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Atomic compactness for reflexive graphs

by

Christian De lh ommé (La Réunion)

Abstract. A first order structure M with universe M is atomic compact if every
system of atomic formulas with parameters in M is satisfiable in M provided each of its
finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric)
graphs. In particular, we investigate the extent to which “sparse” graphs (i.e. graphs with
“few” vertices of “high” degree) are compact with respect to systems of atomic formulas
with “few” unknowns, on the one hand, and are pure restrictions of their Stone–Čech
compactifications, on the other hand.

1. Introduction. The definition of atomic compactness goes back to
Węglorz [12]. It extends to general first order structures the notion of equa-
tional compactness, first considered by I. Kaplansky and J. Łoś for Abelian
groups, and later by J. Mycielski for general algebras (see [6]).
Graphs first arose in this context in connection with Mycielski’s ques-

tion [6]: Is every atomic compact algebra a retract of a topologically compact
algebra? This question was settled (negatively) by W. Taylor [8], who pro-
duced an atomic compact anti-reflexive graph, the Stone–Čech compactifi-
cation of which is not anti-reflexive.
The graphs that we consider in this paper are reflexive. Reflexive graphs

(and more generally reflexive binary relations) are of particular interest
in the study of the relationship between atomic compactness and projec-
tion properties (see [3, 13]). The assumption of reflexivity forces a cer-
tain behaviour with respect to atomic compactness, related to the fact
that there are “many” homomorphisms between reflexive relations; for in-
stance, all constant mappings are homomorphisms, so that in particular,
such structures are always weakly atomic compact (i.e. compact with re-
spect to parameter-free systems of atomic formulas).
Here we shall mainly be concerned with systems of atomic formulas for

sparse graphs. Section 4 is devoted to the study of (almost) locally finite
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graphs. It is established that a graph with no more than two vertices of
infinite degree is always topologically compact, which may no longer be the
case with three such vertices; however, a graph with finitely many such ver-
tices is always compact with respect to systems of atomic formulas with
finitely many unknowns. Incidentally, we consider a simple process for re-
ducing the systems of atomic formulas, which will also be useful in the
subsequent section, where we deal with the threshold of atomic compact-
ness with respect to the number of unknowns. In Section 6, we focus on
systems coming from Stone–Čech compactifications. We prove that every
graph with a finite essential degree is pure in its Stone–Čech compactifi-
cation (Theorem 6.1); its proof relies on a lemma, concerning the sets of
coincidence of finitely many mappings, that may be interesting for its own
sake (Lemma 6.2). Then we turn to Mycielski’s question; from its negative
answer given by Taylor for anti-reflexive graphs, we infer the same answer
in our setting (Theorem 6.2). In the last section, we introduce the notion
of admissible compactness, which arises when studying projection proper-
ties.

2. Preliminaries. Let us fix our notation and recall some basic defini-
tions and general facts about atomic compactness; they appear in [6, 7, 12].
See also the survey [14], and [5, 10, 11] for further related results.
Given a structure M = (M ; . . .) with universe M , over a first order

language L, an atomic formula with parameters in M is any formula t1 ≡ t2
(equality formula) or r(t1, . . . , tn), where r is a relation symbol and t1, . . . , tn
are terms of the language LM , obtained from L by the adjunction of the
elements of M as new constant symbols; positive formulas are built up from
atomic ones using the connectives ∧, ∨ and the quantifiers ∃, ∀; (∃,∧)-
formulas are obtained using only ∧ and ∃. A sentence is a formula with no
free variable.
A system of M with unknowns in X is any set Φ(X) of formulas with

parameters in M and with free variables in X; note that the set of un-
knowns may be uncountably infinite. The system Φ is an atomic, a positive
or a (∃,∧)-system if its elements are respectively atomic, positive or (∃,∧)-
formulas; Φat and Φ+ will denote respectively the sets of atomic and positive
elements of Φ. Given cardinals κ and λ, Φ is a κ-system (resp. a κ−-system)
if it has at most (resp. strictly less than) κ elements, it is a [λ]-system (resp.
a [λ−]-system) if it has at most (resp. strictly less than) λ unknowns. We
shall freely combine these various prefixes.
Given a structure N = (N ; . . .) over LM , a solution of Φ in N is any

family (cx : x ∈ X) of elements of N such thatN satisfies the set of sentences
Φ[cx : x ∈ X]. The system Φ is solvable if it has a solution in M, and it is
finitely solvable if each of its finite subsets is solvable.
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The structure M is atomic compact if all its finitely solvable atomic
systems are solvable. One similarly defines M being compact with respect
to any class of systems (e.g.M is saturated if and only if it is [1]-card(M)−-
compact, where |M | denotes the cardinality of M).
The atomic compactness ofM can be checked by considering only “small”

systems: Indeed, given any infinite cardinal κ, if M is κ-atomic compact,
then it is κ-(∃,∧)-compact, and then it is (∃,∧)-compact, provided that
κ is greater than or equal to the cardinality of LM . But as soon as M is
[1]-(∃,∧)-compact, any finitely solvable atomic system can be solved “one
unknown after the other” (see [7]).
Given an extension N = (N ; . . .) of M = (M ; . . .), recall that M is a

retract ofN if there exists a retraction fromN toM (i.e. an L-homomorphism
fixing M pointwise); N is an elementary (resp. a pure) extension of M if M
and N satisfy exactly the same sentences (resp. the same (∃,∧)-sentences)
with parameters in M .
Observe that if M is a retract of N, then any positive system of M

with a solution in N has a solution in M. Moreover (by the Compactness
Theorem) the finitely solvable systems of M are exactly the systems which
have a solution in an elementary extension of M (they are the so-called
incomplete X-types of M over M). But for each extension N of M, the set
TLN (N) of LN -sentences true in N can be viewed as a system Φ(N \M)
of M, with the property that any solution of Φat defines a retraction of N
to M; moreover, Φ (resp. Φat) is finitely solvable precisely when N is an
elementary (resp. a pure) extension of M.
From these observations, together with the fact that homomorphisms

onto “preserve” positive formulas (note incidentally that each retract of an
atomic compact structure is atomic compact as well), one gets: If M is
atomic compact, then it is a retract of all its pure extensions, hence it is a
retract of all its elementary extensions, and then it is positively compact;
thus these four properties are mutually equivalent, and even equivalent to
M being a retract of all its reduced powers (resp. of all its ultrapowers)
[12], as for any finitely solvable atomic system Φ of M, the system Φat has
a solution in the reduced power M[Φ]/F , where [Φ] denotes the set of finite
subsets of Φ, and F is any filter (resp. any ultrafilter) on [Φ] containing
{v ∈ [Φ] : u ⊂ v} for all u in [Φ]; conversely, recall that any reduced power
is a pure extension.
A topology T on M is compatible with M if the interpretations of the

relation and function symbols are respectively closed and continuous (the
powers of M involved being endowed with the product topology); when in
addition T is Hausdorff (in which case the equality relation is also closed), for
each atomic system Φ(X) ofM and each ϕ in Φ, the set of solutions of ϕ inM
defines a closed subset of MX . Hence, any topologically compact structure
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(admitting a Hausdorff-compact compatible topology), and in particular
any finite structure is atomic compact [6]. But the converse need not hold
(consider for instance (Q,+)); in fact, an atomic compact structure need
not be a retract of any topologically compact one [8].
Given a relational structure R = (E;Ri : i ∈ I), let Ř = (Ě;Ri : i ∈ I)

denote the structure with universe the Stone–Čech compactification of the
discrete space E, each Ri denoting the closure of Ri in Ěni (ni is the arity
of Ri). The relational structure Ř is a topologically compact extension of
R with the property that every homomorphism from R into a topologically
compact structure has a (unique) homomorphic extension to Ř; thus R
is a retract of some topologically compact structure if and only if it is a
retract of Ř. We shall consider Ě as the set of ultrafilters on E (hence
(U1, . . . ,Uni) ∈ Ri if and only if for all U1 ∈ U1, . . . , Uni ∈ Uni , there are
a1 ∈ U1, . . . , ani ∈ Uni such that (a1, . . . , ani) ∈ Ri).

3. Graphs

3.1. Conventions. The graphs that we consider are the binary relations
G = (E;G) which are reflexive and symmetric. For any subset F of E, the
graph induced on F by G is G(F ) = (F ;G ∩ F × F ). In handling systems
Φ of G, we adopt the convention to denote by the letters x, y, z, . . . the
free variables (unknowns), by a, b, c, . . . the vertices (parameters), and by
u, v, w, . . . indiscriminately the unknowns or parameters; the symbol for
the binary relation will be ∼. So the general forms of atomic formulas with
parameters are u ≡ v and u ∼ v. The notations u ∼Φ v and u ∼G v stand
respectively for u ∼ v ∈ Φ and (u, v) ∈ G. The neighbourhood of a vertex a
is Ga = {b ∈ E : a ∼G b} and its degree is card(Ga \ {a}); the vertex a is a
weak neighbour (resp. a strong neighbour) of the subset A of E if A∩Ga 
= ∅
(resp. if A ⊂ Ga); in this case, write a ∼G A (resp. a ≈G A). The weak
neighbourhood of A is the set GA = {a ∈ E : a ∼G A}. In the same way,
we write x ∼Φ A for: “there is an a in A such that x ∼Φ a”. The graph
G is locally finite (resp. almost locally finite) if all its vertices (resp. all but
finitely many of its vertices) have a finite degree; an essential degree of G is
any cardinal which bounds the degree of all but finitely many of its vertices.

3.2. Examples. All complete graphs and more generally all graphs with
a central vertex a (i.e. for which Ga = E) are atomic compact (any atomic
system Φ(X) admits the constant family (a : x ∈ X) as a solution); they are
actually topologically compact (consider the Alexandrov compactification
on a of the discrete space E \ {a}).
A forest (graph with no cycle) is atomic compact, as each of its elemen-

tary extensions is a forest in which there is no path between two vertices
previously in distinct connected components.
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The “simplest” examples of non-atomic compact graphs are those for
which there is a set of vertices A with no strong neighbour while each of
its finite subsets has one (consider the [1]-atomic system Φ(x) = {x ∼ a :
a ∈ A}). Note that in the first example below, no infinite subset of N′ has a
strong neighbour; in the second one, every proper subset of E′ has a strong
neighbour.

Example 1. The vertex set of the half-graph HN is the disjoint union
of two copies N′ = {0′, 1′, 2′, . . .} and N′′ = {0′′, 1′′, 2′′, . . .} of the set of
non-negative integers; any two distinct vertices are linked if one is a p′, the
other is a q′′ and p ≤ q. (One defines similarly HP for any poset P.)
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Example 2. The vertex set of the Dushnik Miller graph EE is the disjoint
union of two copies E′ = {a′, b′, c′, . . .} and E′′ = {a′′, b′′, c′′, . . .} of the same
infinite set E; any two distinct vertices are linked if they lie in distinct copies
and correspond to two different points of E.

E
��

E
�

Note that each elementary extension of EE is some EF , hence it is never
atomic compact. The elementary extensions of HN are not atomic compact
either, since they are exactly the graphs HC where C is any elementary
extension of (N,≤) (but such a C has no upper bound while each of its finite
subsets has one).

Remark (cf. [2]). Given any infinite cardinal κ, the successor cardinal
κ+ endowed with its order topology has the following property: for any
mapping f : κ → κ+ and any ultrafilter F on κ, the image ultrafilter f(F)
is convergent in κ+ (observe that κ+ having a cofinality strictly greater
than κ, f(F) has bounded elements, hence it is “essentially” an ultrafilter
on some compact subspace of κ+).
It follows that the graph Hκ+ is κ-atomic compact (but it is not κ+-

atomic compact: it is obviously not [1]-κ+-atomic compact). Indeed, the
disjoint union topology on K = (κ+)′ ∪ (κ+)′′ being compatible, for any
ultrafilter F on κ, limF : Kκ → K yields a retraction from (Hκ+)κ/F onto
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Hκ+ ; but recall that any finitely solvable atomic system Φ of Hκ+ has a
solution in some ultrapower (Hκ+)[Φ]/F .

4. Almost locally finite graphs.We already know that finite graphs
are topologically compact; more generally, it is the case for locally finite
ones, and even for those with no more than two vertices of infinite degree;
as for general almost locally finite graphs, we shall see that they are always
[ω−]-atomic compact.

4.1. Topologically compact graphs

Lemma 4.1. If the graph G = (E,G) has a retract G(F ) which is topo-
logically compact and contains all vertices of infinite degree, then it is topo-
logically compact.

P r o o f. Let T be a Hausdorff-compact topology on F compatible with
G(F ), and r : E → F a retraction. One easily checks that the following set
B is a base for a Hausdorff-compact topology T̃ on E:

B = {{a} : a ∈ E \ F} ∪ {r−1(U) \ A : U ∈ T , A finite}.
Let us check that G is closed. Consider (a, b) 
∈ G:
• Either {a, b} ⊂ F , and then there is a T -open neighbourhood U × V

of (a, b) which is disjoint from G ∩ F × F , i.e. such that there is no edge
between U and V ; hence there is no edge between r−1(U) and r−1(V ) either,
and thus r−1(U) × r−1(V ) is a T̃ -neighbourhood of (a, b) which is disjoint
from G.
• Or a 
∈ F for example, and then Ga is finite (by hypothesis), hence

closed; moreover a is isolated (by construction). Thus {a} × (E \ Ga) is a
neighbourhood (a, b) which is disjoint from G.
Note that if, in the above lemma, we allow vertices of infinite degree

outside F , provided that each such vertex is linked to its image under r,
then the same construction yields the topological compactness of G. From
this, it follows for instance that every equivalence relation is a topologically
compact graph (take F containing exactly one point in each class).

Theorem 4.1. If the graph G has at most two vertices of infinite degree,
then it is topologically compact.

P r o o f. Denote by dG : E ×E → N ∪ {∞} the “shortest path” distance
of G. Suppose that a and b are (possibly equal) vertices with the property
that every vertex distinct from a and b has a finite degree. First assume that
a and b lie in the same connected component of G, i.e. dG(a, b) = n ∈ N,
and consider a path a = c0 ∼G c1 ∼G . . . ∼G cn = b of minimal length
between a and b. Then observe that the mapping x �→ cmin{dG(a,x),n} is a
retraction from G onto G({c0, . . . , cn}). If a and b lie in distinct connected
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components, just consider r mapping the component of a to a and the other
components to b.

A graph with exactly 3 vertices of infinite degree may not even be atomic
compact, as shown by the next example; note however that it is [ω−]-atomic
compact, according to Theorem 4.2 below.

Example 3. Consider the graph CN with vertex set the disjoint union
of N and Z/3Z (respectively the set of non-negative integers and the set of
integers modulo 3), and for which any two distinct vertices are linked if and
only if one of them is an integer n while the other one is either its successor
n+ 1 in N or its class n in Z/3Z.
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Consider the system Φ(xk : k ∈ N) = {xk ∼ xk+1 : k ∈ N} ∪ {xk ∼ −k :
k ∈ N}. This system can be “represented” in the following way:



...
...

−k + 1 ∼ xk+1 ∼ xk ∼ −k (Fk)
...

...

Observe that if (ak : k ∈ N) is a solution of Fk in CN, then ak+1 and ak
must be two elements of N such that ak+1 = ak − 1. Then any solution of
Φ in CN would be a descending sequence in N. Thus Φ is not solvable; it is
however finitely solvable (take a0 large enough in 3N).

4.2. Reduced atomic systems. In the sequel, it will prove convenient to
restrict our attention to certain kinds of “maximal systems with no non-
trivial equality relation”.
Let us say that a system Φ(X) ofM is reduced if, first, it is maximal for

inclusion with respect to the property of being a finitely solvable X-atomic
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system ofM, and second, it contains u ≡ v for no distinct u and v inM ∪X.
Observe that, given any finitely solvable atomic system Φ(X) ofM, there is a
reduced systemΘ(X ′) for someX ′ ⊂ X with the property that every solution
of Θ(X ′) in some extension ofM extends to a solution of Φ(X) in the same
extension: Indeed, first consider a maximal finitely solvable extension Ψ(X)
of Φ(X) (made up of atomic formulas); it is easily seen that “u ≡ v ∈ Ψ” is
an equivalence relation on M ∪X; so choose a system X ′ ⊂ X of represen-
tatives of the classes which are disjoint from M , and define Θ(X ′) to be the
restriction of Ψ(X) to its formulas in which no unknown of X \X ′ occurs.
From this discussion, it follows that the definitions of atomic compact-

ness, of [λ]-atomic compactness and of [λ−]-atomic compactness can be re-
stricted to reduced systems.
Note also that if a reduced X-system is solvable, then in fact X = ∅

(indeed the system is then equal toTatLM (M), the set of LM -atomic sentences
true in M).

Lemma 4.2. Given a reduced system Φ(X) of M, for every x in X and
a1, . . . , an in M , there is a finite subset Ψ of Φ such that no solution of Ψ
in M maps x to any of a1, . . . , an.

In particular, if Φ(X) is a reduced system, then each of its finite subsys-
tems with at least one unknown has infinitely many solutions in M.

P r o o f. As Φ is maximal finitely solvable and contains x ≡ a for no a ∈
M , there are finite subsets Ψk of Φ, k ∈ {1, . . . , n}, such that no Ψk∪{x ≡ ak}
is solvable; consider then Ψ = Ψ1 ∪ . . . ∪ Ψn.
Corollary 4.1. Given a reduced atomic system Φ and a vertex a of a

graph G, if for some x in X, the formula x ∼ a belongs to Φ, then the degree
of the vertex a is infinite.

P r o o f. If Ga = {a1, . . . , an}, then the above lemma gives a finite subset
Ψ of Φ such that Ψ ∪{x ∼ a} is not solvable; hence, as Φ is finitely solvable,
it cannot contain x ∼ a.
Now we can state

Theorem 4.2. Almost locally finite graphs are [ω−]-atomic compact.

P r o o f. It follows from the corollary above that any reduced atomic
system Φ(x1, . . . , xn) of such a graph contains only finitely many formulas
in which at least one unknown does occur, hence it is solvable.

5. [n]-atomic compact graphs

5.1. Conventions. Most of the graphs that we give as examples share
some common features. They are built according to patterns that we describe
before proceeding further.
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Given copies E′, E1, E′1, . . . of some set E and an element a of E, we
shall denote by a′, a1, a′1, . . . the elements corresponding to a in each of
these copies.
We shall represent graphs by diagrams from which one should be able

to recover all the information required. Diagrams are made up of blocks
interconnected by labelled lines. To each block is assigned a set of ver-
tices; the names of these vertices shall be clear whenever needed (e.g. N′2 =
{0′2, 1′2, . . .}). Each vertex has a loop (unless otherwise specified) and vertices
in distinct blocks are linked according to the label of the line between these
blocks. The generic primitive patterns correspond to the diagrams below.
In the first pattern, E′ and E′′ are two disjoint subsets of copies of a set E
and E is some subset of E × E; an element a′ of E′ and an element b′′ of
E′′ are linked when (a, b) ∈ E . In the second pattern, every element of A
is linked to every element of B. In the third one, the vertex a is linked to
every element of B.

E
�

E E
��

B
a

BA

For instance, the three examples above are represented by the following
diagrams (≺ denotes the successor relation: p ≺ q if and only if q = p+ 1):

��
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EE

HN

CN

� N
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E
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N
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5.2. Generalized half-graphs. For each integer n, we produce an [n]-
atomic compact graph Hn which fails to be [n + 1]-atomic compact. Re-
call that such a graph must have infinitely many vertices of infinite degree
(Theorem 4.2).

Example 4. Consider an integer n ≥ 2 and the graph Hn corresponding
to the diagram below (cf. Example 1).
The following [n+ 1]-atomic system is easily seen to be finitely solvable

but not solvable:

Φ(x, x1, . . . , xn) = Φ1(x1, . . . , xn) ∪ Φ2(x, x1, . . . , xn) with
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Φ1(x1, . . . , xn) = {xk ∼ p′k : k ∈ {1, . . . , n}, p ∈ N},
Φ2(x, x1, . . . , xn) = {xk ∼ x : k ∈ {1, . . . , n}}.

Any finite subset of Φ admits (p′, p1, . . . , pn) as a solution, for p large enough;
but (ω1, . . . , ωn) is the only solution of Φ1, and it cannot be extended to any
solution of Φ2.
Now, let us prove that Hn is [n]-atomic compact. So consider a reduced

atomic system Φ(X) with |X| ≤ n, and let us show that it is solvable (then
recall that, a posteriori, X = ∅).
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For each k ∈ {1, . . . , n}, define Ñk = N′k ∪ {ωk}. Recall (Corollary 4.1)
that given any x ∈ X, the formula x ∼ d can lie in Φ only for some d’s of
infinite degree, hence for d in Ñ1 ∪ . . . ∪ Ñn.
Observe that, given distinct k and l in {1, . . . , n}, any vertices a and b

such that a ∼Hn Ñk, b ∼Hn Ñl and a ∼Hn b must lie in the finite set Ω ∪Ω′;
hence, it follows from Lemma 4.2 that, for any x and y such that x ∼Φ Ñk
and y ∼Φ Ñl, Φ cannot contain the formula x ∼ y, and furthermore, x and
y have to be distinct.
In particular, note that, as n ≥ |X|, if there happens to be some x for

which no x ∼Φ Ñk holds, then there must be some k for which no x ∼Φ Ñk
holds; in that case, let k0 be such a k.
Now, for each x ∈ X, we can define dx ∈ Ω ∪Ω′ in the following way:
• dx = ωk if and only if x ∼Φ Ñk,
• dx = ω′k0 if and only if for no k does x ∼Φ Ñk hold.

We claim that (dx : x ∈ X) is a solution of Φ: Indeed, u ≡ v lies in Φ for
no distinct u and v. Besides, observe that, if for some x and y, dx 
∼Hn dy,
then (as ω′k0 ≈Hn {ω′k0} ∪ {ωk : k 
= k0}), x ∼Φ Ñk and y ∼Φ Ñl for some k
and l distinct; but then recall that x 
∼Φ y.
For H0, consider the half-graph HN (first example). Note that, in the

case of H2, the vertices ω′1 and ω
′
2 can be removed. As for H1, consider the

following diagram:

��

� N �N
�

�
N � N

�

�
��

��

6. Purity. It is known [8] that an atomic compact structure need not
be a retract of any topologically compact one. In fact, the first example,
given by Taylor, is an atomic compact “anti-reflexive graph” (in fact locally
finite and with only finitely many cycles of any given size) which has an in-
finite chromatic number: For any binary relation R with infinite chromatic
number, Ř has loops, hence it is not a pure extension of R when the latter
is moreover anti-reflexive. In this section, we focus on the property, for a
(reflexive) graph, of being a pure restriction of its Stone–Čech compactifi-
cation.
Given a set E, we shall denote by Ê = Ě \ E the set of non-principal

ultrafilters on E.

6.1. Examples. A topologically compact graph G is obviously pure in its
Stone–Čech extension Ǧ (indeed, it is a retract of Ǧ); but a graph G may be
pure in Ǧ without even being [1]-atomic compact, as shown by the following
example:
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Example 5. The graphs ȞN and ĚE (see the first two examples) corre-
spond to the following diagrams:

�EE
�HN

bN
�

N
�

N
��

bN
��

E
�

bE
�

��

E
��

bE
��

�

The next example shows that a graph can be atomic compact and pure in
its Stone–Čech extension (i.e. a retract of a topologically compact relation)
without being topologically compact:

Example 6. Consider the graph CZ with vertex set Z ∪ Z/3Z (cf. Ex-
ample 3 and Section 5.1) defined by the diagram below, with the following
convention: the class modulo 3 of an integer n ∈ Z is denoted by n when it
is considered as a vertex of CZ (so n ∈ Z/3Z), and it is denoted by ñ when
it is considered as a set of vertices of CZ (so ñ = n+ 3Z ⊂ Z).

�

�

�

CZ

�

��

e�

e�e�

The graph CZ satisfying the following two sentences with parameters in
Z/3Z, each of its elementary extensions satisfies them as well:

(α) each vertex is linked to one and only one element of Z/3Z;
(β) given a vertex n ∈ Z/3Z, every vertex linked to n and different from

n has exactly two other neighbours, one linked to the vertex n− 1 and the
other linked to the vertex n+ 1.

But any such extension G = (E,G) has a retraction onto CZ (for each
connected component C of G(E \ Z/3Z) distinct from Z, there is an iso-
morphism iC from G(C ∪ Z/3Z) onto CZ fixing Z/3Z pointwise; the union
of these iC ’s with idZ yields a retraction of G onto CZ). Hence CZ is atomic
compact; but it is not topologically compact:
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Assume that T is a Hausdorff-compact compatible topology and consider
the shift automorphism σ, which maps each n to n+1 and each vertex n to
the vertex n+ 1. For each vertex n, Gn is closed. So for any U ∈ ˇ̃n, limT U ∈
Gn = ñ ∪ {n}; in particular, as σ(U) ∈ ˇ̃

n+ 1, limT σ(U) ∈ ñ+ 1 ∪ {n+ 1};
but moreover, for all p ∈ U , σ(p) ∼CZ

p, hence limT σ(U) ∼CZ
limT U ,

which now forces limT U ∈ ñ and limT σ(U) = σ(limT U) (indeed, any
vertex a ∈ ñ ∪ {n} linked to a vertex b ∈ ñ+ 1 ∪ {n+ 1} must lie in ñ,
and furthermore, b must equal σ(a)). Now take any U ∈ ̂̃0; as for each
k ∈ Z, limT σk(U) = σk(limT U), every p ∈ Z is the T -limit of a non-
principal ultrafilter (namely, if limT U = l, then p is equal to limT σp−l(U));
hence each element of Z is a T -accumulation point; but, according to Baire’s
Category Theorem, a countable Hausdorff-compact space must have at least
one, and then infinitely many isolated points.
It is easy to check directly that CZ is a retract of ČZ (ČZ has the proper-

ties (α) and (β) above, as any ultrafilter U on ñ is linked exactly to itself, to
n, to σ(U) and to σ−1(U)). This is also a consequence of the next theorem.
6.2. Graphs with a finite essential degree. In this subsection, we prove

the theorem below.

Theorem 6.1. Every graph with a finite essential degree is pure in its
Stone–Čech compactification.

This statement is optimal in some respects, as an almost locally finite
graph need not be pure in its Stone–Čech extension (see Example 8 below).
Before turning to the proof, let us establish two general lemmas.
Given a set I of self-mappings of some set E, let, for every element a of

E and for every subset A of E, I(a) and I−1(A) denote {f(a) : f ∈ I} and⋃
{f−1(A) : f ∈ I} respectively; for each positive integer l, let Il denote the
set of all products (under composition) of at most l factors from I.
Lemma 6.1. For a graph G = (E,G), let U be an ultrafilter on E, H

an element of U , I = {f0, . . . , fd} a finite set of self-mappings of E and
K a subset of E. If I(a) = Ga ∩ K for all a in H, then I(U) = GU ∩ Ǩ
(i.e. {f0(U), . . . , fd(U)} is the set of ultrafilters V containing K such that
V ∼Ǧ U).
P r o o f. As obviously I(U) ⊂ Ǩ, we have to check that for every V in Ǩ,

V ∈ GU if and only if V ∈ I(U). So let V be an ultrafilter on E containing K:
V ∼Ǧ U ⇔ ∀U ∈ U , ∀V ∈ V, V ∩ GU 
= ∅

⇔ ∀U ∈ U , ∀V ∈ V, (V ∩K) ∩ GU∩H 
= ∅
⇔ ∀U ∈ U , ∀V ∈ V, V ∩ (K ∩ GU∩H) 
= ∅
⇔ ∀U ∈ U , ∀V ∈ V, V ∩ (f0(U ∩H) ∪ . . . ∪ fd(U ∩H)) 
= ∅
⇔ ∀U ∈ U , ∀V ∈ V, V ∩ (f0(U) ∪ . . . ∪ fd(U)) 
= ∅,
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which is easily seen to precisely characterize (the ultrafilter) V belonging to
(the finite set of ultrafilters) {f0(U), . . . , fd(U)}.
Lemma 6.2. Given a non-principal ultrafilter U0 on some set F , consider

a finite set I of self-mappings of F . Assume that the cardinalities of the sets
I−1(a) are all less than or equal to some integer γ. Then for every positive
integer l, there is an element U of U0 such that any two elements of Il
either coincide pointwise on U or map it onto two disjoint sets.

P r o o f. As Il satisfies the hypothesis of the lemma (with γ + . . . + γl
replacing γ), the general statement follows from the case l = 1, which we
handle now.
First consider U0 ∈ U0 such that any two elements of I coincide either at

every point or at no point of U0. First consider U0 ∈ U0 such that any two
elements of I agree either at every point or at no point of U0 (as I is finite,
the following equivalence relation on F has only finitely many classes, one
of which must then belong to U0: two elements a and b of F are equivalent
when, for any elements f and g of I, f(a) = g(a) if and only if f(b) = g(b)).
Then consider a sequence (Vp)p∈N of subsets of U0 such that, for every

p ∈ N, Vp is a maximal subset of U0 \
⋃
{Vq : q < p} with the property that,

for any distinct elements a and b of Vp, I(b) ∩ I(a) = ∅, i.e. b 
∈ I−1(I(a)).
Observe that, given p ∈ N, any two elements of I either coincide point-

wise on Vp or map it onto two disjoint sets (incidentally observe also that
every element of I is one-to-one on Vp); furthermore, for every q < p and
a ∈ U0 \

⋃
{Vq′ : q′ < p}, I−1(I(a)) ∩ Vq 
= ∅. In particular, as the Vq’s are

pairwise disjoint and for every a ∈ F , |I−1(I(a))| ≤ γ × |I|, it follows that
U0 = V0 ∪ · · · ∪ Vγ×|I|. Now U can be taken among V0, . . . , Vγ×|I|.
Proof of Theorem 6.1. Let c1, . . . , ce be the vertices of infinite degree of

the graph G = (E,G) and let F denote the set E \ {c1, . . . , ce}. Consider a
finite set I of self-mappings of F with the property that, for every a ∈ F ,
I(a) = Ga ∩ F ; observe that, for every U ∈ Ê and h ∈ I, F ∈ h(U) on
the one hand and h(U) ∈ Ê on the other hand, since for each a ∈ F ,
h−1({a}) ⊂ Ga, which is finite, and thus does not belong to U . Then it
follows from Lemma 6.1 that, for each U in Ê, GU ∩ Ê = I(U) (take H and
K both equal to F ).
Now let A ⊂ E and B = {U0, . . . ,Uq} ⊂ Ê be two finite sets. We must

prove that there is a family (bU )U∈B in EB such that:

• for any U and V in B, U ∼Ǧ V ⇒ bU ∼G bV ,
• for any a in A and U in B, a ∼Ǧ U ⇒ a ∼G bU .

As we can deal with each connected component of Ǧ(B) independently,
assume that Ǧ(B) is connected; so, for each U ∈ B, we can consider an
hU ∈ Iq such that U = hU (U0). Lemma 6.2 with l = q + 1 provides us with
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some U ∈ U0 that we restrict in such a way that, for each a ∈ A and U ∈ B,
if Ga ∈ U = hU (U0) (i.e. a ∼Ǧ U), then hU (U) ⊂ Ga (i.e. a ≈G hU (U)): just
intersect it with the corresponding h−1U (Ga)’s.
We claim that for any b in U , the family (hU (b))U∈B meets the require-

ments: For any U and V in B, if U ∼Ǧ V, then there is an h in I for which
U = h(V), so that hU (U0) = h ◦ hV (U0), hence hU (U) ∩ h ◦ hV(U) 
= ∅; but
then, as hU and h ◦ hV both lie in Il, they must coincide on U , and finally
hU (b) = h ◦ hV(b) ∼G hV (b).

6.3. Mycielski’s question for reflexive graphs. The object of this section
is to extend to reflexive graphs the result of Taylor (op. cit.) about the
existence of atomic compact anti-reflexive graphs which are retracts of no
topologically compact relation (see also [9]). Indeed, with each anti-reflexive
binary relation (E, E), we associate a graph DE which is not pure in its
Stone–Čech extension as soon as (E, E) has an infinite chromatic number,
and which is atomic compact as soon as (E, E) is symmetric and atomic
compact.
Given a set E and a subset E of E × E, consider the graph DE corre-

sponding to the diagram on the left hand side of the figure below, with E−
denoting the set E \{(x, x) : x ∈ E}. Note that the chromatic number of DE
is at most 3.
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Say that the ∆-configuration occurs in a graph G containing c, c′ and c′′

as vertices if there is a morphism from A (represented above, on the right)
to G (fixing c, c′ and c′′). Observe that the ∆-configuration does not occur
in DE ; however, it may occur in ĎE , which, in this case, is obviously not a
pure extension of DE :

Example 7. DE×E and ĎE×E correspond to the diagrams on p. 114.

Lemma 6.3. If the binary relation (E, E−) has an infinite chromatic num-
ber , then ĎE is not a pure extension of DE .
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P r o o f. Indeed, the∆-configuration occurs in ĎE , every time there is a U
in Ě each element of which “contains” an edge of (E, E−): U ′ and U ′′ are then
linked in ĎE (besides being both linked to U); this happens precisely when
the chromatic number χ of the binary relation (E, E−) is infinite (cf. [8]):
when χ is infinite, the ideal I of subsets of E with a finite chromatic number
is proper, hence some U ∈ Ě is disjoint from I. Conversely, when χ is finite,
every ultrafilter contains an independent set.

Example 8. Consider (N,D) with D = {(p, q) : p < q ≤ 2p}. It has an
infinite chromatic number since it contains complete subsets of arbitrarily
large finite size (namely the intervals of the form [p, 2p]). Indeed, DD is an
almost locally finite graph which is not pure in its Stone–Čech extension
(see the comment following the statement of Theorem 6.1).

Lemma 6.4. If the binary relation R = (E, E−) is symmetric and is
atomic compact , then DE is atomic compact as well.

P r o o f. Given any ultrafilter F on some set I, every retraction r :
RI/F → R gives rise to a retraction s : DIE/F → DE as follows.

Let (EI/F , Ẽ) denote the relation RI/F . Note that DIE/F canonically
identifies with DẼ (denoting by ã ∈ EI/F the class modulo F of a = (ai :
i ∈ I) ∈ EI , the class ã′ ∈ E′I/F of a′ = (a′i : i ∈ I) ∈ E′

I identifies with
ã′ ∈ (EI/F)′; in the same way, ã′′ ∈ E′′I/F identifies with ã′′ ∈ (EI/F)′′).
Now consider for s the extension of r, r′ and r′′, where r′ : E′I/F → E′
and r′′ : E′′I/F → E′′ correspond to r: for every ã ∈ EI , r′(ã′) = (r(ã))′
and r′′(ã′′) = (r(ã))′′ (see the figure below). The map s is a homomorphism
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since:

ã ∼DIE/F b̃
′ ⇔ ã = b̃⇒ r(ã) = r(b̃)⇔ r(ã) ∼DE (r(b̃))

′ = r′(b̃′),

ã ∼DIE/F b̃
′′ ⇒ r(ã) ∼DE r

′′(b̃′′),

ã′ ∼DIE/F b̃
′′ ⇔ ã ∼RI/F b̃⇒ r(ã) ∼R r(b̃)⇔ (r(ã))′︸ ︷︷ ︸

r′(ã′)

∼DE
(
r(b̃)
)′′

︸ ︷︷ ︸
r′′(b̃′′)

.
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Recall that the atomic compact “anti-reflexive graphs” which are retracts
of no topologically compact binary relation given in [8] have an infinite
chromatic number, and in particular, they yield atomic compact (reflexive)
graphs which are retracts of no topologically compact binary relation. Now,
we can state:

Theorem 6.2. There exist atomic compact (reflexive) graphs which are
retracts of no topologically compact relation.

Remark. Given an atomic compact anti-reflexive symmetric binary rela-
tion (E, E) with infinite chromatic number, consider the anti-reflexive sym-
metric binary relation R corresponding to the following diagram. It is atomic

E
�

E

E

E
��

� �
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compact, has a finite chromatic number and is a retract of no topologically
compact relation, as Ř contains triangles while R does not.

7. Admissible compactness. We briefly discuss the connection of
atomic compactness with infinite projection properties.
Given a graph G and an atomic system Φ of G, let ΦP denote the set of

elements of Φ of the form x ∼ a or x ≡ a; Φ is ω-admissible if ΦP is countable
and for each finite subset Ψ of ΦP , (Φ\ΦP )∪Ψ is solvable (in G); the graph
G is ω-admissible compact if all its ω-admissible systems are solvable. (In the
case of a general structure M = (M, . . .), ΦP would be the set of formulas
ϕ(x1, . . . , xp, a1, . . . , aq) from Φ satisfying: for every (b1, . . . , bp) ∈Mp, there
is (c1, . . . , cq) ∈Mq such that M |= ϕ(b1, . . . , bp, c1, . . . , cq) (see [3]).)
Obviously, atomic compact graphs are ω-admissible compact. Moreover,

ω-admissible compact graphs are [ω−]-ω-compact, but the converse need
not hold, as shown by the graph CN (recall that it is [ω−]-compact by Theo-
rem 4.2, but observe that the system of Example 3 is ω-admissible). Let us
also mention the following surprising fact about shift-graphs:

Example 9. Recall that the shift-graph of a linear order R = (E,≤) is
the graph SR with vertices the pairs of distinct elements of E, and such that
two distinct pairs are linked by an edge if and only if the greater element of
one of these pairs equals the smaller element of the other pair.

Proposition 7.1 (see [2]). For every linear order R, every induced sub-
graph of SR is [ω−]-atomic compact , but SR is atomic compact if and only
if R is finite or isomorphic to one of the following lexicographical sums:
2+Z+2, Z++2 or 2+Z−, and in this case, it is topologically compact ; in the
opposite case, and provided that R is countable, SR is not ω-admissible.

Our reason for introducing admissible compactness is the following: Given
a cardinal κ, a structure M = (M, . . .) has the κ-projection property (κ-PP
for short) if the only retractions of Mκ onto M (diagonally embedded) are
the projections [1]. (Note that, being precisely a retract of its ultrapowers,
an atomic compact structure has the κ-PP for no infinite κ.) Conversely, a
structure with the finite-projection property (n-PP for every integer n) has
the countable-projection property (ω-PP) provided it is not ω-admissible
compact and satisfies some simple additional necessary conditions [3]; for
instance, a graph has the ω-PP provided it has the 2-PP, has a finite diam-
eter and is not ω-admissible compact. In particular DE , Hn and CN have
the 2-PP (they are connected, free of triangles and free of dangling trees;
see [4]), so they have the countable-projection property as well. In fact,
we wonder whether ω-admissible compact graphs are [ω]-atomic compact
too. In the case of an affirmative answer, a countable graph would have the
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countable-projection property if and only if it has the 2-PP, has a finite
diameter and is not atomic compact.
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