admissible,
rk(x) < α by (2).
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3. Let S, rk, K0, and K1 be as in §2.

Theorem (ZFC+CH). Let K0 ⊕ K1 ≤K K ⊆ ωω. For any lattice L,
if L ⊆ ωω and (L,≤L,∨L,∧L) is Kleene recursive in KSJ, then L can be
embedded in K[K,KSJ].

This section is entirely devoted to proving the Theorem. We use AC and
CH without notice in the proof.

We fix K ⊆ ωω such that K0⊕K1 ≤K K, and a lattice L such that L ⊆
ωω and (L,≤L,∨L,∧L) is Kleene recursive in KSJ. We set T = S ∪K. Then
every T -admissible set is S-admissible and K-admissible, and ωω ⊆ Lℵ1 [T ].
We fix a lattice table Θ of L and F ⊆ ωω × L × ωω which are obtained
by Proposition 1.1. For simplicity, we assume that (L,≤L,∨L,∧L) is Kleene
recursive in KSJ with no additional real parameter and F ≤K KSJ with no
additional real parameter. For x ∈ ωω, we denote F [x] by fx as in the proof
of Proposition 1.1. We may assume that f0 is identically 0 on L and 0 is
the ≤L[T ]-least real.

For every total or partial function p from ωω to ωω, we define the pro-
jections of p by

Pl = {〈x, fp(x)(l)〉 | x ∈ Dom(p)} for l ∈ L.
We will construct a total function g : ωω → ωω such that l ∈ L 7→

deg(K⊕Gl) ∈ K[K,KSJ] is a lattice embedding. Recall that Gl denotes the
projection of g on the coordinate l.

By recursion, we define a strictly increasing sequence 〈τα | α ∈ ℵ1〉 of
countable ordinals which satisfies:

(T.1) τα+1 is the least T -admissible ordinal such that ωω ∩ (Lτα+1 [T ] −
Lτα [T ]) is not empty.

(T.2) If α is a limit ordinal, then τα =
⋃
β∈α τβ .

The following is proved by routine work.

Lemma 3.1. (1) The graph of 〈τα | α ∈ ℵ1〉 is uniformly Σ1(T )-definable
over all T -admissible sets.

(2) For any T -admissible set M , if α ∈ ℵ1 ∩M and 〈τβ | β ∈ α〉 ⊆ M ,
then 〈τβ | β ∈ α〉 ∈M .

Lemma 3.2. For all α ∈ ℵ1 and x ∈ ωω ∩ (Lτα+1 [T ]− Lτα [T ]), we have
Lτα+1 [T ] = LωK;x

1
[K;x].

P r o o f. By Lemma 2.2, x ∈ LωT ;x
1

[T ], hence it follows by the definition

of τα+1 that τα+1 ≤ ωT ;x
1 . Since LωK;x

1
[K;x] is T -admissible by Lemma 2.2,

Lτα+1 [T ] ⊆ LωT ;x
1

[T ] ⊆ LωK;x
1

[K;x]. Conversely, since Lτα+1 [T ] is (K;x)-
admissible, we have LωK;x

1
[K;x] ⊆ Lτα+1 [T ].
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Remember that for any K-admissible set N , N is closed under λx.ωK;x
1

iff N is KSJ-admissible, and moreover N is closed under λx.ωK;x
1 iff ∀x ∈

ωω ∩N∃α ∈ On∩N(Lα[K;x] is (K;x)-admissible)N . Hence the quantifiers
in the statement “N is KSJ-admissible” are bounded by N . Moreover, note
that F is uniformly ∆1 over all KSJ-admissible sets, since F ≤K KSJ.

Lemma 3.3. Let p be a partial function from ωω to ωω, M be a T -
admissible set , p ∈ M and l ∈ L ∩ M . If for all x ∈ Dom(p), there is
σ ∈ On∩M such that Lσ[T ] is KSJ-admissible and p(x), l ∈ Lσ[T ], then
Pl ∈M .

P r o o f. By Σ1-collection, there exists γ ∈ On∩M such that for all x ∈
Dom(p) there is σ < γ such that Lσ[T ] is KSJ-admissible and p(x), l ∈ Lσ[T ]
(moreover fp(x)(l) ∈ Lσ[T ] by (R.5)). Then for all x, y ∈ ωω we have

〈x, y〉 ∈ Pl ⇔M |= “x ∈ Dom(p) ∧ y ∈ Lγ [T ]

∧ ∃σ < γ∃z ∈ Lσ[T ](Lσ[T ] is KSJ-admissible

∧ l, y ∈ Lσ[T ] ∧ z = p(x) ∧ (〈z, l, y〉 ∈ F )Lσ[T ])”.

Hence, Pl ∈M by ∆1-separation.

We construct gα (α ∈ ℵ1) of the parts of g as follows:

Stage 0. We set g0 = ∅.
Stage α limit. We set gα =

⋃
β∈α g

β .

Stage α+ 1.

Case 1: There is t ∈ ωω ∩ Lτα [T ] which satisfies (G.1) or (G.2) below:

(G.1) There are e ∈ ω, v ∈ ωω, i, j ∈ L, and σ ≤ τα such that
t = 〈0, e〉 ∗ 〈v, i, j〉, i 6≤L j, Lσ[T ] is KSJ-admissible, t ∈ Lσ[T ],
and ∀x ∈ ωω ∩ Lτα [T ](χGαi (x) ∼= {e}(x, v, χK⊕Gαj , 2E)).

(G.2) There are e0, e1 ∈ ω, v0, v1 ∈ ωω, i, j, k ∈ L, and σ ≤ τα such
that t = 〈1, e0, e1〉 ∗ 〈v0, v1, i, j, k〉, i ∧L j = k, Lσ[T ] is KSJ-
admissible, t ∈ Lσ[T ], ∀x ∈ ωω ∩ Lτα [T ]({e0}(x, v0, χK⊕Gαi ,

2E)
∼= {e1}(x, v1, χK⊕Gαj ,

2E)), and there is a partial function p ∈
Lτα+1 [T ] from ωω to ωω such that gα ⊆ p, Rng(p − gα)
⊆ Lσ[T ], and ∃x ∈ ωω ∩ Lτα+1 [T ]({e0}(x, v0, χK⊕Pi∗0,

2E)
6∼= {e1}(x, v1, χK⊕Pj∗0,

2E)). Here, Pl ∗ 0 = Pl ∪ {〈y,0〉 | y ∈
ωω −Dom(p)} for l ∈ L.

We choose the ≤L[T ]-least t ∈ ωω ∩Lτα [T ] which satisfies (G.1) or (G.2)
and distinguish two subcases.

Subcase 1.1: t satisfies (G.1). We choose the ≤L[T ]-least z ∈ ωω ∩
(Lτα+1 [T ]− Lτα [T ]) and the ≤L[T ]-least 〈a, b〉 ∈ ωω × ωω such that fa(j) =
f b(j) and fa(i) 6= f b(i) by (R.2). Notice that if σ is as in (G.1), then
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a, b, fa(i) ∈ Lσ[T ] by (R.2*) and (R.5). We set z′ = 〈z, fa(i)〉 and define
partial functions pa, pb by

pa(x) (pb(x) resp.) =
{
gα(x) if x ∈ Dom(gα),
a (b resp.) if x = z.

Then P aj = P bj , z′ ∈ P ai , and z′ 6∈ P bi . If {e}(z′, v, χK⊕Paj ∗0, 2E) ∼= 0, then
we define

gα+1(x) =
{
pa(x) if x ∈ Dom(pa),
0 if x ∈ ωω ∩ Lτα+1 [T ]−Dom(pa),

and if {e}(z′, v, χK⊕Paj ∗0, 2E) 6∼= 0, then we define

gα+1(x) =
{
pb(x) if x ∈ Dom(pb),
0 if x ∈ ωω ∩ Lτα+1 [T ]−Dom(pb).

Subcase 1.2: t satisfies (G.2). We choose the ≤L[T ]-least partial function
p ∈ Lτα+1 [T ] as in (G.2) and define

gα+1(x) =
{
p(x) if x ∈ Dom(p),
0 if x ∈ ωω ∩ Lτα+1 [T ]−Dom(p).

Case 2: Otherwise. We define

gα+1(x) =
{
gα(x) if x ∈ Dom(gα),
0 if x ∈ ωω ∩ Lτα+1 [T ]−Dom(gα).

In the construction at Stage α + 1 above, notice that for l ∈ L, Gα+1
l =

P al ∗0∩Lτα+1 [T ] or = P bl ∗0∩Lτα+1 [T ] (Subcase 1.1), or = Pl ∗0∩Lτα+1 [T ]
(Subcase 1.2), or = Gαl ∗ 0 ∩ Lτα+1 [T ] (Case 2) respectively.

We define g =
⋃
α∈ℵ1

gα. Then, for all α ∈ ℵ1, gdωω ∩ Lτα [T ] = gα and
gα : ωω∩Lτα [T ]→ ωω∩Lτα [T ]. Moreover gα+1 : ωω∩Lτα+1 [T ]→ ωω∩Lτα [T ]
by definition. If there is no σ ≤ τα such that Lσ[T ] is KSJ-admissible, then
Rng(gα+1) = {0}. As for projections, for all α ∈ ℵ1 and l ∈ L ∩ Lτα [T ], we
have Gl ∩ Lτα [T ] = Gαl .

Lemma 3.4. Let % ∈ ℵ1 and L%[T ] be KSJ-admissible.

(1) For all α < ℵ1, if % ≤ τα, then there is σ ≤ τα such that Lσ[T ] is
KSJ-admissible and Rng(gα+1 − gα) ⊆ Lσ[T ].

(2) For all x ∈ ωω, there is σ ≤ max{rk(x), %} such that Lσ[T ] is KSJ-
admissible and g(x) ∈ Lσ[T ].

P r o o f. (1) We distinguish three cases at Stage α+ 1.

Case 1: gα+1 is constructed in Subcase 1.1 at Stage α+ 1. We choose σ
as in (G.1). By definition, there is c ∈ ωω ∩ Lσ[T ] (c = a or = b in Subcase
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1.1) such that Rng(gα+1− gα) = {c,0}. Since 0 ∈ Lσ[T ], Rng(gα+1− gα) ⊆
Lσ[T ].

Case 2: gα+1 is constructed in Subcase 1.2 at Stage α+1. We choose the
≤L[T ]-least partial function p and σ as in (G.2). By (G.2), Rng(p − gα) ⊆
Lσ[T ], hence Rng(gα+1 − gα) ⊆ Lσ[T ].

Case 3: gα+1 is constructed in Case 2 at Stage α + 1. By definition,
Rng(gα+1 − gα) = {0} ⊆ L%[T ].

(2) We choose α < ℵ1 such that x ∈ Lτα+1 [T ]− Lτα [T ]. By Lemma 2.2,
τα ≤ rk(x). If % ≤ τα, then by (1) there is σ ≤ rk(x) such that Lσ[T ] is KSJ-
admissible and g(x) = gα+1(x) ∈ Lσ[T ]. If τα < %, then since Rng(gα+1) ⊆
Lτα [T ], we have g(x) ∈ L%[T ].

Since Lℵ1 [T ] is KSJ-admissible and ωω ⊆ Lℵ1 [T ], for all x ∈ ωω there
exists % < ℵ1 such that L%[T ] is KSJ-admissible and x ∈ L%[T ] (using the
Löwenheim–Skolem Theorem). For x ∈ ωω, we set %(x) = min{σ < ℵ1 |
Lσ[T ] is KSJ-admissible and x ∈ Lσ[T ]}.

Lemma 3.5. Let α ∈ ℵ1 and l ∈ L.

(1) For any T -admissible set M , if τα ∈M , then gα ∈M .
(2) For any T -admissible set M , if τα, %(l) ∈M , then Gαl ∈M .
(3) If %(l) < τα+1, then Lτα+1 [T ] is Gl-admissible.

P r o o f. (1) We prove

∀α ∈ ℵ1∀M : T -admissible set (τα ∈M ⇒ 〈gβ | β ≤ α〉 ∈M)

by induction.
If α = 0, then this is clear.
Let 0 < α ∈ ℵ1. We assume that for all β ∈ α and every T -admissible

set M we have (τβ ∈M ⇒ 〈gγ | γ ≤ β〉 ∈M). Let M be a T -admissible set
and τα ∈M .

Let α = β + 1 for some β. By assumption, gβ ∈ Lτα [T ]. In the construc-
tion at Stage β+1, pa, pb in Subcase 1.1 and p in Subcase 1.2 are elements of
Lτα [T ]. Since Lτα [T ] ∈M , by definition gβ+1 ∈M . Hence 〈gβ | β ≤ α〉 ∈M .

Let α be a limit ordinal. For every limit ordinal β ∈ α, since 〈gγ | γ ≤ β〉
∈ Lτβ+1 [T ], the construction at Stage β can be expressed over Lτβ+1 [T ]. And
for every β+ 1 ∈ α, since the conditions of every case at Stage β+ 1 can be
expressed over Lτβ+1 [T ] (notice that if t = 〈. . .〉∗〈. . . , i, j, . . .〉 and %(t) ≤ τβ ,
then Gβi , G

β
j ∈ Lτβ+1 [T ] by Lemmas 3.4 and 3.3, hence we can express (G.1)

(G.2); otherwise, we proceed to Case 2 immediately), the construction at
Stage β + 1 can be expressed over Lτβ+2 [T ]. Thus, 〈gβ | β ∈ α〉 is ∆1-
definable over M with parameter 〈τβ | β ≤ α〉, hence 〈gβ | β ∈ α〉 ∈M . (By



Embedding lattices in the Kleene degrees 57

Lemma 3.1, 〈τβ | β ≤ α〉 ∈ M .) Therefore, by definition, gα ∈ M , and so
〈gβ | β ≤ α〉 ∈M .

(2) By (1), gα ∈ M . For all x ∈ Dom(gα), since rk(x) ∈ M , there is
σ ∈ On∩M such that Lσ[T ] is KSJ-admissible and gα(x), l ∈ Lσ[T ] by
Lemma 3.4. Hence, Gαl ∈M by Lemma 3.3.

(3) By (2), Gαl ∈ Lτα+1 [T ]. In the construction at Stage α + 1, pa, pb in
Subcase 1.1 and p in Subcase 1.2 are elements of Lτα+1 [T ], hence similarly
to (2), P al , P

b
l , Pl ∈ Lτα+1 [T ] by Lemma 3.3. Since Gα+1

l = P al ∗0∩Lτα+1 [T ]
or = P bl ∗ 0∩Lτα+1 [T ] or = Pl ∗ 0∩Lτα+1 [T ] or = Gαl ∗ 0∩Lτα+1 [T ], we see
that Lτα+1 [T ] is Gα+1

l -admissible and so Gl-admissible.

Lemma 3.6. For all l ∈ L, Gl ≤K KSJ, hence deg(K⊕Gl) ∈ K[K,KSJ].

P r o o f. For α ∈ ℵ1, similarly to Lemma 3.5, the construction of gα (i.e.
constructions till Stage α) and the conditions of every case at Stage α + 1
can be expressed over Lτα+1 [T ]. Hence, there are formulas ψ1 and ψ2 such
that:

Lτα+1 [T ] |= ψ1(p, α)

⇔ There is t ∈ ωω ∩ Lτα [T ] which satisfies (G.1) or (G.2) at

Stage α+ 1 and let t be the ≤L[T ]-least such real,

if t = 〈0, e〉 ∗ 〈v, i, j〉 satisfies (G.1) and z, a, b, pa, pb are

as in Subcase 1.1

then {e}(〈z, fa(i)〉, v, χK⊕Paj , 2E) ∼= 0 ∧ p = pa

or {e}(〈z, fa(i)〉, v, χK⊕Paj , 2E) 6∼= 0 ∧ p = pb,

and if t = 〈1, e0, e1〉 ∗ 〈v0, v1, i, j, k〉 satisfies (G.2),

then p is the ≤L[T ]-least partial function as in (G.2).

Lτα+1 [T ] |= ψ2(p, α)

⇔ There is no t ∈ ωω ∩ Lτα [T ] which satisfies (G.1) or (G.2)

at Stage α+ 1 and p = gα.

Here, ψ1 and ψ2 correspond to Case 1 and Case 2 respectively.
We choose r ∈WO such that o.t.(r) = %(l). We prove Gl ≤K KSJ via r

using (2) of §0. Let x, y ∈ ωω be arbitrary and M = L
ωK

SJ;x,y,r
1

[KSJ;x, y, r].

Notice that if x ∈ Lτα+1 [T ]−Lτα [T ], then by Lemma 3.2 and KSJ-admissibi-
lity of M , we have Lτα+1 [T ] = LωK;x

1
[K;x] ∈ M . By Lemma 3.4, there is

σ ≤ max{rk(x), %(l)} such that Lσ[T ] is KSJ-admissible and g(x), l ∈ Lσ[T ];
moreover, fg(x)(l) ∈ Lσ[T ]. Hence,
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〈x, y〉 ∈ Gl ⇔M |= “∃α ∈ ωK;x
1 ∃p ∈ LωK;x

1
[K;x]

(LωK;x
1

[K;x] = Lτα+1 [T ] ∧ x 6∈ Lτα [T ]

∧ Lτα+1 [T ] |= ψ1(p, α) ∨ ψ2(p, α)

∧ (∃σ ≤ max{rk(x), %(l)}(x ∈ Dom(p) ∧ p(x), l ∈ Lσ[T ]

∧ Lσ[T ] is KSJ-admissible ∧ (y = fp(x)(l))Lσ [T ])

∨ (x 6∈ Dom(p) ∧ y = 0)))”.

Notice that the quantifiers in the statement “ωK;x
1 = τα+1” are bounded

by LωK;x
1

[K;x], since ωK;x
1 = τα+1 iff ¬∃τ ∈ ωK;x

1 (τα < τ ∧ τ satisfies

(T.1))
L
ω
K;x
1

[K;x]
. Hence “〈x, y〉∈Gl” is ∆1 over M . Therefore, Gl≤KKSJ.

Lemma 3.7. (1) G0L ≡K ∅.
(2) For all i, j ∈ L, if i ≤L j, then K ⊕Gi ≤K K ⊕Gj.
(3) For all i, j, k ∈ L, if i∨Lj = k, then (K⊕Gi)⊕(K⊕Gj) ≡K K⊕Gk.

P r o o f. (1) By definition, G0L = {〈x, fg(x)(0L)〉 | x ∈ ωω} = {〈x,0〉 |
x ∈ ωω} ≡K ∅.

(2) We choose r ∈WO such that o.t.(r) = %(i, j). To prove K ⊕Gi ≤K
K ⊕Gj , it is sufficient to prove that for all x, y ∈ ωω,

〈x, y〉 ∈ Gi ⇔M |= “∃σ ≤ max{rk(x), %(i, j)}∃a, z ∈ Lσ[T ]

(Lσ[T ] is KSJ-admissible ∧ i, j ∈ Lσ[T ]

∧ 〈x, z〉 ∈ Gj ∧ (fa(j) = z ∧ fa(i) = y)Lσ [T ])”,

where M = L
ω
K⊕Gj ;i,j,x,y,r
1

[K ⊕Gj ; i, j, x, y, r].
Suppose 〈x, y〉 ∈ Gi. By Lemma 2.2, rk(x) ∈M . By Lemma 3.4, there is

σ ≤ max{rk(x), %(i, j)} such that Lσ[T ] is KSJ-admissible and g(x), i, j ∈
Lσ[T ]. By (R.5), we have fg(x)(i), fg(x)(j) ∈ Lσ[T ]. Thus, if we set a = g(x)
and z = fa(j), then since y = fa(i) and F ≤K KSJ, the right-hand side
holds. Conversely, suppose that x, y ∈ ωω satisfy the right-hand side. Let
a, z be as in the right-hand side. By 〈x, z〉 ∈ Gj , fg(x)(j) = z = fa(j). Then,
by (R.1), fg(x)(i) = fa(i). Hence, y = fg(x)(i), and so 〈x, y〉 ∈ Gi.

(3) By (2), K ⊕ Gi ⊕ Gj ≤K K ⊕ Gk. We choose r ∈ WO such that
o.t.(r) = %(i, j, k). To prove K⊕Gk ≤K K⊕Gi⊕Gj , it is sufficient to prove
that for all x, y ∈ ωω,
〈x, y〉 ∈ Gk ⇔M |= “∃σ ≤ max{rk(x), %(i, j, k)}∃a, z, z′ ∈ Lσ[T ]

(Lσ[T ] is KSJ-admissible ∧ i, j, k ∈ Lσ[T ]

∧ 〈x, z〉 ∈ Gi ∧ 〈x, z′〉 ∈ Gj
∧ (fa(i) = z ∧ fa(j) = z′ ∧ fa(k) = y )Lσ [T ])”,

where M = L
ω
K⊕Gi⊕Gj ;i,j,k,x,y,r
1

[K ⊕Gi ⊕Gj ; i, j, k, x, y, r].
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Suppose 〈x, y〉 ∈ Gk. Similarly to (2), we set a = g(x), z = fa(i),
z′ = fa(j) and choose σ ≤ max{rk(x), %(i, j, k)} such that Lσ[T ] is KSJ-
admissible and g(x), i, j, k ∈ Lσ[T ]. Then the right-hand side holds. Con-
versely, suppose that x, y ∈ ωω satisfy the right-hand side. Let a, z, z′ be as
in the right-hand side. Similarly to (2), we have fg(x)(k) = fa(k) = y by
(R.3), and so 〈x, y〉 ∈ Gk.

Lemma 3.8. Let α ∈ ℵ1 and t ∈ ωω∩Lτα [T ] be the ≤L[T ]-least real which
satisfies (G.1) or (G.2) at Stage α+ 1.

(1) If t = 〈0, e〉 ∗ 〈v, i, j〉 satisfies (G.1), then there is x ∈ ωω ∩ Lτα+1 [T ]
such that

χGα+1
i

(x) 6∼= {e}(x, v, χK⊕Gα+1
j

, 2E)

and so χGi(x) 6∼= {e}(x, v, χK⊕Gj , 2E).
(2) If t = 〈1, e0, e1〉 ∗ 〈v0, v1, i, j, k〉 satisfies (G.2), then there is x ∈

ωω ∩ Lτα+1 [T ] such that

{e0}(x, v0, χK⊕Gα+1
i

, 2E) 6∼= {e1}(x, v1, χK⊕Gα+1
j

, 2E)

and so {e0}(x, v0, χK⊕Gi ,
2E) 6∼= {e1}(x, v1, χK⊕Gj ,

2E).

P r o o f. Both in (1) and in (2) (i.e. in (G.1) and in (G.2)), since %(t) ≤ τα,
Lτα+1 [T ] is Gi-admissible and Gj-admissible by Lemma 3.5.

(1) We choose the ≤L[T ]-least z ∈ ωω ∩ (Lτα+1 [T ] − Lτα [T ]) and the
≤L[T ]-least 〈a, b〉 ∈ ωω× ωω such that fa(j) = f b(j)∧ fa(i) 6= f b(i). We set
z′ = 〈z, fa(i)〉. Then z′ ∈ Lτα+1 [T ]. Let pa and pb be as in Subcase 1.1 at
Stage α+ 1.

Case 1: {e}(z′, v, χK⊕Paj ∗0, 2E) ∼= 0. Then, for l ∈ {i, j}, Gl∩Lτα+1 [T ] =
Gα+1
l = P al ∗ 0 ∩ Lτα+1 [T ] by definition. Since Lτα+1 [T ] is (Gj ; v, z′)-admis-

sible, {e}(z′, v, χK⊕Gj , 2E) ∼= {e}(z′, v, χK⊕Gα+1
j

, 2E) ∼= 0. By definition,

z′ ∈ Gα+1
i ⊆ Gi. Hence,

{e}(z′, v, χK⊕Gα+1
j

, 2E) 6∼= 1 ∼= χGα+1
i

(z′)

and {e}(z′, v, χK⊕Gj , 2E) 6∼= χGi(z
′).

Case 2: {e}(z′, v, χK⊕Paj ∗0, 2E) 6∼= 0. Similarly to Case 1,

{e}(z′, v, χK⊕Gj , 2E) ∼= {e}(z′, v, χK⊕Gα+1
j

, 2E) 6∼= 0.

Since g(z) = gα+1(z) = b and f b(i) 6= fa(i), we have z′ 6∈ Gα+1
i and z′ 6∈ Gi.

Hence,

{e}(z′, v, χK⊕Gα+1
j

, 2E) 6∼= 0 ∼= χGα+1
i

(z′)

and {e}(z′, v, χK⊕Gj , 2E) 6∼= χGi(z
′).
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(2) We choose the ≤L[T ]-least partial function p ∈ Lτα+1 [T ] from ωω to
ωω as in (G.2). Then, for l ∈ {i, j}, Gl∩Lτα+1 [T ] = Gα+1

l = Pl∗0∩Lτα+1 [T ].
Hence, by (G.2), there is x ∈ ωω ∩ Lτα+1 [T ] such that

{e0}(x, v0, χK⊕Gα+1
i

, 2E) 6∼= {e1}(x, v1, χK⊕Gα+1
j

, 2E)

and hence {e0}(x, v0, χK⊕Gi ,
2E) 6∼= {e1}(x, v1, χK⊕Gj ,

2E).

Lemma 3.9. For all t ∈ ωω, {α ∈ ℵ1 | t satisfies (G.1) or (G.2) at
Stage α + 1} is countable. Hence

⋃
t<L[T ]s

{α ∈ ℵ1 | t satisfies (G.1) or
(G.2) at Stage α + 1} is countable and so bounded for all s ∈ ωω (since
{t ∈ ωω | t <L[T ] s} is countable).

P r o o f. We set Xt = {α ∈ ℵ1 | t satisfies (G.1) or (G.2) at Stage α+ 1}
for t ∈ ωω. We prove that for all t ∈ ωω, Xt is countable by induction on t.

Let t ∈ ωω and assume that for all u ∈ ωω, if u <L[T ] t then Xu is count-
able. Suppose that, on the contrary, Xt is uncountable. By the inductive as-
sumption

⋃
u<L[T ]t

Xu is countable, hence we can take β ∈ Xt−
⋃
u<L[T ]t

Xu.
Then t is the <L[T ]-least real which satisfies (G.1) or (G.2) at Stage β + 1.
Since Xt is uncountable, there is α ∈ Xt such that β + 1 ≤ α.

Case 1: t satisfies (G.1) at Stage β+1. There are e ∈ ω, v ∈ ωω, and i, j ∈
L such that t = 〈0, e〉∗〈v, i, j〉. By Lemma 3.8, there is x ∈ ωω∩Lτβ+1 [T ] (⊆
Lτα [T ]) such that χGβ+1

i
(x) 6∼= {e}(x, v, χK⊕Gβ+1

j
, 2E). Then, similarly to the

proof of Lemma 3.8, since Gαl ∩Lτβ+1 [T ] = Gβ+1
l for l ∈ {i, j} and Lτβ+1 [T ]

is Gj-admissible, we have χGαi (x) 6∼= {e}(x, v, χK⊕Gαj , 2E). Hence, t does not
satisfy (G.1) at Stage α + 1. Moreover, since t(0) = 0, t does not satisfy
(G.2) at Stage α+ 1. This contradicts α ∈ Xt.

Case 2: t satisfies (G.2) at Stage β + 1. There are e0, e1 ∈ ω, v0, v1 ∈
ωω, and i, j, k ∈ L such that t = 〈1, e0, e1〉 ∗ 〈v0, v1, i, j, k〉. Similarly to
Case 1, there is x ∈ ωω ∩ Lτβ+1 [T ] such that {e0}(x, v0, χK⊕Gαi ,

2E) 6∼=
{e1}(x, v1, χK⊕Gαj ,

2E). Hence, t does not satisfy (G.2) at Stage α+1. More-
over, since t(0) = 1, t does not satisfy (G.1) at Stage α+ 1. This contradicts
α ∈ Xt.

Lemma 3.10. For all i, j ∈ L, if i 6≤L j, then K ⊕Gi 6≤K K ⊕Gj.
P r o o f. Assume i 6≤L j and Gi ≤K K ⊕ Gj . We choose e ∈ ω and

v ∈ ωω such that for all x ∈ ωω, χGi(x) ∼= {e}(x, v, χK⊕Gj , 2E). We set
t = 〈0, e〉 ∗ 〈v, i, j〉. By Lemma 3.9, we can choose α ∈ ℵ1 such that for
all u <L[T ] t, u does not satisfy (G.1) or (G.2) (taking u in place of t) at
Stage α + 1. Choosing α sufficiently large, we may assume that there is
α′ < α such that α = α′ + 1 and %(t) ≤ τα′ . Then, by Lemma 3.5, Lτα [T ]
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is Gj-admissible, and so by the choice of e, v, for all x ∈ ωω ∩ Lτα [T ], we
have χGαi (x) ∼= {e}(x, v, χK⊕Gαj , 2E). Hence, t satsfies (G.1) at Stage α+ 1.
Moreover, t is the ≤L[T ]-least real which satisfies (G.1) or (G.2) at Stage
α + 1. Therefore, by Lemma 3.8, there is x ∈ ωω ∩ Lτα+1 [T ] such that
χGi(x) 6∼= {e}(x, v, χK⊕Gj , 2E). This is a contradiction.

Lemma 3.11. Let i, j, k ∈ L, i ∧L j = k, α ∈ ℵ1, e0, e1 ∈ ω, and v0, v1 ∈
ωω. Assume that there are partial functions p, p′ ∈ Lτα+1 [T ] from ωω to ωω,
σ ≤ τα, and x ∈ ωω such that gα ⊆ p, p′, Dom(p) = Dom(p′), Pk = P ′k,
Lσ[T ] is KSJ-admissible, i, j, k ∈ Lσ[T ], Rng(p−gα),Rng(p′−gα) ⊆ Lσ[T ],
and {e0}(x, v0, χK⊕Pi∗0,

2E) 6∼= {e1}(x, v1, χK⊕P ′j∗0,
2E). Then there is a par-

tial function p′′ ∈ Lτα+1 [T ] from ωω to ωω such that gα ⊆ p′′, Rng(p′′−gα) ⊆
Lσ[T ], and {e0}(x, v0, χK⊕P ′′i ∗0,

2E) 6∼= {e1}(x, v1, χK⊕P ′′j ∗0,
2E).

P r o o f. We set D = Dom(p) − Dom(gα). Since Pk = P ′k, for all y ∈ D,
fp(y)(k) = fp

′(y)(k). By (R.4*), for all y ∈ D there are cy0, c
y
1, c

y
2 ∈ ωω∩Lσ[T ]

such that fp(y) ≡i fc
y
0 ≡j f c

y
1 ≡i fc

y
2 ≡j fp′(y). Since p, p′, D, Lσ[T ] ∈

Lτα+1 [T ] and F ≤K KSJ, there exists 〈〈cy0, cy1, cy2〉 | y ∈ D〉 ∈ Lτα+1 [T ] such
that for all y ∈ D, cy0, c

y
1, c

y
2 ∈ ωω∩Lσ[T ] and fp(y) ≡i f c

y
0 ≡j f c

y
1 ≡i f c

y
2 ≡j

fp
′(y) by ∆1-separation. We define pn : Dom(p)→ ωω (n ∈ 3) by

pn(y) =
{
gα(y) if y ∈ Dom(gα),

cyn if y ∈ D.

Then pn ∈ Lτα+1 [T ] and Rng(pn − gα) ⊆ Lσ[T ] for n ∈ 3. By defini-
tion, Pi = P 0

i , P 0
j = P 1

j , P 1
i = P 2

i , and P 2
j = P ′j . If we assume that for

all n ∈ 3, {e0}(x, v0, χK⊕Pni ∗0,
2E) ∼= {e1}(x, v1, χK⊕Pnj ∗0,

2E), then we ob-
tain {e0}(x, v0, χK⊕Pi∗0,

2E) ∼= {e1}(x, v1, χK⊕P ′j∗0,
2E), a contradiction. So

there is n ∈ 3 such that {e0}(x, v0, χK⊕Pni ,
2E) 6∼= {e1}(x, v1, χK⊕Pnj ,

2E).

Lemma 3.12. For all i, j, k ∈ L, if i ∧L j = k, then deg(K ⊕Gk) is the
≤K-infimum of deg(K ⊕Gi) and deg(K ⊕Gj).

P r o o f. It is sufficient to prove that for all X ⊆ ωω, if X ≤K K⊕Gi and
X ≤K K⊕Gj , then X ≤K K⊕Gk. We fix X ⊆ ωω such that X ≤K K⊕Gi
and X ≤K K ⊕Gj , and choose e0, e1 ∈ ω and v0, v1 ∈ ωω such that for all
x ∈ ωω, χX(x) ∼= {e0}(x, v0, χK⊕Gi ,

2E) ∼= {e1}(x, v1, χK⊕Gj ,
2E). We set

t = 〈1, e0, e1〉 ∗ 〈v0, v1, i, j, k〉. By Lemma 3.9, we choose γ ∈ ℵ1 such that
sup(

⋃
u<L[T ]t

{α ∈ ℵ1 | u satisfies (G.1) or (G.2) at Stage α + 1}) < γ and
%(t) ≤ τγ .

Claim 1. For all α ∈ ℵ1, if γ ≤ α, then there is no partial function
p ∈ Lτα+1 [T ] from ωω to ωω as in (G.2) at Stage α+ 1.
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P r o o f. Assume γ ≤ α ∈ ℵ1 and there is a partial function p ∈ Lτα+1 [T ]
from ωω to ωω as in (G.2) at Stage α + 1. Then t satisfies (G.2) at Stage
α + 1 by the choice of e0, e1, v0, v1. Since γ ≤ α, t is the ≤L[T ]-least real
which satisfies (G.1) or (G.2) at Stage α+ 1. Thus, by Lemma 3.8, there is
x ∈ ωω such that {e0}(x, v0, χK⊕Gi ,

2E) 6∼= {e1}(x, v1, χK⊕Gj ,
2E). This is a

contradiction and completes the proof of Claim 1.

Claim 2. For all α ∈ ℵ1 with γ ≤ α and for all partial functions
p, p′ ∈ Lτα+1 [T ] from ωω to ωω, if gα ⊆ p, p′, Dom(p) = Dom(p′), Pk =
P ′k, and there is σ ≤ τα such that Lσ[T ] is KSJ-admissible, t ∈ Lσ[T ],
and Rng(p − gα),Rng(p′ − gα) ⊆ Lσ[T ], then for all x ∈ ωω ∩ Lτα+1 [T ],
{e0}(x, v0, χK⊕Pi∗0,

2E) ∼= {e0}(x, v0, χK⊕P ′i∗0,
2E).

P r o o f. Assume γ ≤ α < ℵ1 and Claim 2 does not hold for some partial
functions p, p′. Then there is x ∈ ωω ∩ Lτα+1 [T ] such that

{e0}(x, v0, χK⊕Pi∗0,
2E) 6∼= {e0}(x, v0, χK⊕P ′i∗0,

2E).

Since Claim 1 implies that p′ is not as in (G.2) at Stage α+ 1,

{e0}(x, v0, χK⊕P ′i∗0,
2E) ∼= {e1}(x, v1, χK⊕P ′j∗0,

2E).

Hence

{e0}(x, v0, χK⊕Pi∗0,
2E) 6∼= {e1}(x, v1, χK⊕P ′j∗0,

2E).

Thus, by Lemma 3.11, there is a partial function p′′ ∈ Lτα+1 [T ] as in
(G.2) at Stage α + 1. This contradicts Claim 1 and completes the proof
of Claim 2.

Claim 3. For all α ∈ ℵ1 with γ ≤ α, set Hα = Gαi ∪ {〈x, y〉 ∈ ωω |
x 6∈ Lτα [T ] ∧ ∃a ∈ ωω(y = fa(i) ∧ a is the ≤L[T ]-least real such that
〈x, fa(k)〉 ∈ Gk)}. Then:

(1) Hα is uniformly ∆1-definable over all T,Gk-admissible sets of which
τα is an element.

(2) For all x ∈ ωω ∩ Lτα+1 [T ],

{e0}(x, v0, χK⊕Gi ,
2E) ∼= {e0}(x, v0, χK⊕Hα ,

2E).

P r o o f. (1) It is sufficient to prove that Hα − Gαi is uniformly ∆1-
definable over all T,Gk-admissible sets of which τα is an element. By Lemma
3.4, for all x ∈ ωω − Lτα [T ] (notice %(t) ≤ τγ ≤ τα ≤ rk(x)), there is
σ ≤ rk(x) such that Lσ[T ] is KSJ-admissible and g(x), i, k ∈ Lσ[T ], and
moreover if a is the ≤L[T ]-least real such that 〈x, fa(k)〉 ∈ Gk, then since
a ≤L[T ] g(x), we have a ∈ Lσ[T ] and so fa(k), fa(i) ∈ Lσ[T ]. Hence, for any
T,Gk-admissible set M with τα ∈M and for all x, y ∈ ωω ∩M ,
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〈x, y〉 ∈ Hα −Gαi
⇔M |= “x 6∈ Lτα [T ] ∧ ∃σ ≤ rk(x)∃a ∈ ωω ∩ Lσ[T ]

(Lσ[T ] is KSJ-admissible ∧ i, k ∈ Lσ[T ]

∧∃z ∈ Lσ[T ]((z = fa(k))Lσ[T ] ∧ 〈x, z〉 ∈ Gk)

∧∀b, z ∈ ωω ∩ Lσ[T ]((b <L[T ] a ∧ z = f b(k))Lσ[T ] ⇒ 〈x, z〉 6∈ Gk)

∧ (y = fa(i))Lσ [T ])”,

i.e. the quantifiers in the formula which states “〈x, y〉 ∈ Hα − Gαi ” are
bounded by Lσ[T ] and rk(x).

(2) By definition, there is a partial function p ∈ Lτα+1 [T ] such that
gα ⊆ p and

gα+1(x) =
{
p(x) if x ∈ Dom(p),
0 if x ∈ ωω ∩ Lτα+1 [T ]−Dom(p).

Then Pi ∗ 0 ∩ Lτα+1 [T ] = Gα+1
i = Gi ∩ Lτα+1 [T ]. By Lemma 3.4, there is

σ ≤ τα such that Lσ[T ] is KSJ-admissible, t ∈ Lσ[T ], and Rng(p − gα) ⊆
Lσ[T ]. We define p′ : Dom(p)→ ωω by

p′(x) =




gα(x) if x ∈ Dom(gα),
the ≤L[T ]-least a ∈ ωω
such that 〈x, fa(k)〉 ∈ Gk if x ∈ Dom(p)−Dom(gα).

Then for all x ∈ Dom(p) we have fp
′(x)(k) = fg(x)(k) = fp(x)(k), and

so P ′k = Pk. Since p′(x) ≤L[T ] g(x) for all x ∈ Dom(p), it follows that
Rng(p′ − gα) ⊆ Lσ[T ]. Since Lτα+1 [T ] is Gk-admissible, similarly to (1),
p′ is ∆1 over Lτα+1 [T ] and so p′ ∈ Lτα+1 [T ] by ∆1-separation. More-
over, P ′i ∗0∩Lτα+1 [T ] = Hα∩Lτα+1 [T ] by definition (notice the assumption
that 0 is the ≤L[T ]-least real). Thus, by Claim 2, for all x ∈ ωω ∩ Lτα+1 [T ],
{e0}(x, v0, χK⊕Pi∗0,

2E) ∼= {e0}(x, v0, χK⊕P ′i∗0,
2E) and hence

{e0}(x, v0, χK⊕Gi ,
2E) ∼= {e0}(x, v0, χK⊕Hα ,

2E).

This completes the proof of Claim 3.

Let x ∈ ωω − Lτγ [T ] and n ∈ 2, and M = L
ω
K⊕Gk;x
1

[K ⊕ Gk;x]. By

Lemma 2.2, M is T -admissible, and if x ∈ Lτα+1 [T ] − Lτα [T ], then γ ≤ α
and τα ≤ rk(x) ∈ τα+1 ∩M . Hence by Claim 3,

χX(x) ∼= n

⇔ ∃α ∈ ℵ1(x ∈ Lτα+1 [T ]− Lτα [T ] ∧ {e0}(x, v0, χK⊕Hα ,
2E) ∼= n)

⇔M |= “∃α ≤ rk(x)(τα ≤ rk(x)

∧ ¬∃τ ≤ rk(x)(τα < τ ∧ τ satisfies (T.1))

∧ {e0}(x, v0, χK⊕Hα ,
2E) ∼= n)”.
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Therefore, X − Lτγ [T ] and (ωω − X) − Lτγ [T ] are uniformly Σ1-definable
over all (K ⊕ Gk;w)-admissible sets, where w is a real in WO such that
o.t.(w) = τγ . Since Lτγ [T ] is countable, X ≤K K ⊕Gk.

This completes the proof of the Theorem.

Remark. In the Theorem, we may replace “(L,≤L,∨L,∧L) is Kleene
recursive in KSJ” by “(L,≤L,∨L,∧L) is Kleene recursive in the finite times
superjump of K”.

Concerning, for example, (KSJ)SJ, for any K-admissible set N , N is

closed under λx.ωK;x
1 and λx.ωK

SJ;x
1 iff N is (KSJ)SJ-admissible, and the

quantifiers in the statement “N is closed under λx.ωK
SJ;x

1 ” are bounded
by N as “∀x ∈ ωω ∩ N∃α ∈ On∩N(Lα[K;x] is (K;x)-admissible∧∀y ∈
ωω ∩ Lα[K;x]∃β < α(Lβ [K; y] is (K; y)-admissible))N”. Replacing “Lσ[T ]
is KSJ-admissible” by “Lσ[T ] is (KSJ)SJ-admissible” in the proof of the
Theorem, we can prove the following:

Theorem′ (ZFC+CH). Let K0 ⊕K1 ≤K K ⊆ ωω. For any lattice L, if
L ⊆ ωω and (L,≤L,∨L,∧L) is Kleene recursive in (KSJ)SJ, then L can be
embedded in K[K,KSJ].
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