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Brown–Peterson cohomology and Morava K-theory
of DI(4) and its classifying space

by

Marta S a n t o s (Granada)

Abstract. DI(4) is the only known example of an exotic 2-compact group, and is
conjectured to be the only one. In this work, we study generalized cohomology theories
for DI(4) and its classifying space. Specifically, we compute the Morava K-theories, and
the P (n)-cohomology of DI(4). We use the non-commutativity of the spectrum P (n) at
p = 2 to prove the non-homotopy nilpotency ofDI(4). Concerning the classifying space, we
prove that the BP -cohomology and the Morava K-theories of BDI(4) are all concentrated
in even degrees.

1. Introduction and statement of results. The concept of a p-
compact group was introduced by Dwyer and Wilkerson in [D-W1] as a
homotopy-theoretic generalization of a compact Lie group. The first exam-
ples of p-compact groups were the p-completions of compact Lie groups.
A connected p-compact group is called exotic if it is not of the form G∧p (the
Bousfield–Kan p-completion of G) for any connected compact Lie group G.
There are many known examples of exotic p-compact groups at odd primes:
Sullivan spheres and many of the Clark–Ewing p-compact groups are exotic.
However, there is only one example of an exotic 2-compact group: Dwyer
and Wilkerson constructed in [D-W2] a 2-complete space BDI(4) whose
mod two cohomology is isomorphic to the ring of rank 4 mod 2 Dickson
invariants. The loop space DI(4) = ΩBDI(4) is an exotic 2-compact group.
Standard methods show that H∗(DI(4),Z/2) is multiplicatively generated
by elements x7, y11 and z13, with Sq4x = y, Sq2y = z, Sq1z = x2 6= 0, and
x4 = y2 = z2 = 0.

In this paper, we study generalized cohomology theories for DI(4) and
its classifying space BDI(4). In particular, we compute the algebra structure
of the Morava K-theory and the P (n)-cohomology of DI(4):
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Theorem 1.1. (i) There are K(n)∗-algebra isomorphisms:

K(n)∗(DI(4)) ∼= K(n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(x11, x13) for all n ≥ 3,

K(2)∗(DI(4)) ∼= K(2)∗ ⊗ Λ(x11, x13, x21),

K(1)∗(DI(4)) ∼= K(1)∗ ⊗ Λ(x7, x13, x25).

(ii) There are P (n)∗-algebra isomorphisms:

P (n)∗(DI(4)) ∼= P (n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(x11, x13) for all n ≥ 3,

P (2)∗(DI(4)) ∼= (P (2)∗ ⊗ Λ(x21)⊕ P (3)∗ ⊗ Z/2{x14})⊗ Λ(x11, x13),

P (1)∗(DI(4)) ∼= ((P (1)∗ ⊗ Λ(x5, x21, x25, x32)

⊕ P (3)∗ ⊗ Z/2{x14})⊗ Λ(x13))/I,

where I is the ideal generated by {x25x32, x21x32, x21x25, x5x32, x5x25 +
v1x32, x5x21 + v2x32, v1x21 + v2x25}.

Using the non-commutativity of the spectrum P (n) at p = 2, DI(4) is
shown not to be homotopy nilpotent (as was to be expected, by analogy
with the behaviour of compact Lie groups):

Theorem 1.2. DI(4) is not homotopy nilpotent.

Concerning the classifying space BDI(4), we again use the behaviour of
compact Lie groups as a reference, and show the following result:

Theorem 1.3. (i) K(n)∗(BDI(4)) is concentrated in even degrees for all
n ≥ 1.

(ii) For all n ≥ 0, P (n)∗(BDI(4)) is concentrated in even degrees and
has no vi-torsion for i ≥ n.

This paper is organized as follows. In Section 2, we recall the basic facts
about the generalized cohomology theories associated with the spectra BP ,
P (n) and K(n). Section 3 is devoted to the proof of Theorem 1.3. In Sec-
tion 4, we obtain some technical lemmas concerning the Atiyah–Hirzebruch
spectral sequence for P (n) and K(n), which will be useful in Section 5 to
compute K(n)∗(DI(4)) and P (n)∗(DI(4)) for all n ≥ 1. We finish Section 5
with the proof of the non-homotopy nilpotency of DI(4).

Notation. Let X be a space, n ≥ 1, and F = P (n) or K(n). We
write E∗∗r (F ) for the Er-term in the Atiyah–Hirzebruch spectral sequence
of F ∗(X). If x ∈ Ep,qr (F ), then |x| denotes the total degree of x, that is,
p+q. If x1, . . . , xs ∈ F ∗(X), then F ∗{x1, . . . , xs} denotes the F ∗-submodule
of F ∗(X) generated by x1, . . . , xs. When we say that a P (n)∗-algebra is of
the form

(P (n)∗ ⊗An)⊕ (P (n+ 1)∗ ⊗An+1)⊕ . . .⊕ (P (n+ s)∗ ⊗An+s)

the products xy are supposed to be zero if x ∈ Ai and y ∈ Aj , i 6= j.
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Z/p{x1, . . . , xs} will denote the free Z/p-module generated by x1, . . . , xs,
and F ∗ ⊗ Z/p{x1, . . . , xs} the free F ∗-module generated by these elements.
The symbol Λ will be used to denote the exterior algebra over Z/p.

I would like to thank my supervisor, Jaume Aguadé, for his help during
the preparation of this paper. I am also grateful to Nobuaki Yagita for useful
comments and suggestions.

2. Preliminary results. Let BP be the Brown–Peterson spectrum at a
fixed prime p. It is a ring spectrum which represents the cohomology theory
BP ∗(−) with coefficient ring BP ∗ ∼= Z(p)[v1, v2, . . .], where the degree of vi
is |vi| = −2(pi − 1).

For all n ≥ 0, there are BP ∗-module spectra P (n) and multiplicative
cohomology theories P (n)∗(−) with coefficients P (n)∗ ∼= BP ∗/In, where
In = (p, v1, . . . , vn−1) denotes the nth invariant prime ideal of BP ∗ (see
[J-W] for details). These cohomology theories are related by exact triangles

P (n)∗(−) P (n)∗(−)

P (n+ 1)∗(−)

vn //

inzzuuuuuuuu
δn

ddIIIIIIII

where vn acts as multiplication by the coefficient vn, δn has degree 2pn − 1,
and in has degree 0. All maps displayed above are morphisms of BP ∗-
modules.

Note that P (0)∗(−) is the Brown–Peterson cohomology, P (1)∗(−) is the
Brown–Peterson cohomology with mod p coefficients, and P (∞)∗(−) is the
ordinary mod p cohomology H∗(−,Z/p). We have the following tower of
cohomology theories:

P (0)∗(−) i0−→ P (1)∗(−) i1−→ . . .

. . .→ P (n)∗(−) in−→ P (n+ 1)∗(−)→ . . .→ H∗(−,Z/p)
which can be used to compute BP ∗(−) = P (0)∗(−) and BP ∗(−,Z/p) =
P (1)∗(−) from H∗(−,Z/p).

For all 0 ≤ i < n, there are cohomology operations Qi : P (n)∗(−) →
P (n)∗(−), with degree 2pi − 1, that commute with the maps P (n)∗(−) →
P (n + 1)∗(−), and that correspond to the Milnor operations in ordinary
cohomology theory. In particular, inδn = Qn.

Let K(n)∗(−) be the Morava K-theory with coefficients K(n)∗ ∼=
Z/p[vn, v−1

n ] (see [J-W] for details). By construction of the spectra P (n)
and K(n), one has a canonical map P (n) λn−→ K(n). In [Ya1] it has been
proved that there exists a P (n)∗-module isomorphism

(∗) P (n)∗(−)⊗P (n)∗ K(n)∗ ∼= K(n)∗(−).
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The composition of the natural inclusion P (n)∗(−) → P (n)∗(−) ⊗P (n)∗

K(n)∗ with the above isomorphism is the map induced on cohomology by
the map of spectra λn.

In [S-Ya] it has been shown, by using a geometrical approach, that
P (n) and K(n) can be given an associative product. Wurgler ([Wu1] and
[Wu2]) used a homotopy-theoretic approach that gives more information
and showed that, for p = 2, the product is not commutative:

Proposition 2.1 ([Wu1]). Suppose p = 2 and n ≥ 1. There are exactly
two products mn,m

′
n : P (n)∧P (n)→ P (n) which make P (n) a BP -algebra

spectrum compatible with the given BP -module structure. Both are associa-
tive and are related by the formula

m′n = mn + vnmn(Qn−1 ∧Qn−1).

Using 2.1 and the isomorphism (∗), one easily sees that an analogous
statement is also true for K(n). Moreover, P (n)∗(−) in−→ P (n + 1)∗(−) and
P (n)∗(−) λn−→ K(n)∗(−) are maps of P (n)∗-algebras, and the Qi’s are deriva-
tions with respect to any product chosen.

As an immediate consequence of Proposition 2.1, we have the following
two corollaries. Let F (n) denote one of the spectra P (n) or K(n).

Corollary 2.2. Suppose p = 2. Let X be a space, and x, y ∈ F (n)∗(X).
Then

xy = yx+ vn(Qn−1y)(Qn−1x).

If X is an H-space with F (n)∗(X) free, then F (n)∗(X) is both an algebra
and a coalgebra, but not necessarily a Hopf algebra if p = 2. The correction
is given by:

Corollary 2.3 ([R]). Suppose p = 2 and X is an H-space such that
F (n)∗(X) is free as an F (n)∗-module. Let x and y be elements of F (n)∗(X)
and Ψ be the coproduct. Then

Ψ(xy) = Ψ(x)Ψ(y) + vn((id⊗Qn−1)Ψ(x))((Qn−1 ⊗ id)Ψ(y)).

The same statement is true in homology.

3. BP -cohomology and Morava K-theory of BDI(4). It is well
known that if G is a compact Lie group, p a fixed prime, and H∗(G) is
p-torsion free, then the classifying space BG satisfies:

(i) K(n)∗(BG) is concentrated in even degrees for all n ≥ 1.
(ii) P (n)∗(BG) is concentrated in even degrees for all n ≥ 0.

In [K-Ya], Kono and Yagita show that the above properties hold in some
cases even if G has p-torsion, and conjecture that they hold for all compact
Lie groups. Ravenel, Wilson and Yagita ([R-W-Ya]) have recently proved the
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following result: if K(n)∗(−) is concentrated in even degrees for all n ≥ 1,
then P (n)∗(−) is concentrated in even degrees for all n ≥ 0. We prove in this
section that the BP -cohomology, the Morava K-theory and the P (n)-theory
of BDI(4) are all concentrated in even degrees.

Recall that H∗(BDI(4),Z/2) is isomorphic, as an algebra over the Steen-
rod algebra, to the ring of rank 4 mod 2 Dickson invariants:

H∗(BDI(4),Z/2) ∼= D(4) ∼= Z/2[t1, t2, t3, t4]Gl(4,Z/2) ∼= Z/2[c8, c12, c14, c15]

where |ti| = 1, |cj | = j, and the generators cj are the coefficients of the
polynomial

p(x) =
∏

v∈V
(x+ v) = x16 + c8x

8 + c12x
4 + c14x

2 + c15x

where V is a 4-dimensional vector space over Z/2.
The action of the Steenrod algebra on the Dickson algebras is well known

([S-S]). In the case of D(4), this action is determined by Sq4c8 = c12,
Sq2c12 = c14, Sq1c14 = c15, Sq8ci = c8ci, i = 8, 12, 14, 15. In particular,
we are interested in the action of the Milnor operations Qi, because of the
role they play in the study of the Atiyah–Hirzebruch spectral sequence for
K(n)- and P (n)-theory. Since the Qi are derivations, ImQi ⊂ KerQi for all
i ≥ 0. What we prove is that the other inclusion is also true, for all elements
of odd degree in H∗(BDI(4),Z/2):

Proposition 3.1. Let a∈H∗(BDI(4),Z/2) have odd degree, and n ≥ 0.
If Qna = 0, then a ∈ ImQn.

Using this result, which will be proved later, we can easily prove the
following theorem:

Theorem 3.2. (i) K(n)∗(BDI(4)) is concentrated in even degrees for all
n ≥ 1.

(ii) For all n ≥ 0, P (n)∗(BDI(4)) is concentrated in even degrees and
has no vi-torsion for i ≥ n.

P r o o f. (i) Let n ≥ 1. We consider the Atiyah–Hirzebruch spectral se-
quence for K(n)∗(BDI(4)):

E∗∗2 ∼= H∗(BDI(4),K(n)∗)⇒ K(n)∗(BDI(4)).

Recall ([Ya4]) that the first non-trivial differential is d2n+1−1 = vn ⊗ Qn,
where Qn is the Milnor operation in ordinary mod 2 cohomology. From
Proposition 3.1, Eodd

2n+1(K(n)) = 0, and hence E∗∗∞ (K(n)) ∼= E∗∗2n+1(K(n)) is
concentrated in even degrees.

(ii) From [R-W-Ya], P (n)odd(BDI(4)) = 0 for all n ≥ 0. Since the maps
δn in the exact triangles relating P (n) and P (n+ 1) for n ≥ 0 all have odd
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degrees, Im δn = Ker vn = {0}. Therefore, for all n ≥ 0, P (n)∗(BDI(4)) has
no vn-torsion.

Recall that, for any complex X, we have an exact sequence

0→ lim1P (n)q−1(Xm)→ P (n)q(X)→ lim0P (n)q(Xm)→ 0.

In our case, since P (n)odd(X) = 0, lim1 = 0.
Let 0 6= x ∈ P (n)∗(BDI(4)), and suppose vn+1x = 0. Then in(vn+1x) =

vn+1in(x) = 0. Since P (n+1)∗(BDI(4)) has no vn+1-torsion, in(x) = 0, and
hence x = vnx1 for some x1 ∈ P (n)∗(BDI(4)). Therefore, vnvn+1x1 = 0
and this implies vn+1x1 = 0. The iteration of this process implies that x
is divisible infinitely many times by vn, and hence x is in the kernel of the
maps P (n)q(X)→ lim0P (n)q(Xm). This is a contradiction, since lim1 = 0.
The conclusion is that, for all n ≥ 0, P (n)∗(BDI(4)) has no vn+1-torsion. In
this way, we can prove by induction that P (n)∗(BDI(4)) has no vi-torsion
for all i ≥ n.

The rest of this section is devoted to the proof of Proposition 3.1.
The action of the Milnor operations Q0, Q1, Q2 on the generators

c8, c12, c14, c15 of H∗(BDI(4),Z/2) is easily computed from the definition
of the Qi (recall that Q0 = Sq1 and Qi = [Sq2i , Qi−1], i ≥ 1). We obtain
Q0c14 = Q1c12 = Q2c8 = c15, and zero in the other cases. Then 3.1 can be
proved easily for n = 0, 1, 2:

Lemma 3.3. Let a ∈ Hodd(BDI(4),Z/2), and n = 0, 1, 2. If Qna = 0,
then a ∈ ImQn.

P r o o f. KerQ0 = Z/2[c8, c12, c
2
14, c15]. If a ∈ (KerQ0)odd, then a = c15b

for some b ∈ KerQ0, and hence a = Q0(c14b). Arguing similarly, we can see
that a = Q1(c12b) if a ∈ (KerQ1)odd, and a = Q2(c8b) if a ∈ (KerQ2)odd,
for some b in KerQ1 or KerQ2 respectively.

The action of Q3 on the generators is still not difficult to calculate:
Q3c8 = c8c15, Q3c12 = c12c15, Q3c14 = c14c15, Q3c15 = c215. From r = 4 on,
it is getting more and more complicated to calculate the action of Qr on the
generators. For all n ≥ 0, define the following determinants:

An =

∣∣∣∣∣∣∣

t1 t2 t3 t4
t21 t22 t23 t24
t41 t42 t43 t44
t2
n

1 t2
n

2 t2
n

3 t2
n

4

∣∣∣∣∣∣∣
, Bn =

∣∣∣∣∣∣∣

t1 t2 t3 t4
t21 t22 t23 t24
t81 t82 t83 t84
t2
n

1 t2
n

2 t2
n

3 t2
n

4

∣∣∣∣∣∣∣
,

Cn =

∣∣∣∣∣∣∣

t1 t2 t3 t4
t41 t42 t43 t44
t81 t82 t83 t84
t2
n

1 t2
n

2 t2
n

3 t2
n

4

∣∣∣∣∣∣∣
, Dn =

∣∣∣∣∣∣∣

t21 t22 t23 t24
t41 t42 t43 t44
t81 t82 t83 t84
t2
n

1 t2
n

2 t2
n

3 t2
n

4

∣∣∣∣∣∣∣
.
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Note that c15 = A3 = B2 = C1 = D0, and An, Bn, Cn, Dn 6= 0 for all n ≥ 4.
The action of the Steenrod algebra on Z/2[t1, t2, t3, t4] is well known. In

particular,

Sqi(t2
n

j ) =
{
t2
n+1

j if i = 2n,
0 otherwise.

Using that, it is a trivial computation to check that:

Lemma 3.4. (i) Sq2nAn = An+1 and Sq4An = Bn for all n ≥ 3.
(ii) Sq2Bn = Cn for all n ≥ 2.

(iii) Sq1Cn = Dn for all n ≥ 1.

As a consequence of Lemma 3.4, we find that the elementsAn, Bn, Cn, Dn

are precisely Qn−1ci for i = 8, 12, 14, 15 respectively:

Lemma 3.5. For all n ≥ 0, Qnc8 = An+1, Qnc12 = Bn+1, Qnc14 = Cn+1

and Qnc15 = Dn+1.

P r o o f. For c8, the statement follows by induction: Q0c8 = 0 = A1,
Q1c8 = 0 = A2, Q2c8 = c15 = A3 and, for n ≥ 3, Qnc8 = [Sq2n , Qn−1]c8 =
Sq2nAn = An+1.

Recall that [Sqr, Qi] = Qi+1Sqr−2i+1
(it is understood that Sqj = 0 if

j < 0). In particular, [Sq4, Qi] = 0 for i ≥ 2, [Sq2, Qi] = 0 for i ≥ 1, and
[Sq1, Qi] = 0 for i ≥ 0.

From these relations and 3.4, the lemma follows easily for c12, c14 and
c15: Q0c12 = 0 = B1, Q1c12 = c15 = B2 and, for n ≥ 2, Qnc12 = QnSq4c8 =
Sq4Qnc8 = Sq4An+1 = Bn+1. Analogous arguments can be used to prove
the result for c14 and c15.

Notice now that, since p(ti) = 0 for i = 1, 2, 3, 4,

t2
n

i = c2
n−4

8 t2
n−1

i + c2
n−4

12 t2
n−2

i + c2
n−4

14 t2
n−3

i + c2
n−4

15 t2
n−4

i

for all n ≥ 4, i = 1, 2, 3, 4. Therefore, we get:

Lemma 3.6. For all n ≥ 4,

An = c2
n−4

8 An−1 + c2
n−4

12 An−2 + c2
n−4

14 An−3 + c2
n−4

15 An−4,

Bn = c2
n−4

8 Bn−1 + c2
n−4

12 Bn−2 + c2
n−4

14 Bn−3 + c2
n−4

15 Bn−4,

Cn = c2
n−4

8 Cn−1 + c2
n−4

12 Cn−2 + c2
n−4

14 Cn−3 + c2
n−4

15 Cn−4,

Dn = c2
n−4

8 Dn−1 + c2
n−4

12 Dn−2 + c2
n−4

14 Dn−3 + c2
n−4

15 Dn−4.

It is known ([A-W]) that any five derivations Qn, Qn−1, Qn−2, Qn−3,
Qn−4 are linearly dependent on Z/2[c8, c12, c14, c15]. Using Lemma 3.6, we
write explicitly the coefficients:



216 M. Santos

Lemma 3.7. (i) For all n ≥ 4 and x ∈ H∗(BDI(4),Z/2),

Qnx = c2
n−3

8 Qn−1x+ c2
n−3

12 Qn−2x+ c2
n−3

14 Qn−3x+ c2
n−3

15 Qn−4x.

(ii) If x ∈ Heven(BDI(4),Z/2) and n ≥ 0, then

c15Qnx = An+1Q2x+Bn+1Q1x+ Cn+1Q0x.

(iii) If a ∈ Hodd(BDI(4),Z/2) and n ≥ 0, then

c15Qna = An+1Q2a+Bn+1Q1a+ Cn+1Q0a+Dn+1a.

P r o o f. (i) As a consequence of 3.5 and 3.6, the result is true for the
generators c8, c12, c14, c15. Since the Qi are derivations, it is also true for
any x ∈ H∗(BDI(4),Z/2).

(ii) Let x ∈ Heven(BDI(4),Z/2). For n = 0, 1, 2, 3, it can be easily
checked by a direct computation that the formula holds for c8, c12, c14, and
hence for any element in Heven(BDI(4),Z/2). Let n ≥ 4. Using (i) and 3.6,
we can prove the result by induction:

Qnx = c2
n−3

8 Qn−1x+ c2
n−3

12 Qn−2x+ c2
n−3

14 Qn−3x+ c2
n−3

15 Qn−4x,

c15Qnx = c2
n−3

8 (AnQ2x+BnQ1x+ CnQ0x)

+ c2
n−3

12 (An−1Q2x+Bn−1Q1x+ Cn−1Q0x)

+ c2
n−3

14 (An−2Q2x+Bn−2Q1x+ Cn−2Q0x)

+ c2
n−3

15 (An−3Q2x+Bn−3Q1x+ Cn−3Q0x)

= An+1Q2x+Bn+1Q1x+ Cn+1Q0x.

(iii) Let a = xc15 be an element in Hodd(BDI(4),Z/2). Then Qna =
c15Qnx+xQnc15 = An+1Q2x+Bn+1Q1x+Cn+1Q0x+Dn+1x. Multiplying
by c15, we get the result.

Recall that our hypothesis in Proposition 3.1 is that Qna = 0, and
we want to prove that this implies a ∈ ImQn. From 3.7, if Qna = 0, then
Dn+1a = An+1Q2a+Bn+1Q1a+Cn+1Q0a. We would like to deduce that a ∈
(An+1, Bn+1, Cn+1) (the ideal of D(4) generated by these elements). This
is what we prove in the following lemma; then the proof of Proposition 3.1
follows easily. Since An, Bn, Cn always have odd degree, we can write An =
Ãnc15, Bn = B̃nc15, Cn = C̃nc15. Moreover, for n ≥ 4, Dn = A2

n−1 =
Ã2
n−1c

2
15, and we can also write Dn = D̃nc15.

Lemma 3.8. For all n ≥ 4, {Ãn, B̃n, C̃n, D̃n} is a regular sequence in
Z/2[c8, c12, c14, c15].
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P r o o f. For n ≥ 4 and i = 1, 2, 3, 4,
∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 t4 ti

t21 t22 t23 t24 t2i
t41 t42 t43 t44 t4i
t81 t82 t83 t84 t8i
t2
n

1 t2
n

2 t2
n

3 t2
n

4 t2
n

i

∣∣∣∣∣∣∣∣∣∣∣

= 0 = tiDn + t2iCn + t4iBn + t8iAn + t2
n

i c15.

Therefore, Z/2[Ãn, B̃n, C̃n, D̃n] ⊂ Z/2[t1, t2, t3, t4] is an integral extension,
and hence so is Z/2[Ãn, B̃n, C̃n, D̃n] ⊂ Z/2[c8, c12, c14, c15]. This means
that Z/2[c8, c12, c14, c15] is a finitely generated Z/2[Ãn, B̃n, C̃n, D̃n]-module.
From [B] (Lemma 5.5.5), to prove that {Ãn, B̃n, C̃n, D̃n} is regular, it suf-
fices to show that these elements are algebraically independent. By the
Derivation Lemma, it suffices to find four derivations δ1, δ2, δ3, δ4 such that
det(δiÃj) 6= 0. For n ≥ 4, Q3Dn = Q3(A2

n−1) = 0 = (Q3D̃n)c15 + Dnc15.
This implies Q3D̃n 6= 0. Therefore,∣∣∣∣∣∣∣∣

Q0Ãn Q0B̃n Q0C̃n Q0D̃n

Q1Ãn Q1B̃n Q1C̃n Q1D̃n

Q2Ãn Q2B̃n Q2C̃n Q2D̃n

Q3Ãn Q3B̃n Q3C̃n Q3D̃n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

0 0 D̃n 0
0 D̃n 0 0
D̃n 0 0 0
Q3Ãn Q3B̃n Q3C̃n Q3D̃n

∣∣∣∣∣∣∣∣
6= 0.

Proof of Proposition 3.1. We first suppose a ∈ Hodd(BDI(4),Z/2) is
such that Qna = 0 and a ∈ (An+1, Bn+1). Applying Qn we get 0 =
(Qnα)An+1 + (Qnβ)Bn+1 for some α, β in even degrees. It follows from
Lemma 3.8 that Qnα ∈ (Bn+1) and Qnβ ∈ (An+1). That is, Qnα = Qn(c12t)
and Qnβ = Qn(c8t) for some t ∈ KerQn. Therefore, a = αAn+1 +βBn+1 =
(c12t + t1)An+1 + (c8t + t2)Bn+1 = Qn(c8c12t + c8t1 + c12t2) for some
t, t1, t2 ∈ KerQn. Analogous results can be proved if a ∈ (Bn+1, Cn+1)
or a ∈ (An+1, Cn+1).

Now, let a ∈ Hodd(BDI(4),Z/2) be such that Qna = 0 for some n ≥ 3.
Then Dn+1a = An+1Q2a + Bn+1Q1a + Cn+1Q0a. From Lemma 3.8, a ∈
(Ãn+1, B̃n+1, C̃n+1). Since a has odd degree, a = An+1x+Bn+1y + Cn+1z.
Applying Qn, we obtain

(∗) 0 = An+1(Qnx) +Bn+1(Qny) + Cn+1(Qnz).

Again by 3.8, this implies Qnx ∈ (Bn+1, Cn+1), Qny ∈ (An+1, Cn+1), Qnz ∈
(An+1, Bn+1). Using the fact that Qnx, Qny, Qnz satisfy (∗), it is easy to
check that {Qnx = αBn+1 + βCn+1,

Qny = αAn+1 + δCn+1,
Qnz = βAn+1 + δBn+1,

for some elements α, β, δ ∈ H∗(BDI(4),Z/2). As we have seen before, this
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implies 


Qnx = Qn(c12c14t+ c12t1 + c14t2),
Qny = Qn(c8c14t+ c8t1 + c14t3),
Qnz = Qn(c8c12t+ c8t2 + c12t3),

where t, ti ∈ KerQn. It follows that a ∈ ImQn.

Note. The result of Proposition 3.1 can be proved in the same way for
any Dickson algebra D(n), n ≥ 1.

4. The Atiyah–Hirzebruch spectral sequence for P (n) and K(n).
Our main tool to compute K(n)∗(DI(4)) and P (n)∗(DI(4)) is the Atiyah–
Hirzebruch spectral sequence (in the sequel abbreviated to AHss):

E∗∗2 (K(n)) = H∗(−,K(n)∗)⇒ K(n)∗(−),

E∗∗2 (P (n)) = H∗(−, P (n)∗)⇒ P (n)∗(−).

Recall ([Ya4]) that the first non-trivial differential in the AHss for both
P (n)-theory and K(n)-theory is d2pn−1 = vn ⊗Qn, where Qn is the Milnor
operation in ordinary mod p cohomology.

In the case of K(n)-theory, the AHss has some properties that make
the computation easier. The possible non-trivial differentials are d2(pn−1)s+1
with s ≥ 1. We set δs = v−sn dr, where r = 2(pn − 1)s+ 1. Then

E∗∗r+1(K(n)) ∼= K(n)∗ ⊗H(E∗0r , δs).

This means that each term in the AHss is a free K(n)∗-module, and the
spectral sequence for K(n)∗(X) is a spectral sequence of K(n)∗-Hopf alge-
bras if X is an associative H-space. As a consequence, we get the following
lemma, which will be useful to compute the AHss for K(n)∗(DI(4)):

Lemma 4.1. Let X be an H-space. Suppose that there exists r ≥ 2 such
that E∗∗r (K(n)) ∼= K(n)∗⊗A, where A ⊂ H∗(X,Z/p) is a biprimitive Hopf
algebra on odd degree generators. Then E∗∗∞ (K(n)) ∼= E∗∗r (K(n)).

P r o o f. Recall that a Hopf algebra A is said to be biprimitive if it is
primitively generated, and all the primitive elements of A are indecompos-
able. The differential δs = v−sn dr commutes with the coproduct and sends
primitive elements to primitive elements. But δs has odd degree, and there
are no primitive elements x, y in A such that |x| − |y| is odd. Therefore, we
have δs = 0, and dr = 0.

Define P (n) jn,s−→ P (n+ s) to be the composition

P (n) in−→ P (n+ 1) in+1−−→ . . .
in+s−1−−−→ P (n+ s)

for s ≥ 0 (jn,0 is the identity on P (n), and jn,1 = in).
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The maps of spectral sequences induced by the canonical maps of spectra
P (n) in−→ P (n + 1), P (n) λn−→ K(n), P (n) jn,s−→ P (n + s) will also be denoted
by in, λn, jn,s.

Lemma 4.2. Let X be a space, n ≥ 1, r ≥ 2, and α ∈ Ep,qr (P (n))
a permanent cycle in the AHss for P (n)∗(X). Suppose that the following
conditions hold :

(i) Ei,jr (P (n)) = 0 if i+ j > p+ q and i ≤ p.
(ii) λn(α) 6= 0 in E∗∗∞ (K(n)).

Then the P (n)∗-module generated by α in E∗∗∞ (P (n)) is P (n)∗-free.

P r o o f. The argument used in the proof is analogous to that of Lem-
ma 2.1 in [Ya2]. Assume that there is a relation vα = 0 in E∗∗∞ (P (n)) for
some v ∈ P (n)∗. Then λn(vα) = λn(v)λn(α) = 0 in E∗∗∞ (K(n)). Assumption
(ii) implies that v ∈ (vn+1, vn+2, . . .) ⊂ P (n)∗ (the ideal generated in P (n)∗

by these coefficients).
Let vα = visn+s . . . v

i1
n+1v

i0
n α+

∑
j ωjα, where {is, . . . , i1, i0} is the largest

sequence under the lexicographical order. There exists ([J-W]) a cohomology
operation r ∈ P (n)∗P (n) such that r(visn+s . . . v

i1
n+1v

i0
n ) = vi0+i1+...+is

n and
r(ωj) = 0 for all j.

Recall that the associated filtration for a complex X with skeleta {Xq}
is defined as

Fm = Ker(P (n)∗(X)→ P (n)∗(Xm−1))

and Em,∗∞ ∼= Fm/Fm+1.
That vα = 0 in E∗∗∞ (P (n)) means that vα ∈ Fp+1, and the naturality

of the operations implies that r(vα) ∈ Fp+1. From assumption (i), each
element β ∈ E∗∗∞ (P (n)) with total degree |β| > |α| belongs to Fp+1. This
implies vi0+...+is

n α ∈ Fp+1, and hence vi0+...+is
n α = 0 in E∗∗∞ (P (n)) and

vi0+...+is
n λn(α) = 0 in E∗∗∞ (K(n)). This is a contradiction, since E∗∗∞ (K(n))

is K(n)∗-free.

In order to simplify the notation, we introduce the following definition:

Definition 4.3. (i) An element α ∈ Ep,qr (P (n)) is said to be maximal
if it is the only non-trivial element in Ei,jr (P (n)) for i+ j ≥ p+ q and i ≤ p.

(ii) We will say that E∗∗r (P (n)) is maximally generated as P (n)∗-module
if there exists a set {x1, . . . , xs} of generators where all xi’s are maximal.

As a consequence of 4.2, we prove the following result, which will be
useful in the next section to compute the AHss of P (n)∗(DI(4)) from those
of K(m)∗(DI(4)) for m ≥ n, and P (m)∗(DI(4)) for m > n.
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Lemma 4.4. Let n ≥ 1 and r ≥ 2. Suppose that E∗∗r (P (n)) is a maxi-
mally generated P (n)∗-module of the form

E∗∗r (P (n)) ∼= (P (n)∗⊗An)⊕ (P (n+ 1)∗⊗An+1)⊕ . . .⊕ (P (n+ s)∗⊗An+s)

for some s ≥ 0, where the Ai are finitely generated free Z/2-modules. More-
over , suppose that the following conditions hold :

(i) E∗∗r (K(m)) ∼= E∗∗∞ (K(m)) for all m ≥ n.
(ii) E∗∗r (P (m)) ∼= E∗∗∞ (P (m)) for all m > n.

(iii) For all 0 ≤ t ≤ s and 0 6= α ∈ An+t, jn,t(α) is maximal in
E∗∗r (P (n+ t)) and λn+tjn,t(α) 6= 0 in E∗∗r (K(n+ t)).

Then E∗∗∞ (P (n)) ∼= E∗∗r (P (n)).

P r o o f. Let {x1, . . . , xk} be a minimal set of P (n)∗-generators of
E∗∗r (P (n)), where all xi’s are maximal. Then xi ∈ An+t for some 0 ≤ t ≤ s,
and we can suppose that xi ∈ Eai,∗r with a1<. . .<ak. Since λn+tjn,t(xi) 6= 0
in E∗∗r (K(n+ t)) ∼= E∗∗∞ (K(n+ t)) there is no differential in the AHss that
kills xi. Therefore, if we want to prove that xi is permanent, it suffices to
show that xi is in the kernel of all differentials in the spectral sequence.

Suppose that the following assertion is true:

(∗) If xi is permanent, then so is the P (n)∗-module generated by xi in
E∗∗r (P (n)).

Then the lemma follows by induction: it is clear that xk is a permanent
cycle and, by (∗), the P (n)∗-module generated by xk in E∗∗r (P (n)) is also
permanent. Assume that the P (n)∗-module generated by xi in E∗∗r (P (n))
is permanent for all i > m. This implies dxm = 0 for any differential d in
the AHss, and hence xm is permanent.

Finally, we have to prove (∗). If xi ∈ An, it follows from assumption
(iii) that λn(xi) 6= 0 in E∗∗r (K(n)) ∼= E∗∗∞ (K(n)). Hence, we are under
the conditions of Lemma 4.2, and (∗) holds. If xi ∈ An+t with t ≥ 1, our
hypotheses imply that jn,t(xi) satisfies the conditions of Lemma 4.2: jn,t(xi)
is maximal in E∗∗r (P (n + t)) ∼= E∗∗∞ (P (n + t)), and λn+tjn,t(xi) 6= 0 in
E∗∗r (K(n+ t)) ∼= E∗∗∞ (K(n+ t)). Therefore, the P (n+ t)∗-module generated
by jn,t(xi) in E∗∗∞ (P (n + t)) is P (n + t)∗-free, and this implies that the
P (n+ t)∗-module generated by xi in E∗∗∞ (P (n)) is P (n+ t)∗-free.

5. K(n)- and P (n)-cohomology of DI(4) for n ≥ 1. This section is
devoted to the proof of Theorem 1.1.

Recall that the ordinary mod 2 cohomology of DI(4) has the following
algebra structure:

H∗(DI(4),Z/2) ∼= Z/2[x7]/(x4
7)⊗ Λ(y11, z13),
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and the Steenrod algebra acts by Sq4x = y, Sq2y = z, Sq1z = x2. In partic-
ular, the action of the Milnor operations on the generators is trivial except
for Q2x = Q1y = Q0z = x2. The primitive elements in H∗(DI(4),Z/2) are
{x, y, z, x2}.

We first compute the E∞-term in the AHss for K(n)∗(DI(4)) and
P (n)∗(DI(4)), by using the results of Section 4.

Lemma 5.1. For all n ≥ 3, there are K(n)∗-algebra, respectively P (n)∗-
algebra isomorphisms:

(a) E∗∗∞ (K(n)) ∼= K(n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(y11, z13),

(b) E∗∗∞ (P (n)) ∼= P (n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(y11, z13).

P r o o f. The first potentially non-trivial differential in the AHss for both
P (n)- and K(n)-theory is d2n+1−1 = vn⊗Qn. But, for n ≥ 3, Qnx = Qny =
Qnz = 0.

For dimensional reasons, the differentials dr with r > 2n+1−1 are forced
to be zero, in the K(n)-AHss for all n ≥ 3, and in the P (n)-AHss for all
n ≥ 4. Hence,

E∗∗∞ (K(n)) ∼= E∗∗2 (K(n)) ∼= K(n)∗ ⊗H∗(DI(4),Z/2) for all n ≥ 3,

E∗∗∞ (P (n)) ∼= E∗∗2 (P (n)) ∼= P (n)∗ ⊗H∗(DI(4),Z/2) for all n ≥ 4.

Finally, if we set A3 = H∗(DI(4),Z/2), then E∗∗2 (P (3)) ∼= P (3)∗ ⊗ A3 is a
maximally generated P (3)∗-module, and λ3 : E∗∗2 (P (3)) → E∗∗2 (K(3)) acts
as the identity on A3. Hence, we are under the conditions of Lemma 4.4,
and E∗∗∞ (P (3)) ∼= E∗∗2 (P (3)).

Lemma 5.2. There exist K(2)∗-algebra, respectively P (2)∗-algebra iso-
morphisms:

(a) E∗∗∞ (K(2)) ∼= K(2)∗ ⊗ Λ(y11, z13, t21),
(b) E∗∗∞ (P (2)) ∼= (P (2)∗ ⊗ Λ(t21)⊕ P (3)∗ ⊗ Z/2{ω14})⊗ Λ(y11, z13).

P r o o f. The first non-trivial differential in the AHss for both K(2)- and
P (2)-theory is d7 = v2 ⊗Q2, acting as d7x = v2x

2, d7y = d7z = 0.
We start with the AHss for K(2). The E8-term is

E∗∗8 (K(2)) ∼= K(2)∗ ⊗ Λ(y, z, x3).

Now, we can apply Lemma 4.1 to conclude that E∗∗8 (K(2)) ∼= E∗∗∞ (K(2)).
Rename t = x3, and the isomorphism (a) is proved.

For the P (2)-AHss, we can compute the E8-term as

E∗∗8 (P (2)) ∼= (P (2)∗ ⊗ Λ(y, z, x3))⊕ (P (3)∗ ⊗ Z/2{x2} ⊗ Λ(y, z)).

If we set B2 = Λ(y, z, x3) and B3 = Z/2{x2}⊗Λ(y, z), then E∗∗8 (P (2)) ∼=
(P (2)∗ ⊗ B2) ⊕ (P (3)∗ ⊗ B3) is a maximally generated P (2)∗-module and
we are again under the conditions of Lemma 4.4:
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(i) E∗∗∞ (K(m)) ∼= E∗∗8 (K(m)) for all m ≥ 2,
(ii) E∗∗∞ (P (m)) ∼= E∗∗8 (P (m)) for all m ≥ 3,

(iii) λ2 is the identity on B2, and i2(B3) ⊂ A3.

Therefore, E∗∗∞ (P (2)) ∼= E∗∗8 (P (2)). Rename t = x3, ω = x2, and the lemma
is proved.

Lemma 5.3. There exist K(1)∗-algebra, respectively P (1)∗-algebra iso-
morphisms:

(a) E∗∗∞ (K(1)) ∼= K(1)∗ ⊗ Λ(x7, z13, r25),
(b) E∗∗∞ (P (1)) ∼= ((P (1)∗ ⊗Λ(u5, r25, s32)⊕ P (2)∗ ⊗Z/2{t21} ⊕ P (3)∗ ⊗

Z/2{ω14})⊗Λ(z13))/I, where I is the ideal generated by {ur+ v1s, us, rs}.
P r o o f. The first non-trivial differential is d3 = v1 ⊗ Q1, acting as

d3y = v1x
2, d3x = d3z = 0. In the AHss for K(1), the E4-term is

E∗∗4 (K(1)) ∼= K(1)∗ ⊗ Λ(x, z, x2y).

It follows from Lemma 4.1 that E∗∗∞ (K(1)) ∼= E∗∗4 (K(1)). Rename r = x2y,
and we have the isomorphism (a). In the AHss for P (1), the E4-term is

E∗∗4 (P (1)) ∼= (P (1)∗ ⊗ Λ(x, z, x2y))⊕ (P (2)∗ ⊗ Z/2{x2} ⊗ Λ(x, z)).

The differential d5 is trivial for dimensional reasons. We next consider the
differential d7, and recall that it commutes with the map E∗∗7 (P (1)) i1−→
E∗∗7 P (2)). Therefore,




d7x = v2x

2 mod (v1),
d7z = 0 mod (v1),
d7(x2y) = 0 mod (v1).

Since x2 is v1-torsion, 


d7x = v2x

2,
d7z = αv3

1xz,
d7(x2y) = βv3

1x
3y,

with α, β = 0, 1. On the other hand, d7 also has to commute with E∗∗7 (P (1))
λ1−→ E∗∗7 (K(1)). But d7 acts trivially on E∗∗7 (K(1)), and λ1 is the identity over
Λ(x, z, x2y). This implies α = β = 0. We can now compute the E8-term in
the AHss for P (1) as

E∗∗8 (P (1)) ∼= P (1)∗ ⊗ Z/2{v1x, z, v1xz, x
2y, x3y, x2yz, x3yz}

⊕ P (2)∗ ⊗ Z/2{x3, x3z} ⊕ P (3)∗ ⊗ Z/2{x2, x2z}.
E∗∗8 (P (1)) is a maximally generated P (1)∗-module, and it is easy to check
that we are again under the conditions of Lemma 4.4. Thus,
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E∗∗∞ (P (1)) ∼= E∗∗8 (P (1))
∼= (P (1)∗ ⊗ Λ(v1x, z, x

2y, x3y)

⊕ P (2)∗ ⊗ Z/2{x3} ⊗ Λ(z)⊕ P (3)∗ ⊗ Z/2{x2} ⊗ Λ(z))/R,

where R ≡ {(v1x)(x2y) = v1(x3y), (v1x)(x3y) = (x2y)(x3y) = 0}. Rename
u = v1x, r = x2y, s = x3y, t = x3, ω = x2, and the lemma is proved.

We still have to solve some extension problems to obtain the algebra
structure of P (n)∗(DI(4)) and K(n)∗(DI(4)). However, the algebra struc-
ture of the E∞-term gives us quite a lot of information about the algebra
structure of the corresponding cohomology theory. In this sense, once we
have obtained the F (n)∗-module structure of F (n)∗(−) (where F (n) de-
notes one of the spectra P (n) or K(n)), we will say that we know F (n)∗(−)
as an F (n)∗-module, meaning by this that we not only know the module
structure, but we also have some information about the algebra structure.

In the following computations it will be useful to know explicitly how
the map P (n)∗(DI(4)) in−→ P (n+ 1)∗(DI(4)) acts, for all n ≥ 1.

A minimal set of P (n)∗-module generators of P (n)∗(DI(4)), for n ≥ 3,
is the one represented in the following table, where the number above each
element is its degree:

7 11 13 14 18 20 21 24 25 27 31 32 34 38 45
x y z x2 xy xz x3 yz x2y x2z xyz x3y x3z x2yz x3yz

For dimensional reasons, it is easy to check that in acts as the identity
over these generators, for all n ≥ 3. (Note: we are abusing notation by
denoting the generators in cohomology the same as those in the E∞-term).

Lemma 5.2 yields that a minimal set of P (2)∗-module generators of
P (2)∗(DI(4)) is:

11 13 14 21 24 25 27 32 34 38 45
y z ω t yz ωy ωz ty tz ωyz tyz

We first study the dimensional possibilities for the map i2 acting over
these generators, and then check that we can rechoose generators in such a
way that the map i2 acts as follows (denoting the new generators the same
as the old ones): i2(y) = y, i2(z) = z, i2(ω) = x2, i2(t) = x3, and extending
multiplicatively over the other generators.

Lemma 5.3 shows that a minimal set of P (1)∗-module generators of
P (1)∗(DI(4)) is:

5 13 14 18 21 25 27 32 34 38 45
u z ω uz t r ωz s tz rz sz
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We study the dimensional possibilities and rechoose generators such that
the map i1 acts by: i1(u) = v2y, i1(z) = z, i1(ω) = ω, i1(t) = t, i1(r) = ωy,
i1(s) = ty, and we extend it multiplicatively over the other generators.

Using in and the exact triangle relating P (n)- and P (n + 1)-theory, we
will be able to compute the P (n)∗-module structure of P (n)∗(DI(4)) from
that of P (n+1)∗(DI(4)). The K(n)∗-module structure of K(n)∗(DI(4)) is
given directly by the E∞-term, as E∗∗∞ (K(n)) is K(n)∗-free.

To determine the algebra structure of P (n)∗(DI(4)) and K(n)∗(DI(4)),
it will be useful to apply the map P (n)∗(−) λn−→ K(n)∗(−). Recall that λn is
the composition

P (n)∗(−) jn−→ P (n)∗(−)⊗P (n)∗ K(n)∗ ∼= K(n)∗(−)

where jn is the natural inclusion. It is easy to check that Kerλn = Ker jn =
{x ∈ P (n)∗(−) : vsnx ∈ (vn+1, vn+2, . . .) for some s ≥ 0}. (Here (vn+1,
vn+2, . . .) is the ideal of P (n)∗(−) generated by these elements.)

As noted before, K(n)-theory has the advantage that we can use ar-
guments involving the coproduct. Such arguments are used to prove the
following lemma, which will allow us to determine relations of the form
x2 = 0 in K(n)∗(DI(4)), and use it to study these relations in P (n)∗(DI(4)),
through λn.

Lemma 5.4. Let X be an H-space, p = 2 and n ≥ 1. Suppose that
K(n)∗(X) is a commutative K(n)∗-algebra, and the E∞-term in the AHss
is

E∗∗∞ (K(n)) ∼= K(n)∗ ⊗ Λ(x, y, z)

where x, y, z ∈ H∗(X,Z/2) have odd degree, and |x| < |y| < |z|. Then
K(n)∗(X) ∼= E∗∗∞ (K(n)) as K(n)∗-algebras.

P r o o f. By dimensional reasons, z2 = 0, y2 ∈ K(n)∗{yz, xz} and x2 ∈
K(n)∗{xz, xy, yz} in K(n)∗(X). This implies that x2z, y2z, y2x, x2y, y3, x3

∈ K(n)∗{xyz}. Therefore, each decomposable element with odd degree in
the Z/2-algebra generated by x, y, z belongs to K(n)∗{xyz}.

Denote by Ψ the coproduct in K(n)∗(X). Then

Ψ(x) = 1⊗ x+ x⊗ 1 +
∑

i

(xi ⊗ x′i),

Ψ(y) = 1⊗ y + y ⊗ 1 +
∑

j

(yj ⊗ y′j),

Ψ(z) = 1⊗ z + z ⊗ 1 +
∑

k

(zk ⊗ z′k),
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for some xi, x′i, yj , y
′
j , zk, z

′
k ∈ K(n)∗(X). Corollary 2.3 yields

Ψ(x2) =
(

1⊗ x+ x⊗ 1 +
∑

i

xi ⊗ x′i
)2

+ vn

(
1⊗Qn−1x+

∑

i

xi ⊗Qn−1x
′
i

)(
Qn−1x⊗ 1 +

∑

i

Qn−1xi ⊗ x′i
)
,

Ψ(xy) =
(

1⊗ x+ x⊗ 1 +
∑

i

xi ⊗ x′i
)(

1⊗ y + y ⊗ 1 +
∑

j

yj ⊗ y′j
)

+ vn

(
1⊗Qn−1x+

∑

i

xi ⊗Qn−1x
′
i

)(
Qn−1y ⊗ 1 +

∑

j

Qn−1yj ⊗ y′j
)

= x⊗ y + y ⊗ x+ {other terms},
and analogous expressions for Ψ(yz) and Ψ(xz).

The only possibility for x2 6= 0 is that there exists a relation of the form
x = vd, or y = vd, or z = vd, where v ∈ K(n)∗ and d is a decomposable ele-
ment in the Z/2-algebra generated by x, y, z. This implies x ∈ K(n)∗{xyz},
or y ∈ K(n)∗{xyz}, or z ∈ K(n)∗{xyz}, which is a contradiction with the
module structure of K(n)∗(X). Thus, x2 = 0. Arguing similarly, we can
prove that y2 = 0.

In the following three propositions, we compute the algebra structure of
K(n)∗(DI(4)) and P (n)∗(DI(4)) for all n ≥ 1.

Proposition 5.5. For all n ≥ 3, there are K(n)∗-algebra, respectively
P (n)∗-algebra isomorphisms

K(n)∗(DI(4)) ∼= E∗∗∞ (K(n)), P (n)∗(DI(4)) ∼= E∗∗∞ (P (n)).

P r o o f. In Lemma 5.1 we proved that

E∗∗∞ (K(n)) ∼= K(n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(y11, z13),

E∗∗∞ (P (n)) ∼= P (n)∗ ⊗ Z/2[x7]/(x4
7)⊗ Λ(y11, z13),

for all n ≥ 3. The E∞-term gives directly the P (n)∗-module structure of
P (n)∗(DI(4)), and the K(n)∗-module structure of K(n)∗(DI(4)). For the
P (n)∗-algebra isomorphism, we only need to prove that x4 = y2 = z2 = 0,
and the commutativity.

The relations x4 = y2 = z2 = 0 in P (n)∗(DI(4)) follow for dimensional
reasons. The correction to commutativity is given in terms of Qn−1x, Qn−1y,
and Qn−1z (see Corollary 2.2). Since in acts as the identity for n ≥ 3, the
action of the Qi’s on P (n)-cohomology is the same (up to coefficients) as
the action of the Milnor operations on ordinary mod 2 cohomology. Looking
at the dimensional possibilities, we find that
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Qn−1x = Qn−1y = Qn−1z = 0 in P (n)∗(DI(4)), for all n ≥ 4,

Q2x = x2, Q2y = αv3x
3y, Q2z = βv3x

3z with α, β = 0, 1 in P (3)∗(DI(4)).

Therefore, (Q2x)(Q2y) = (Q2x)(Q2z) = (Q2y)(Q2z) = 0, and P (n)∗(DI(4))
is a commutative algebra for all n ≥ 3.

For theK(n)∗-algebra isomorphism, consider the map λn : P (n)∗(DI(4))
→ K(n)∗(DI(4)). Since (Kerλn) ∩ (Z/2[x]/(x4)⊗ Λ(y, z)) = {0},

K(n)∗(DI(4)) ∼= K(n)∗ ⊗ Z/2[λn(x)]/(λn(x)4)⊗ Λ(λn(y), λn(z))

asK(n)∗-modules. The fact that λn is an algebra morphism implies λn(x)4 =
λn(y)2 = λn(z)2 = 0, and the commutativity of K(n)∗(DI(4)).

Proposition 5.6. There exist K(2)∗-algebra, respectively P (2)∗-algebra
isomorphisms

K(2)∗(DI(4)) ∼= E∗∗∞ (K(2)), P (2)∗(DI(4)) ∼= E∗∗∞ (P (2)).

P r o o f. From Lemma 5.2,

E∗∗∞ (K(2)) ∼= K(2)∗ ⊗ Λ(y11, z13, t21),

E∗∗∞ (P (2)) ∼= (P (2)∗ ⊗ Λ(y11, z13, t21))⊕ (P (3)∗ ⊗ Z/2{ω14} ⊗ Λ(y, z)).

To prove the P (2)∗-module isomorphism, consider the exact triangle

P (2)∗(−) P (2)∗(−)

P (3)∗(−)

v2 //

i2||zzzzzz
δ2

bbDDDDDD

Let x7 ∈ P (3)∗(DI(4)). Then (i2δ2)(x) = Q2(x) = x2 6= 0. If we set ω = δ2x,
we find that ω is an element in P (2)∗(DI(4)) such that i2(ω) = x2 and
v2ω = 0. This shows the P (2)∗-module isomorphism.

For the P (2)∗-algebra isomorphism, we need to prove that y2 = z2 =
t2 = ω2 = tω = 0, and the commutativity. Dimensional reasons imply that
t2 = ωt = 0, ω2 = αv2tz, y2 = βv2

2tz, z
2 = γv2ty, with α, β, γ = 0, 1. Using

the module structure gives v2ω
2 = 0 = αv2

2tz, and this implies α = 0.
For the commutativity, we use the fact that the maps in commute with

the Qi to obtain

i2(Q1ω) = Q1i2(ω) = Q1x
2 = 0 mod (v3, v4, . . .)

⇒ Q1ω = 0 mod (v2, v3, . . .),

i2(Q1y) = Q1i2(y) = Q1y = x2 mod (v3, v4, . . .)

⇒ Q1y = ω mod (v2, v3, . . .),

i2(Q1z) = Q1i2(z) = 0 mod (v3, v4, . . .)⇒ Q1z = 0 mod (v2, v3, . . .),

i2(Q1t) = Q1i2(t) = Q1x
3 = 0 mod (v3, v4, . . .)⇒ Q1t = 0 mod (v2, v3, . . .).
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Examining the dimensional possibilities shows that Q1ω ∈ P (2)∗{tyz},
Q1y ∈ P (2)∗{ω, ty, tz}, Q1z ∈ P (2)∗{tz}, Q1t ∈ P (2)∗{ωyz}, and any
product in the correction to commutativity is forced to be zero.

Regarding the relations y2 = βv2
2tz, z

2 = γv2ty, these cannot be de-
termined by using arguments involving P (n)-theory only. Consider the map
P (2)∗(DI(4)) λ2−→ K(2)∗(DI(4)). Since P (2)∗(DI(4)) is commutative, so
is K(2)∗(DI(4)). Hence, we are under the conditions of Lemma 5.4, and
K(2)∗(DI(4)) ∼= K(2)∗ ⊗ Λ(y, z, t). Now, λ2(y2) = λ2(y)2 = 0 = βv2

2λ2(tz).
But tz 6∈ Kerλ2, and this implies β = 0. Arguing similarly, we can prove
that γ = 0.

Proposition 5.7. There exist K(1)∗-algebra, respectively P (1)∗-algebra
isomorphisms

K(1)∗(DI(4)) ∼= E∗∗∞ (K(1)),

P (1)∗(DI(4)) ∼= ((P (1)∗ ⊗ Λ(u5, z13, t21, r25, s32))

⊕ (P (3)∗ ⊗ Z/2{ω14} ⊗ Λ(z)))/R.

where R ≡ {rs = ts = rt = us = 0, ur = v1s, ut = v2s, v1t = v2r}.
P r o o f. In Lemma 5.3 we proved

E∗∗∞ (K(1)) ∼= K(1)∗ ∼= Λ(x7, z13, r25),

E∗∗∞ (P (1)) ∼= (P (1)∗ ⊗ Λ(u5, z13, r25, s32)⊕ P (2)∗ ⊗ Z/2{t21} ⊗ Λ(z)

⊕ P (3)∗ ⊗ Z/2{ω14} ⊗ Λ(z))/R,

where R ≡ {ur = v1s, us = rs = 0}.
The relations in the module structure of E∗∗∞ (P (1)) are v1t = v1ω =

v2ω = 0. Let us study these relations in P (1)∗(DI(4)). Consider the exact
triangle

P (1)∗(−) P (1)∗(−)

P (2)∗(−)

v1 //

i1||zzzzzz
δ1

bbDDDDDD

Let y11 ∈ P (2)∗(DI(4)). Then (i1δ1)(y) = Q1y = ω mod (v2, v3, . . .). More-
over, i1(u) = v2y implies v2y ∈ Im i1 = Ker δ1, and hence δ1(v2y) =
v2(δ1y) = 0. Set ω′ = δ1y; we see that ω′ is an element in P (1)∗(DI(4))
such that i1(ω′) = ω mod (v2, v3, . . .), and

v1ω
′ = v2ω

′ = 0

That i1(r) = ωy implies i1(v2r) = 0, and hence v2r ∈ Ker i1 = Im v1.
For dimensional reasons, v2r = αv1t + av1r + bv1sz, where α = 0, 1, and
a, b ∈ P (1)∗. But the P (1)∗-module generated in P (1)∗(DI(4)) by {r, sz} is
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P (1)∗-free, and this forces α = 1, and v1t 6= 0. Setting t′ = t+ ar + bsz, we
get

v2r = v1t
′

This completes the study of the P (1)∗-module structure of P (1)∗(DI(4)).
For the algebra structure, the relations that we have to study are the

following: u2, r2, z2, s2, (t′)2, (ω′)2, ut′, rt′, st′, uω′, rω′, t′ω′, sω′, us, rs, ur +
v1s, and the commutativity.

Just by dimensional reasons,

(t′)2 = s2 = t′s = t′r = sr = ω′s = r2 = 0

The elements (ω′)2, t′ω′, rω′, uω′ are in (Ker v1) ∩ (Ker v2), and this im-
plies that they are not in (Im v1) ∪ (Im v2). Again for dimensional reasons,
this implies

(ω′)2 = t′ω′ = rω′ = uω′ = 0

The fact that ur = v1s in E∗∗∞ (P (1)) implies ur = v1s+αv4
1rz+βv1v2rz

in P (1)∗(DI(4)), where α, β = 0, 1. Setting s′ = s+ αv3
1rz + βv2rz, we get

ur = v1s
′

Combining the two relations ur = v1s
′ and v1t

′ = v2r, we obtain
v1(v2s

′+ut′) = 0. But i1(v2s
′) = v2ty = i1(ut′), and hence v2s

′+ut′ ∈ Im v1.
This implies

v2s
′ = ut′

Since we are not going to make any other change of generators, we rename
again ω = ω′, t = t′, s = s′.

To complete the proof of the P (1)∗-algebra isomorphism in the lemma,
we only have to check that u2 = z2 = us = 0, and the commutativity.
Since Q0ω 6∈ (Im v1) ∪ (Im v2), by dimensional reasons we have Q0ω = 0.
Regarding the other generators,





Q0u ∈ P (1)∗{uz, s, tz, rz},
Q0z ∈ P (1)∗{ω, uz, s, tz, rz},
Q0t ∈ P (1)∗{s, tz, rz},
Q0r ∈ P (1)∗{s, tz, rz},
Q0s ∈ P (1)∗{sz}.

By considering dimensions, any product in the correction to commutativ-
ity is forced to be zero, except for the case (uz)(uz). But (uz)(uz) = uz(zu+
v1Q0zQ0u) = uz(zu+ v1a(uz)2) = uz2u+av1(uz)3 for some a ∈ P (1)∗. For
dimensional reasons, (uz)3 = 0, and the fact that z2 ∈ P (1)∗{s, rz} implies
uz2u = 0.
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To prove the relations u2 =z2 =0, we consider the map λ1 : P (1)∗(DI(4))
→ K(1)∗(DI(4)). We are again under the conditions of Lemma 5.4 and
hence K(1)∗(DI(4)) ∼= K(1)∗ ⊗ Λ(x, z, r) as K(1)∗-algebras. We finish the
proof of the P (1)∗-algebra isomorphism by using an argument completely
analogous to the one used in Lemma 4.2: we know that z2 = as+brz, where
a, b ∈ P (1)∗. That λ1(z)2 = 0 and s, rz 6∈ Kerλ1 implies a, b ∈ (v2, v3, . . .).
Now, we order the coefficients lexicographically:

z2 =
n1∑

j=1

ω1,js+
n2∑

j=1

ω2,jrz with ωi,1 > ωi,2 > . . . > ωi,ni , i = 1, 2.

There exists an operation r ∈ P (1)∗P (1) such that r(ω1,1) = vk1 for some
k > 0, and r(ω1,j) = 0 for all j > 1. Since x2 = 0 for all x ∈ P (1)∗(DI(4))
with |x| > |z|, the Cartan formula implies that r(z2) = 0. Hence, r(z2) =
0 = vk1s+

∑
i ωixi, where ωi ∈ P (1)∗ and |xi| > |s| for all i. This contradicts

the module structure of P (1)∗(DI(4)). Therefore, z2 = 0. Arguing similarly,
we can prove that u2 = 0. Finally, us ∈ P (1)∗{sz}, and v1(us) = u2r = 0.
This implies us = 0.

We finish this section with the proof of the non-homotopy nilpotency of
DI(4), by using the non-commutativity of the spectra P (n) at p = 2.

Let X be a finite homotopy associative H-space, and let λ and σ be the
multiplication and inverse maps of X. Define c2 (the commutator) to be the
composition

X ×X ∆X×X−−−→ X ×X ×X ×X f→ X ×X ×X ×X g→ X

where ∆X×X is the diagonal map, f = id× id×σ×σ and g = λ(λ×λ). De-
fine the iterated commutators cn : Xn → X inductively by cn=c2(cn−1×id).
Zabrodsky defined X to be homotopy nilpotent if the functor [−, X] takes
values in the category of nilpotent groups, and proved the following crite-
rion for the homotopy nilpotency of an associative H-space, in terms of the
commutators:

Proposition 5.8 ([Z]). A finite homotopy associative H-space is homo-
topy nilpotent if and only if cn is null homotopic for sufficiently large n.

In [Ho], Hopkins found cohomological criteria for a finite H-space to be
homotopy nilpotent, and used it to prove that H-spaces with no torsion in
homology are homotopy nilpotent. Hopkins also conjectured that all finite
connected homotopy associative H-spaces are homotopy nilpotent. However,
Rao [R] found that Spin(n),SO(n), n ≥ 7, and SO(3),SO(4) are not homo-
topy nilpotent. About the same time, Yagita proved the following result:

Theorem 5.9 ([Ya3]). Let G be a simply connected Lie group. Then, for
each prime p, the p-localization G(p) is homotopy nilpotent if and only if
H∗(G) has no p-torsion.
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Since DI(4) has 2-torsion, it is natural to expect that it is not homotopy
nilpotent. We prove the non-homotopy nilpotency of DI(4) by showing that
the maps induced by the commutators cn in P (3)∗(DI(4)) are non-trivial.
Consider the AHss for P (3)∗(DI(4)):

E2
∗∗(P (3)) ∼= P (3)∗ ⊗H∗(DI(4),Z/2)→ P (3)∗(DI(4)).

For dimensional reasons, all the differentials are forced to be zero, and
P (3)∗(DI(4)) ∼= P (3)∗ ⊗H∗(DI(4),Z/2) as P (3)∗-modules.

By duality, one easily sees that the algebra structure of H∗(DI(4),Z/2)
is

H∗(DI(4),Z/2) ∼= Λ(z7, z11, z13, z14).

If we denote by Ψ the coproduct, the generators z7, z11, z13 are primitive,
and Ψ(z14) = 1⊗z14 +z14⊗1+z7⊗z7. The action of the Steenrod algebra is
given by Sq4z11 = z7, Sq2z13 = z11, Sq1z14 = z13. In particular, Q2z14 = z7.

Lemma 5.10. In P (3)∗(DI(4)), c2∗(z7 ⊗ z14) = [z7, z14].

P r o o f. As a consequence of Proposition 2.1, we have (see [R])

(∆X×X)∗(z7 ⊗ z14)

= Ψ(z7)⊗ Ψ(z14) + v3(id⊗Q2 ⊗Q2 ⊗ id)(Ψ(z7)⊗ Ψ(z14))

= (1⊗ 1⊗ z7 ⊗ z14) + (1⊗ z14 ⊗ z7 ⊗ 1) + (1⊗ z7 ⊗ z7 ⊗ z7)

+ (z7 ⊗ 1⊗ 1⊗ z14) + (z7 ⊗ z14 ⊗ 1⊗ 1) + (z7 ⊗ z7 ⊗ 1⊗ z7).

As for σ∗, note that if x ∈ P (3)∗(DI(4)), and Ψ(x) =
∑
i x
′
i ⊗ x′′i , then∑

i x
′
iσ∗(x

′′
i ) = 0. Thus, σ∗(z7) = z7, σ∗(z14) = z14 +z2

7 = z14 (since z2
7 = 0).

Finally, we obtain c2∗(z7 ⊗ z14) = g∗f∗(∆X×X)∗(z7 ⊗ z14) = z7z14 +
z14z7 + z3

7 + z7z14 + z7z14 + z3
7 = [z7, z14].

We know that [z7, z14] = 0 mod (v3, v4, . . .) and, by dimensional reasons,
we must have [z7, z14] = αv3z7 with α = 0 or 1. In the following lemma we
prove that α = 1.

Lemma 5.11. In P (3)∗(DI(4)), [z7, z14] = v3z7.

P r o o f. Corollary 2.3 yields

Ψ(z2
14) = (Ψ(z14))2 + v3((Q2 ⊗ id)Ψ(z14))((id⊗Q2)(Ψ(z14))

= Ψ(z14)2 + v3(z7 ⊗ z7).

Since (Ψ(z14))2 = 1⊗ z2
14 + z2

14 ⊗ 1 + z7 ⊗ [z7, z14] + [z7, z14]⊗ z7, we obtain

Ψ(z2
14 + v3z14) = 1⊗ (z2

14 + v3z14) + (z2
14 + v3z14)⊗ 1

+ [z7, z14]⊗ z7 + z7 ⊗ [z7, z14]

= 1⊗ (z2
14 + v3z14) + (z2

14 + v3z14)⊗ 1.
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Then z2
14+v3z14 is a primitive element in even degree. But the only primitive

elements in P (3)∗(DI(4)) are z7, z11, z13, up to coefficients. This implies
z2

14+v3z14 =0, and hence [z7, z14]=Q2(z2
14)=Q2(v3z14)=v3Q2(z14)=v3z7.

The proof of the non-homotopy nilpotency of DI(4) is now immediate:

Theorem 5.12. DI(4) is not homotopy nilpotent.

P r o o f. We show that, for all n ≥ 2, cn∗ is not trivial in P (3)∗(DI(4)).
The proof is by induction. For n = 2, c2∗(z7 ⊗ z14) = [z7, z14] = v3z7 6= 0.
Suppose

(cn−1)∗(z7 ⊗
n−2︷ ︸︸ ︷

z14 ⊗ . . .⊗ z14) = vn−2
3 z7.

Then

cn∗(z7 ⊗
n−1︷ ︸︸ ︷

z14 ⊗ . . .⊗ z14) = c2∗(cn−1 × id)∗(z7 ⊗ z14 ⊗ . . .⊗ z14)

= c2∗(v
n−2
3 z7 ⊗ z14) = vn−1

3 z7 6= 0.
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