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Topological entropy on zero-dimensional spaces

by

Jozef B o b o k and Ondřej Z i n d u l k a (Praha)

Abstract. Let X be an uncountable compact metrizable space of topological dimen-
sion zero. Given any a ∈ [0,∞] there is a homeomorphism on X whose topological entropy
is a.

1. Introduction. It is well known that each homeomorphism of the
closed interval has topological entropy zero. On the other hand, the two-
sided shift of the Cantor cube 2Z has positive entropy.

The Cantor cube is metrizable, zero-dimensional, compact and uncount-
able. We ask if these features of a metric space are enough to ensure the
existence of a homeomorphism with positive entropy.

The answer is affirmative. As a matter of fact, more holds for such
a space. If X is a zero-dimensional, compact, uncountable metric space,
then for each a ∈ [0,∞] there is a homeomorphism T : X → X such that
htop(T ) = a.

We prove this result in Section 4. Section 2 recalls basic concepts of
topological and measure-theoretic entropy. In Section 3 we investigate the
local structure of zero-dimensional compacta and set a theorem on extending
homeomorphisms as a preparation for the main result. Section 5 contains
some counterexamples showing that none of the four conditions that are
listed above can be dropped.

2. Preliminaries. The following notation of basic sets is adopted. Z
denotes the set of all integers. The set of all positive integers including zero
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is denoted by ω, instead of the more common notation N, because it is often
considered an ordinal number. A nonnegative integer n ∈ ω is sometimes
also considered an ordinal number, i.e. n = {0, 1, . . . , n − 1}. From the
topological point of view, n is a discrete space consisting of exactly n points.
2ω and 2Z denote, respectively, the sets of all binary sequences and all binary
bisequences. Both are topologically identical to the Cantor set.

We will several times appeal to the following fact. Recall that a topolog-
ical space is zero-dimensional if it has a base consisting of clopen sets, and
perfect if it has no isolated points.

2.1. Proposition ([6, 6.2.A(c)]). A perfect , compact , metrizable, zero-
dimensional space is homeomorphic to 2ω.

We now recall the notion of topological entropy and related material. |A|
denotes the cardinality of a set A. If T : X → X is a mapping and A ⊆ X,
then TA and T−1A denote, respectively, the image and preimage of A. For
n ∈ Z, the set TnA is defined as follows:

TnA =

{
A if n = 0,
TTn−1A if n > 0,
T−1Tn+1A if n < 0.

If A is a family of subsets of X and n ∈ Z, then

TnA = {TnA : A ∈ A}.
For two families of sets A and B define

A ∨ B = {A ∩B : A ∈ A, B ∈ B}.
2.2. Definition. Let X be a compact space and U an open cover of X.

Define
H(U) = log min{|V| : V is a finite subcover of U}.

Let T : X → X be a continuous mapping. Define

h(T,U) = lim
n→∞

1
n
H(U ∨ T−1U ∨ . . . ∨ T−(n−1)U)

(the limit exists, see [8, Theorem 7.1]) and

htop(T ) = sup{h(T,U) : U is a cover of X}.
The quantity htop(T ) is called the topological entropy of T , or, more precisely,
the topological entropy of the dynamical system (X,T ).

It follows directly from its definition that the topological entropy is an
invariant of topological conjugacy. We shall need the following. Recall that
the two-sided shift σ : nZ → nZ is defined by σ(〈xi : i ∈ Z〉) = 〈xi+1 : i ∈ Z〉.
It is obviously a homeomorphism.

2.3. Proposition ([1, Lemma 4.1.10]). Let X be a metrizable space and
T : X → X a continuous mapping. If X =

⋃
n∈ωXn and the sets Xn are
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closed and T -invariant , then

htop(T ) = sup
n∈ω

htop(T ¹Xn).

2.4. Theorem ([8, Theorem 7.13]). For each a > 0 there exists n ∈ ω
and a perfect , shift-invariant subset Ω ⊆ nZ such that htop(σ¹Ω) = a.

2.5. Corollary. For each a ∈ [0,∞] there exists a homeomorphism
T : 2ω → 2ω such that htop(T ) = a.

P r o o f. If a = 0 let T be the identity map on 2ω. If 0 < a <∞, consider
the space Ω of Theorem 2.4. By Proposition 2.1 it is homeomorphic to 2ω.
Consider σ¹Ω and take for T its conjugate by this homeomorphism. We
construct T for the case a = ∞. Let 0̃ ∈ 2ω denote the sequence that is
identically zero. For each n ∈ ω let pn ∈ 2n+1 be defined by

pn(i) =
{

0 if 0 ≤ i < n,
1 if i = n,

and Xn = {f ∈ 2ω : pn ⊆ f}. Each Xn is homeomorphic to 2ω, therefore
there exists a homeomorphism Tn : Xn → Xn satisfying htop(Tn) = n. The
family {Xn : n ∈ ω}∪{{0̃}} obviously forms a disjoint cover of 2ω. Therefore
the following formula defines a mapping T : 2ω → 2ω:

T (f) =
{
Tn(f) for n ∈ ω, f ∈ Xn,
0̃ for f = 0̃.

Since each Xn is a clopen subset of 2ω and diamXn → 0, it follows that T is
a homeomorphism. Since each Xn is closed and T -invariant, Proposition 2.3
yields

htop(T ) ≥ sup
n∈ω

htop(T ¹Xn) = sup
n∈ω

htop(Tn) = sup
n∈ω

n =∞.

There is also another, metric-dependent definition of topological entropy
due to Bowen [2]. For compact metric spaces it is equivalent to the one given
above, but it also makes sense for noncompact spaces.

2.6. Definition. Let (X, %) be a (not necessarily compact) metric space
and let T : X → X be a uniformly continuous mapping. For each n > 0
the function %n : X ×X → R given by %n(x, y) = max0≤i<n %(T i(x), T i(y))
is a metric on X equivalent to %. A set E ⊂ X is called (n, ε)-separated
if %n(x, y) > ε for all x, y ∈ E, x 6= y. For a compact set K ⊂ X define
sn(T, ε,K) to be the maximal cardinality of an (n, ε)-separated subset of K.
Put

h%(T,K) = lim
ε→0+

lim sup
n→∞

1
n

log sn(T, ε,K)

and
h%(T ) = sup{h%(T,K) : K ⊆ X compact}.

The quantity h%(T ) is called the Bowen entropy of T .
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2.7. Proposition ([8, Theorem 7.4, Corollary 7.5.2]). Let (X, %) be a
metric space and T : X → X a uniformly continuous mapping.

(i) If %′ is a metric on X uniformly equivalent to %, then h%(T ) = h%′(T ).
(ii) If X is compact , then h%(T ) = htop(T ).

2.8. Proposition ([4, Proposition 14.21(b)]). If X1, X2 ⊂ X satisfy
T (X1) = X1, T (X2) = X2 and X1 ∪X2 = X, then

h%(T ) = max(h%(T ¹X1), h%(T ¹X2)).

Recall the definition of measure-theoretic entropy. If X is a metrizable
space and T : X → X a Borel measurable mapping, a finite Borel measure
on X is called T -invariant if µT−1E = µE for each Borel set E.

2.9. Definition. Let X be a metric space, µ a Borel probability measure
in X and P a Borel partition of X. Define

Hµ(P) = −
∑

P∈P
µ(P ) logµ(P ).

Let T : X → X be a measurable mapping such that µ is T -invariant. Define

hµ(T,P) = lim
n→∞

1
n
Hµ(P ∨ T−1P ∨ . . . ∨ T−(n−1)P)

(the limit exists, see [8, Corollary 4.9.1]) and

hµ(T ) = sup{hµ(T,P) : P is a finite Borel partition}.
The quantity hµ(T ) is called the measure-theoretic entropy of T .

We will make use of the following consequence of the so-called Variational
Principle. A T -invariant probability measure µ is called T -ergodic if T−1E =
E implies µE = 0 or µE = 1 for each Borel set E.

2.10. Theorem. ([8, Corollary 8.6.1(i)]). If X is a compact metric space
and T : X → X a continuous mapping , then

htop(T ) = sup{hµ(T ) : µ is a T -ergodic probability measure}.

3. Extending homeomorphisms. The goal of the paper is to find,
on a zero-dimensional compact space X, for a prescribed value a, a hom-
eomorphism of entropy a. If we supposed that the space X had no isolated
points, then the existence of such a homeomorphism would follow directly
from Theorem 2.4. When X has isolated points, the situation is a little more
complicated. Using the Cantor–Bendixson Theorem, one can split X into a
compact subset C without isolated points and a countable subset S.

The plan is to apply Theorem 2.4 to C and then extend carefully the
homeomorphism of C to C ∪ S preserving entropy.

In order to do that we build up a taxonomy of points in zero-dimensional
compacta. The technique used is akin to that used for instance in [7], where
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similar results are established. While we consider zero-dimensional locally
compact metric spaces, [7] deals with first-countable scattered compacta.

The first goal is to describe the local structure of countable, completely
metrizable spaces.

3.1. Definition. Let X be a separable metric space.

(i) For A ⊆ X denote by ι(A) the set of all isolated points of A and by
A′ = A \ ι(A) the derived set of A, i.e. the set of cluster points of A.

(ii) For A ⊆ X define recursively, for each ordinal α,

A(0) = A, A(α+1) = (A(α))′, A(α) =
⋂

β<α

A(β) for α limit.

3.2. Lemma. If X is a countable, completely metrizable space, then there
is a countable ordinal η such that X(η) = ∅.

P r o o f. The set X(α) is obviously closed for each ordinal α. Therefore
it is completely metrizable. Thus when it is nonempty, the Baire Category
Theorem yields an x ∈ X(α) such that {x} is open in X(α), i.e. x is isolated
in X(α). Therefore X(α+1) ( X(α). It follows that the sequence 〈X(α) :
X(α) 6= ∅〉 is strictly decreasing and thus countable.

3.3. Remark. If either of the hypotheses is dropped, the lemma can
fail. The real line and the set of rationals are, respectively, examples of an
uncountable complete space and a countable incomplete space for which
X(α) = X for all α.

3.4. Definition. Let X be a countable, completely metrizable space.

(i) Define the depth of X to be the ordinal ηX = min{α : X(α) = ∅}.
(ii) For x ∈ X define the type of x in X to be the ordinal

tX(x) = min{α : x 6∈ X(α+1)}.
Lemma 3.2 obviously implies that tX(x) is defined for each x ∈ X and that
tX(x) < ηX .

3.5. Remark. The depth and type, as well as the sets SX and CX defined
by (3.2) below, obviously depend on the underlying space X. If X is given
and A ⊂ X is a completely metrizable subspace, then tA(x), ηA etc. make
sense.

3.6. Lemma. Let X be a countable, completely metrizable space. For each
x ∈ X and each neighborhood V of x there is a neighborhood U ⊆ V such
that

(i) tX(y) < tX(x) for all y ∈ U , y 6= x,
(ii) for each β < tX(x) there is y ∈ U , y 6= x such that tX(y) ≥ β.
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P r o o f. Let α = tX(x).
(i) By definition, x is an isolated point of X(α). Hence there is an open

subset W ⊆ X such that W ∩X(α) = {x}. Thus if y ∈ W and y 6= x, then
y 6∈ X(α), hence there is β < α such that y ∈ X(β), and tX(y) < α follows.
Put V = W ∩ U .

(ii) Assume on the contrary that there is β < α such that tX(y) < β for
all y ∈ V , y 6= x. Since tX(y) < β yields y 6∈ X(β), it follows that V \ {x} ⊆
X \X(β), which in turn implies that V ∩X(β) ⊆ {x}. If V ∩X(β) = ∅, then
x 6∈ X(β) and thus obviously tX(x) < β. If V ∩ X(β) = {x}, then x is an
isolated point of X(β). It follows that x 6∈ X(β+1), whence tX(x) ≤ β. In
either case tX(x) ≤ β, which is the desired contradiction.

Arithmetic of ordinals. We now need a little ordinal arithmetic and to-
pology. Let α and β be ordinals. Recall:

• The sum α+β is the unique ordinal whose order type is that of the set
{0} × α ∪ {1} × β provided with the lexicographic order. Informally, α+ β
is the ordinal that one obtains by putting β next to α. Addition of ordinals
is associative but not commutative.
• When 〈αn : n ∈ ω〉 is a sequence of ordinals, then

∑
n∈ω

αn = sup
n∈ω

(α0 + α1 + . . .+ αn).

• The product α · β of two ordinals is the unique ordinal whose order
type is that of the cartesian product β × α provided with the lexicographic
order.
• The power ωα is defined by recursion as follows:

ω0 = 1, ωα+1 = ωα · ω, ωα = sup
β<α

ωβ for α limit.

We also define (ωα)∗ to be the ordinal

(3.1) (ωα)∗ =
{ 1 if α = 0,
ωα + 1 otherwise.

We list some basic properties of ωα. Though most of them hold for any value
of α, we only consider countable ordinals. The proofs are elementary.

3.7. Proposition. Let α > 0 be a countable ordinal.

(i) ωα is a limit countable ordinal.
(ii) (ωα)∗ · ω = ωα+1.

Let 〈αn : n ∈ ω〉 be a sequence of ordinals such that α = supn∈ω αn.

(iii) If β < α, then (ωβ)∗ + (ωα)∗ = (ωα)∗ and (ωβ)∗ + ωα = ωα.
(iv) If α = αn for infinitely many n ∈ ω, then

∑
n∈ω(ωαn)∗ = ωα+1.

(v) If α > αn for all n ∈ ω, then
∑
n∈ω(ωαn)∗ = ωα.
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P r o o f. We only prove (iv), for (v) is proved in a similar manner and
the rest is trivial. Let 〈n(i) : i ∈ ω〉 be the increasing enumeration of {n ∈
ω : αn = α}. Put

I0 = {0, 1, . . . , n(0)}, I1 = {n(0)+1, . . . , n(1)}, I2 = {n(1)+1, . . . , n(2)}, . . .
By assumption and (iii),

∑

n∈Ii
(ωαn)∗ = (ωαn(i))∗ = (ωα)∗.

Therefore (ii) yields∑
n∈ω

(ωαn)∗ =
∑

i∈ω

∑

n∈Ii
(ωαn)∗ =

∑

i∈ω
(ωα)∗ = (ωα)∗ · ω = ωα+1.

Topology of ordinals. Ordinals have a natural topology induced by the
well-ordering. If α is an ordinal and β < α, then β is isolated in the topology
if it is a nonlimit ordinal, and if β is a limit, then the sets of the form (γ, β],
where γ < β, form a base of the neighborhood system of β. In other words,
the base for the topology is formed by open intervals.

If α is countable, then the topology of ωα is second countable and thus
metrizable, and locally compact; moreover, it is noncompact unless α = 0.
(Warning: ωα is not a topological product of α many countable discrete
spaces!) The topological space (ωα)∗ defined by (3.1) above is its Aleksan-
drov one-point compactification. If α = 0, then the space ωα = 1 is obviously
compact. Overall, (ωα)∗ is, for each countable α, the smallest compact space
containing ωα, and due to Proposition 3.7(i) it is a countable ordinal.

In the proof of Lemma 3.10 we shall use the following property of com-
pact spaces. If X is compact, x ∈ X and Y = X \ {x} is not compact, then
X is the Aleksandrov compactification of Y .

We refer the reader to [6, 3.5.11] for more information on the Aleksandrov
one-point compactification.

The following are topological counterparts of Proposition 3.7(iii), (iv)
and (v).

3.8. Lemma. Let α and β be countable ordinals, α < β. Let Kα and Kβ

be spaces homeomorphic to (ωα)∗ and ωβ respectively. Then the topological
sum Kα ⊕Kβ is homeomorphic to ωβ.

3.9. Lemma. Let 〈αn : n ∈ ω〉 be a sequence of countable ordinals and
α = supn∈ω αn. Let {Kn : n ∈ ω} be a family of topological spaces such that
Kn is homeomorphic to (ωαn)∗ for all n ∈ ω and let K =

⊕
n∈ωKn be the

topological sum of Kn’s.

(i) If α = αn for infinitely many n ∈ ω, then K is homeomorphic
to ωα+1.
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(ii) If α > αn for all n ∈ ω, then K is homeomorphic to ωα.

P r o o f. For each n ∈ ω, let φn : (ωαn)∗ → Kn be the homeomorphism.
Let φ :

∑
n∈ω(ωαn)∗ → K be the unique common extension of the φn’s. It

is clear that φ is a homeomorphism. Proposition 3.7(iv) and (v) concludes
the proof.

We have enough background to state and prove the main lemma on the
local structure.

3.10. Lemma. Let X be a countable, locally compact metrizable space and
x ∈ X. If tX(x) = α, then for each neighborhood V of x there is a clopen
neighborhood U ⊆ V of x that is homeomorphic to (ωα)∗.

P r o o f. If α = 0, then x is isolated. Therefore there is nothing to prove.
We proceed by induction up to ηX .

Assume that α > 0 and that the assertion is true for each β < α. By
Lemma 3.6 there is a neighborhood U ⊆ V of x such that tX(y) < α for
all y ∈ U \ {x}. As X is countable and locally compact, mutatis mutandis
U can be assumed to be clopen and compact, and it is of course countable.
Let 〈xn : n ∈ ω〉 be an enumeration of U \ {x}. For each n ∈ ω put αn =
tX(xn) < α.

We inductively construct a countable disjoint clopen coverW of U \{x}.
By the induction hypothesis there is a clopen neighborhood W0 ⊆ U \ {x}
of x0 that is homeomorphic to (ωα0)∗. Put W0 = {W0}.

Now assume that n ∈ ω and thatWn is already defined. If xn+1 ∈
⋃Wn,

put Wn+1 = Wn. Otherwise, as U \ {x} is open and
⋃Wn is closed, the

induction hypothesis yields a neighborhood Wn+1 ⊆ U \{x}\
⋃Wn of xn+1

that is homeomorphic to (ωαn+1)∗. Put Wn+1 =Wn ∪ {Wn+1}.
WhenWn is constructed for each n ∈ ω, putW =

⋃
n∈ωWn. The family

W is obviously disjoint and covers U \{x}. Each W ∈ W is homeomorphic to
some (ωαn)∗. Lemma 3.6 ensures that one can apply Lemma 3.9 to conclude
that U \ {x} is homeomorphic to ωα. Since α > 0, it follows in particular
that U \ {x} is a locally compact, noncompact space. As U is compact, it
is the Aleksandrov compactification of U \ {x}, which is homeomorphic to
(ωα)∗. The induction step is finished, and so is the proof.

We now attempt to extend the definition of type to an uncountable
compact metric space. For a space X put

(3.2) SX =
⋃
{U ⊆ X : U open, |U | ≤ ω}, CX = X \ SX .

We list some properties of SX and CX . (i) below, the first part of (ii) and
(iii) are trivial, and the last part of (ii) is Proposition 2.1. Recall that a
topological space is locally countable if each of its points has a countable
neighborhood.



Topological entropy on zero-dimensional spaces 241

3.11. Lemma. Let X be an uncountable metrizable space.

(i) SX is open and locally countable.
(ii) CX is closed and perfect. If X is compact and zero-dimensional ,

then CX is homeomorphic to 2ω.
(iii) If U ⊆ X is open, then SU = U ∩ SX and CU = U ∩ CX .

If X is locally compact, separable and metrizable, then it has a countable
base and therefore SX is countable. The set SX ∪ {x}, being a union of a
closed set and an open set, is a Gδ-set in the locally compact space X. It
follows that SX ∪{x} is a countable, completely metrizable space. Therefore
the following definition makes sense in view of Definition 3.4.

3.12. Definition. Let X be a locally compact separable metric space.
For each x ∈ X put

tX(x) = tSX∪{x}(x).

3.13. Lemma. Let X be a locally compact separable metric space.

(i) tX(x) ≤ ηSX for each x ∈ X.
(ii) The set {x ∈ X : tX(x) ≤ α} is open for each ordinal α.

(iii) If U ⊆ X is open and x ∈ U , then tU (x) = tX(x).

P r o o f. (i) If x ∈ SX , then tX(x) = tSX (x), so tX(x) < ηSX by the
remark preceding Lemma 3.6. If x ∈ CX , then obviously (SX ∪ {x})(α) ⊆
S

(α)
X ∪ {x} for each α, whence (SX ∪ {x})(ηSX ) ⊆ {x}. Therefore (SX ∪
{x})(ηSX+1) ⊆ {x}′ = ∅, and tX(x) ≤ ηSX follows.

(ii) We prove that if tX(x) = α, then there is a neighborhood U of x
such that tX(y) ≤ α for each y ∈ U . If x ∈ SX , then the assertion follows
directly from Lemma 3.6. If x ∈ CX , then there is an open set U ⊆ X such
that U ∩SX satisfies the conditions (i) and (ii) of Lemma 3.6. Let y ∈ U . If
y ∈ SX , then tX(y) < α by Lemma 3.6(i). Let y ∈ CX . Assume tX(y) > α.
As U ∩ (SX ∪{y}) is a neighborhood of y in SX ∪{y}, Lemma 3.6(ii) yields
a z ∈ U ∩ SX such that tX(z) ≥ α, a contradiction.

(iii) Obviously ι(U) = ι(X) ∩ U . Thus U ′ = X ′ ∩ U . A straightforward
application of the latter fact yields U (α) = X(α) ∩ U for each α, which in
turn implies tU (x) = tX(x).

3.14. Lemma. Let X be a locally compact separable metric space and
x ∈ CX .

(i) If tX(x) = 0, then x 6∈ SX .
(ii) If tX(x) = α > 0, then for each neighborhood V ⊆ X of x there

exists an open set U ⊆ V ∩SX homeomorphic to ωα such that U = U ∪{x}.
In particular , U is homeomorphic to (ωα)∗.
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P r o o f. (i) If tX(x) = 0, then x 6∈ (SX ∪ {x})′. A fortiori x 6∈ (SX)′. As
SX = SX ∪ S′X , it follows that x 6∈ SX .

(ii) Lemma 3.6 implies that there is a sequence 〈xn : n ∈ ω〉 in V ∩ SX
such that xn → x, tX(xn) < α for all n ∈ ω and

(a) if α = β + 1, then tX(xn) = β,
(b) if α is a limit, then tX(xn)→ α.

In either case, the set {xn : n ∈ ω} is closed and discrete in SX . As metriz-
able spaces are collectionwise Hausdorff, Lemma 3.10 yields a sequence
〈Un : n ∈ ω〉 of disjoint clopen compact subsets of SX such that

(c) Un is a neighborhood of xn for each n ∈ ω,
(d) diamUn → 0,
(e) Un is homeomorphic to (ωtX(xn))∗.

Thus (a), (b) and Lemma 3.9 imply that U =
⋃
n∈ω Un ⊆ V ∩SX is an open

set that is homeomorphic to ωα.
Obviously x ∈ U . Let z ∈ U . There is a sequence 〈zj : j ∈ ω〉 in U

that converges to z. Passing to a subsequence if necessary, we can assume
that either the zj ’s pass through infinitely many Un’s, and then (d) yields
zj → x, i.e. z = x, or else the zj ’s stay within one Un, and then z ∈ Un,
because Un is closed. We have proved that U = U ∪ {x}.

3.15. Lemma. Let X be a locally compact , zero-dimensional , metrizable
space that is not locally countable. Then there is a clopen compact subspace
K ⊆ X such that

(i) CK is homeomorphic to 2ω,
(ii) tK(x) = ηK for all x ∈ CK ,

(iii) tK(x) < ηK for all x ∈ SK .

P r o o f. By assumption, X has a base consisting of clopen compact sets.
At least one of them is uncountable. Thus we may assume without loss of
generality that X itself is compact and uncountable.

Consider the ordinal η = min{tX(x) : x ∈ CX} and the set Y = {x ∈
X : tX(x) ≤ η}. According to Lemma 3.13(ii) the set Y is open. Choose
any y ∈ CY = Y ∩ CX . By Lemma 3.6(i) there is a clopen neighborhood
K ⊆ Y of y such that tY (x) < η whenever x ∈ K \CY . We prove that K is
the required set. By Lemma 3.11(iii), CK = K ∩ CY . By Lemma 3.13(iii),
tK(x) = tY (x) for x ∈ K. Since CK is nonempty, by Lemma 3.11(ii) it is
homeomorphic to 2ω.

The following is the core result on extending homeomorphisms from CX
to X. It is a crucial ingredient of the proof of Theorem 4.3.

3.16. Lemma. Let K be a compact , zero-dimensional , uncountable metriz-
able space such that
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(i) tK(x) = ηK for all x ∈ CK ,
(ii) tK(x) < ηK for all x ∈ SK .

Then for each homeomorphism T : CK → CK there is a homeomorphism
T̂ : K → K that extends T , i.e. T̂ ¹CK = T .

P r o o f. Assume that ηK > 0, otherwise there is nothing to prove. In
order to simplify notation write η = ηK , C = CK , S = SK and t(x) = tK(x).
Let d denote a fixed metric on K. Let D be a countable dense subset of C
that is invariant with respect to both T and T−1. Such a set exists: it
is enough to take any countable set E that is dense in C and put D =⋃
j∈Z T

jE. Let 〈cn : n ∈ ω〉 be an enumeration of D. To enumerate the
countable set S, assign to each s ∈ S some c ∈ D so that d(s, c) < 2d(s, C)
and the assignment s 7→ c is one-to-one. This is possible as D is dense and
C has no isolated points. Thus there is a set I ⊆ ω such that 〈sn : n ∈ I〉
enumerates all points of S and

(3.3) d(sn, cn) < 2d(sn, C) for all n ∈ I.

We now inductively construct sequences 〈Vn : n ∈ ω〉, 〈Wn : n ∈ ω〉 and
〈Un : n ∈ ω〉 of sets satisfying the following conditions.

(a) Vn ∩Wn = ∅ and Un = Vn ∪Wn for all n ∈ ω,
(b) Wn = ∅ whenever n ∈ ω \ I,
(c) the family {Un : n ∈ ω} is a disjoint cover of S,

(d) Un is a clopen subset of S homeomorphic to ωη and U
K

n = Un∪{cn},
(e) Vn ⊆ B(cn, 2−n) for all n ∈ ω,
(f) Wn ⊆ B

(
sn,

1
2d(sn, C)

)
for all n ∈ I.

During the construction we define for each n ∈ ω a set

An =
{ ∅ when n = 0,⋃

i<n Un when n > 0.

According to (d), cn 6∈ AKn . Thus B
(
cn, 2−n

) \ An is a neighborhood of cn.
Let Vn be a subset of this neighborhood that is homeomorphic to ωη, clopen
in S and satisfies Vn = Vn∪{cn}. Its existence is ensured by Lemma 3.14(ii).

The set Wn is defined as follows. If n 6∈ I or sn ∈ An, then put Wn = ∅. If
n ∈ I and sn 6∈ An, then B

(
sn,

1
2d(sn, C)

)\(An∪Vn) is a neighborhood of sn.
Let Wn be a subset of this neighborhood that is a clopen neighborhood of sn
and is homeomorphic to (ωt(sn))∗. Its existence is ensured by Lemma 3.10.

Finally put Un = Vn ∪ Wn. If Wn = ∅, then (d) obviously holds. If
Wn 6= ∅, then (d) follows from Lemma 3.8. Properties (a), (b), (e) and (f)
are obviously satisfied. As to (c), it is clear that the collection {Un : n ∈ ω}
is disjoint, and as sn ∈Wn ⊆ Un whenever n ∈ I, it is also a cover.

It follows from (c) and (d) that the set S can be identified with a set
D×ωη. This identification is topological in the sense that S is homeomorphic
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to the topological product of a discrete space D and the ordinal topological
space ωη. We shall thus assume that S = D × ωη. Note that as {c} × ωη is
a clopen subset of S for each c ∈ D, the mappings {c} × ωη → {Tc} × ωη,
〈c, α〉 7→ 〈Tc, α〉, and {c} × ωη → {T−1c} × ωη, 〈c, α〉 7→ 〈T−1c, α〉, are
continuous.

Define the extension T̂ of T by

(3.4) T̂ (x) =
{ 〈T (c), α〉 when x = 〈c, α〉 ∈ S,
T (x) when x ∈ C.

T̂ obviously extends T . As T is one-to-one and onto, so is T̂ , because
T ¹D : D → D is bijective. So to prove that T̂ : K → K is a homeomor-
phism, it suffices to show that T̂ is continuous. A simple argument shows
that it is actually enough to prove that

(3.5) lim T̂ (xj) = T̂ (limxj)

for any convergent sequence 〈xj : j ∈ ω〉 in K such that 〈T̂ (xj) : j ∈ ω〉
converges as well. Consider such a sequence. We can clearly assume that
xj ∈ S for each j ∈ ω. Put x = limxj and y = lim T̂ (xj).

First assume that x ∈ S. Then there is c ∈ D such that xj ∈ {c} × ωη
for all but finitely many j’s. Therefore T̂ (x) = lim T̂ (xj) because of the
continuity of the mapping {c} × ωη → {Tc} × ωη, 〈c, α〉 7→ 〈Tc, α〉. So in
this case (3.5) is proved.

Now assume that x ∈ C. For each j ∈ ω there is cnj ∈ D and an ordinal
αj < ωη such that xj = 〈cnj , αj〉. We show that

(3.6) lim
j→∞

cnj = x.

For each n ∈ ω consider the set In = {j ∈ ω : nj = n}. There is at
most one n such that In is infinite. Indeed, if In is infinite, then (d) yields
x = limj∈In xj = cn, so if there were two distinct infinite sets In, Im, we
would have x = cn and x = cm. Put

J0 =
{ {j ∈ ω : nj = n} if there is n such that In is infinite,
∅ otherwise,

J1 = {j ∈ ω : xj ∈ Vnj} \ J0,

J2 = {j ∈ ω : xj ∈Wnj} \ J0.

If J0 is infinite then, as mentioned above, (d) yields

(3.7) lim
j∈J0

cnj = x.

If j ∈ J1, then the triangle inequality and (e) imply

(3.8) d(cnj , x) ≤ d(cnj , xj) + d(xj , x) ≤ 2−nj + d(xj , x).
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If J1 is infinite, then the set {j ∈ J1 : nj = n} is finite for each n ∈ ω.
Therefore limj∈J1 nj =∞. Thus both terms on the right hand side in (3.8)
converge to zero, whence

(3.9) lim
j∈J1

cnj = x.

If j ∈ J2, then

d(snj , x) ≤ d(snj , xj) + d(xj , x) ≤ 1
2d(snj , C) + d(xj , x)

≤ 1
2d(snj , x) + d(xj , x)

by (f). Therefore

(3.10) d(snj , x) ≤ 2d(xj , x).

The inequalities (3.3), (3.10) and again (3.10) thus imply

d(cnj , x) ≤ d(cnj , snj ) + d(snj , x) ≤ 2d(snj , C) + 2d(xj , x)

≤ 2d(snj , x) + 2d(xj , x) ≤ 4d(xj , x) + 2d(xj , x) = 6d(xj , x).

So if J2 is infinite, then

(3.11) lim
j∈J2

cnj = x.

At least one of the sets J0, J1, J2 is obviously infinite. Combining (3.7),
(3.9) and (3.11) thus proves (3.6).

As T is continuous on C, it follows that

(3.12) lim
j→∞

Tcnj = Tx.

For each j ∈ ω put yj = T̂ (xj) and consider the sequence 〈yj : j ∈ ω〉.
By assumption, y = limj→∞ yj exists. We have y ∈ C. Indeed, if not, then
there is c ∈ D such that y ∈ {c} × ωη. Therefore all but finitely many yj ’s
belong to Un and thus

x = limxj = lim T̂−1yj = T̂−1(y) ∈ T̂−1({c} × ωη) = {T−1c} × ωη,
because the mapping {c} × ωη → {T−1c} × ωη, 〈c, α〉 7→ 〈T−1c, α〉, is con-
tinuous. As {T−1c} × ωη is disjoint from C, we arrived at a contradiction
proving that y ∈ C. Also, as the xj ’s belong to S, so do the yj ’s.

Therefore we can apply (3.6) to the sequence 〈yj : j ∈ ω〉. Thus

limTcnj = y.

Comparison with (3.12) yields y = Tx, so (3.5) is proved. Thus T̂ is a
homeomorphism. The proof is complete.

4. The main result. The following is the main result of the paper.
It follows at once from a slightly more general Theorem 4.3 below. For its
proof we prepare Lemma 4.2.
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4.1. Theorem. Let X be a zero-dimensional , uncountable, compact met-
ric space. Then for each a ∈ [0,∞] there is a homeomorphism T : X → X
such that htop(T ) = a.

4.2. Lemma. Let X be a compact metric space and T : X → X a
continuous mapping. If C ⊆ X is a closed T -invariant subset of X and
X \ C is countable and T -invariant , then htop(T ) = htop(T ¹C).

P r o o f. Put S = X \ C. Clearly htop(T ) ≥ htop(T ¹C). To prove the
opposite inequality we use Theorem 2.10. Assume that htop(T ) > htop(T ¹C).
Then there is an ergodic probability measure µ in X such that hµ(T ) >
htop(T ¹C). The set C is T -invariant, therefore either µ(C) = 1 or µ(S) = 1.
The former case would lead to hµ(T ) = hµ(T ¹C) ≤ htop(T ¹C) < hµ(T ).
Thus µ(S) = 1, whence hµ(T ) = hµ(T ¹S).

If x ∈ S, then its two-sided orbit O(x) = {T j(x) : j ∈ Z} is T -invariant
and thus either µ(O(x)) = 0 or µ(O(x)) = 1. If x is not periodic, then
O(x) is infinite and therefore µ({x}) = 0. So the only points which can
have positive measure are periodic. Since distinct orbits are disjoint, the
ergodicity of µ implies that there is a unique cycle O(x0) = {x0, x1, . . . , xn}
such that µ(O(x0)) = 1. Therefore hµ(T ) = hµ(T ¹S) = hµ(T ¹O(x0)). Since
O(x0) is a finite space, we conclude that hµ(T ) = 0, a contradiction.

4.3. Theorem. Let X be a zero-dimensional , locally compact , metriz-
able space that is not locally countable. Then for each a ∈ [0,∞] there is a
homeomorphism T : X → X such that h%(T ) = a for each metric % in X.
Moreover , both T and T−1 are uniformly continuous.

P r o o f. There is an open set U ⊆ X and a point x ∈ U such that
each closed neighborhood of x contained in U is compact and uncountable.
As X is zero-dimensional, there is a clopen set F separating x and X \ U ,
i.e. x ∈ F ⊆ U . This set is a compact, uncountable, zero-dimensional space.
By Lemma 3.15 there is a clopen set K ⊆ F such that

(i) CK is homeomorphic to 2ω,
(ii) tK(x) = ηK for all x ∈ CK ,

(iii) tK(x) < ηK for all x ∈ SK .

Let a ∈ [0,∞] be given. According to Theorem 2.4 there is a homeomorphism
T0 : CK → CK such that htop(T0) = a. By Lemmas 3.16 and 4.2 there is a
homeomorphism T̂0 : K → K such that htop(T̂0) = htop(T0) = a. Define a
mapping T : X → X by

T (x) =
{
T̂0(x) for x ∈ K,
x for x ∈ X \K.

As K is a clopen set, T is obviously a homeomorphism. T is an aggregate
of an identity and a homeomorphism of a compact space, and thus both T
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and T−1 are uniformly continuous with respect to any metric in X. Since
K and X \K are both T -invariant, it follows from Proposition 2.8 that for
each metric % in X,

h%(T ) = max(htop(T̂0), h%(idX\K)) = a.

5. Counterexamples. Theorem 4.1 lists four conditions the space X
has to satisfy in order to possess homeomorphisms of arbitrary entropies:

• X is uncountable,
• X is compact,
• X is zero-dimensional,
• X is metrizable.

We show that when any of these conditions is dropped, the conclusion of
Theorem 4.1 fails.

5.1. Proposition. If X is a countable, compact metric space and T :
X → X a continuous mapping , then htop(T ) = 0.

P r o o f. Apply Lemma 4.2 with C = ∅.
So the first condition cannot be dropped.

5.2. Example. Let X be an uncountable set provided with the discrete
topology. Then X is zero-dimensional and metrizable. As each compact sub-
set of X is finite, htop(T ) = 0 for each continuous mapping T : X → X.

So the second condition cannot be dropped.

5.3. Example. Recall that a Cook continuum is a metric continuum
X that admits only the identity mapping onto nondegenerate subcontinua.
In particular, any continuous mapping T : X → X is either constant or
the identity. Cook continua exist, see e.g. [3]. So a Cook continuum is an
example of an uncountable compact metric space of positive dimension such
that htop(T ) = 0 for each continuous mapping T : X → X.

So the third condition cannot be dropped. Another example of a com-
pact metric space of positive dimension possessing no homeomorphisms of
positive entropy is the unit interval. However, Example 5.3 is better, because
on the unit interval there are continuous mappings of positive entropy.

5.4. Proposition. Let ω1 be the first uncountable ordinal and X =
ω1 + 1 its successor provided with the interval topology. Then X is a zero-
dimensional compact space and htop(T ) = 0 for any continuous mapping
T : X → X.
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P r o o f. It is well known that X is zero-dimensional and compact. For
any family A of subsets of X and each n ∈ ω define

An = A ∨ T−1A ∨ . . . ∨ T−nA, A∞ =
⋃
n∈ω
An.

Let V be a finite open cover of X. As X is zero-dimensional, V has an open
disjoint refinement U (cf. [5, 7.1.7]). Using the notation of Definition 2.2 it
is easy to check that

H(Vn) ≤ H(Un) = log |Un|,(5.1)

H(T,V) ≤ H(T,U).(5.2)

For each set U ∈ U∞ pick a point xU ∈ U and set D = {xU : U ∈ U∞}. As
U∞ is countable, so is D. Consider the sets E =

⋃
i∈ω T

iD and F = E. The
set F is T -invariant and closed. As D ⊆ F , it follows that for the family
U ′ = {U ∩ F : U ∈ U} we have

H(T,U) = H(T ¹F, U ′).
Combining with (5.2) and Definition 2.2 we get

(5.3) H(T,V) ≤ H(T ¹F, U ′) ≤ htop(T ¹F ).

Since D is countable, so is E. A countable subset of ω1 is bounded, therefore
E \ {ω1} is bounded. The closure of a bounded subset of ω1 is bounded,
therefore F \{ω1} is bounded. A bounded subset of ω1 is countable, therefore
F \{ω1}, and a fortiori F , is countable. As it is also closed, it is a countable
compact space. Thus it is also metrizable. Therefore Proposition 5.1 and
(5.3) yield H(T,V) = 0. As V was an arbitrary open cover of X, it follows
that htop(T ) = 0.

As ω1 + 1 is zero-dimensional, compact and uncountable, the fourth
condition cannot be dropped.
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