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Rational interpolants with preassigned poles, theoretical aspects
by

AMIRAN AMBROLADZE (Umed and Thilisi) and
HANS WALLIN {Umed)

Abstract. Let f be an analytic fonction on a compact subset K of the complex plane
€, and let . {2) denote the rational function of degree n with poles at the points {bn: ey
and interpolating f at the points {ap;}i—y. We investigate how these points should be
chosen to guarantee the convergence of ry, to f azn — oo for all functions f analytic on K.
When K has no “holes” (see [8] and [3]), it is possible to choose the poles {bn;}4,, without
limit points onr K. In this paper we study the case of general compact sets K, when such
a geparation is not always possible. This fact causes changes both in the results and in
the methods of procfs. We consider also the case of functions analytic in open domains.
It turns out that in our general setting there is no longer a “duality” ([8], Section 8.3,
Corollary 2) between the poles and the interpolation points.

1. Iniroduction. Let f be an analytic function on a set A C Ef
CuU{occ} and let, for eachn = 1, A, = {ani}iy C Aand B, = {bn;}i, C C,
A, By, = §, be two sets of points. Then (see [8], §8.1) there exists a unique
rational function r,, of degree at most n {i.e. the degrees of the denominator
and the numerator are at most n) with poles at the points of B, (counting
multiplicities) interpolating f at the points of An, i.e. the points of A, are
zeros of Ry, := f —ry in C (counting multiplicities).

Our general problem here is how to choose A, and By, n = 1,2,...,
to guarantee the convergence of r, to f on A as n — co for all analytic
functions f on .A. We treat the case when A is open or closed. When A is
open {Theorem 1) we assume that |J, -, Bn has no limit point in A, and
when A is closed (Theorem 8) we assume that B, C C\ A for all n. This
paper is an independent continuation of [2].

We start with some general observations when A = K is a closed subset
of €, K # T, and f is analytic on K. If K has no “holes”, that is, if C\K
i connected, then it i3 possible to get convergence when we choose the set
U, 51 Bn separated from K (see [8], [3] and [1]). Moreover, in this case f
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2 A. Ambroladze and M. Wallin

can be approximated by polynomials in z if co ¢ K, and in 1/(z — b) for
some b € C\ K otherwise.

The situation when rational functions arise in a natural way is when we
allow K to have holes. Then each hole should contain points from B, for all
sufliciently large n in order to be able to get convergence when we interpo-
late, for example, functions of the type 1/(z —b),b € C\ K. Consequently.
if the number of “holes” is infinite, then the set | ), By has a limit point,.
on é&}’ . The case of compact sets with a finite number of “holes” is studied
m .

This discussion shows that for general compact sets K we cannot any
longer separate the poles {by;} from K. We also note that even for compact
sets with connected complements (K has no “holes”) such a separation is
unnecessarily restrictive as is shown by the following example.

EXAMPLE 1. Let A= {[z| <1} and A, = {an:}lp C {iz| < 1},n > 1.
Suppose, for example, that o,; = 0 when i = 0, and choose B, = {b,; =
l/Em-}?:l, ie. by; and an; are symmetric with respect to the unit circle.
Suppose also that (] ., A, is separated from the boundary 44 of A in
the sense that J,5, 4n has no limit point on A. Consequently, the set
Us1 B of poles is also separated from 4. Then (see Example 3 and The-
orem 1 in [2]) for any analytic function f on A the corresponding rational
approximants v, converge to f in A. It turns out (see Theorem 3 below)
that the separation condition is unnecessary in this example—for the con-

vergence to hold it is enough that the poles and interpolation points are
symmetric. '

‘Now we discuss the convergence problem for functions analytic in do-
mains and compare it with the case of closed sets. If in Example 1 we take
the: open unit disk instead of the closed disk and consider functions f ana-
lytic in the open disk, then the symmetry of 4, and B, no longer guarantees
the convergence of r,, to f in the open disk. For the convergence to hold we
need the separation condition. Moreover, we show below (see Theorem 2)
Fhat separation of | J,,.,; An from {|z| = 1} is 2 necessary condition not only
in general, but also for any particular choice of A, n 2 1.

It might seem that the case when A is an open disk should be easier
than that of a closed disk. For the open disk we investigate convergence on
compact subsets of the disk and any such compact subset is separated from
the poles .{bm-} if they have no limit point in A (Theorem 1), We do not
assume this separation for the closed disk (Theorem 3). Moreover, as in the
latter case, a function f analytic in an open disk is bounded 011’ compact
subsets. However, the crucial point here is that f can be unbounded on the

whole cpen disk and we may get “wrong” i i i i
: g” information by int
points close to the boundary. : y interpolating J a¢
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The fact that for general sets A4, closed or open, we allow the points
{an:} and {bn:} to come close to the boundary of A (no separation) causes
some difficulties which are illustrated by condition (2) in Theorem 1 and
the corresponding condition in Theorem 3. In the case of separation {see [3]
and [2]) a necessary and sufficient condition for convergence of the rational
interpolants is that the lmit distributions of the points in A, and B, as
n — oo, arc equal after sweeping out onto the boundary of A. This condition
is no longer sufficient in the general case. If, for example, f is an analytic
function on a compact set K € C, and if we choose one of the poles {bni iy
sufficiently close to K (after having chosen all the other poles and all the
interpolation points {en; }ig), then it is easy to check that the corresponding
rational interpolant r,, can be arbitrarily large on K. This simple argument
doos not work for the case of functions analytic in domains; we discuss this
case separately in Example 2 at the end of Section 4.

There are also technical difficulties in the case of non-separated poles
and interpolation points. Firstly, in this case the union of U,.>1 An and

U,.21 Bn can be everywhere dense in C. This prevents us from applying the
standard technique of Mébius transformations (see, for example, (3] or [2]}
mapping |J A, and | By, to disjoint compact sets in C, and from introducing
logarithmic potentials of the counting measures (see below) of An and Bh.
Secondly, and this is more important, the integration contour I, in the
ervor formula (10) below hecomes dependent on n since all the interpolation
points in A, should be inside . This means that we have to control the
length of I',. For this purpose we choose I, to be a level curve of some
rational function and prove a lemma (see Lemma 3 below) about the length
of the level curves of rational functions. The lemma has, in our opinion, an.
independent interest; it is similar in spirit to Spijker’s lemma (see [9]), but,
in contrast to it, Lemma 3 estimates the length of the preimages of circles
on the plane (that is, the length of level curves) under rational functions,
rather than of their images as in Spijker’s lemma. (We do not even know how
sharp the estimate in Lemma 3 is and which rational function is extremal
for this estimate; evidently it is not 2" as in the case of Spijker's lemma.)
We thank the referee for the reference to Spijker’s lemma.

2. Definitions and notation. We use the following notation:
The extended complex plane, T = C U {oo}.

A regula domain {open, connected set) in T.

A closed set in C, K # C.

A function analytic on D or K.

The boundary of D.

The interior of K.

N O



4 A. Ambroladze and . Wallin

D: The closure of D, D = DUAD.

Ap, Br: Sets of points in C, An = {ani}leg, B = {bni}fey.

8 The Dirac measure: 6,(C) = §,({z}) = 1.

On, Brn: The normalized counting measures of the sets A, and B,; for

example @, = (30 don )/ (n +1).

on — o Weak-star convergence of measures; Yodu, — {@du for every
continuous function ¢ on C.

supp(ce): The support of a measure a.

Qn: Qn{2) = iy (2 = bns) (the factors corresponding to bny = o0 are
omitted; if by, = oc forall i =1,...,n, then Q, = 1).

Hp: Hyp(2)=[Tiwo(# — 0ni) (with the same remark as for Q. (z)).

o{P):  The zero-counting measure (not normalized) of a polynomial P:
a(P) =3, 44, where a ranges over the set of zeros of P (counting
multiplicity).

rn(2z):  The rational function of degree at most n, with poles at the points
of By, interpolating a given function f at the points of A,,. (See
Section 1 for more details.)

Ua(2):  The logarithmic potential of a measure o,

Un(2) = — Slog |z — t| dex(t).

Sweeping out. We define sweeping out by using the solution te Dirichlet’s
probiem and the Riesz representation theorem. Let £2 be an open regular set
in C; that is, each connected component of (2 is regular (for the definition
of regular domains, see for example [5], p. 88). Then (see [5], Cor. 4.1.8) any
continuous function g on A2 has a unique harmonic continnation ug inside
£2. Let p be a finite positive measure with supp(u) C 2. We define a linear
functional L by

g Lg= Sug du
on the space C'{512) of continuous functions g on 812. By using the maximum
principle for harmonic functions we can easily check that L is bounded.
Then, by the Riesz representation theorem. ([6], Chapter 2), there exists a
unique measure 4 with supp(u’) C 812 such that "

Lg = Sgd,u’ for all g € C{84D).

DEFINITL‘ICAI}I. #' is the sweeping out (balayage) of u onto 812. (Xf 1 is not
su_pportec'l in {2, then by 1’ we understand the sum of the measures obtained
by sweeping out u onto 812 from all the connected components of T \ 912.)

When 912 and supp(u) are compact subsets of C the sweeping out process

has an interpretation with potentials {see for instance [4], Chapter IV, or
(7], Appendix VII):

Uw(2) SUL() +e(p) forallzeC
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where equality holds for all z € 2 and c(u) is a non-negative constant:
c(p) = {5 y(z00) du{z), where g(z;00) is the Green function of the con-
nected component G of £2 containing the peoint at infinity. If in particular
(2 is a hounded set in C, then c{u) = 0.

Now, let a sequence of measures u, converge in the weak-star sense to a
measure 4, as n — 00. Let L, denote the corresponding linear functionals.
Then, for all g € C{a12), by the definition of weak-star convergence, Lng —
Lg. Consequently, L,g = { gdu!, — {gdu' where i, is the sweeping out of
im. By weak-star convergence the last limit relation means that p;, — u'.

3. Results., We start with the case of functions analytic in a domain D.
We suppose that 8D is bounded in € (otherwise we would apply a Mdbius
transformation of the form 1/(z — a), a € D).

TuporeEM 1. Let D ¢ T be o reqular domain with bounded boundary
ond let, for each n > 1, Ap = {ani}lg € D ond B, = {bai}i; be such
that |, ~ Bn has no limit point in D. Denote by o, and By, the normalized
counting measures of these sets (see Section 2) and by oy, and 3, their
sweeping out measures on 0D. Assume that for any measure o which is @
weak-star limit point of the set {cn}, we have

(1) a(D) > 0.

Furthermore, assume that

(2) lim | sup (Uay, (2) ~ Ug, (2))} = 0.
N+ 28D

Then, for any bounded analytic function f in D the corresponding rational
interpolant v, with poles at {bni}i—,, interpolating f at {@ni}ip, converges
to f in D:

rn—f asn—00
uniformly, with geometric degree of convergence, on compact subsets of D,

REMARK 1. Roughly speaking, condition (2) means that the points an:
do not converge to 8D too fast. This condition also implies (see Lemma 1
below) that if for some subsequence {n;} the measures om, and ﬁn}- have
weak-star imits o and 3, then their sweeping out measures on 8D co1lnc1de:
o' = . On the other hand, as remarked in the introduction, this last
condition cannot substitute (2).

Condition (1) is needed to guarantee a geometric degree of convergence.

The next result shows that it is necessary in Theorem 1 to assume that
f is bounded when we allow the points {an:} to converge to the boundary of
D1 no restriction on the rate of this convergence can replace the boundedness
conglition on f.



6 A. Ambroladze and F. Wallin

TueoreM 2. Let D = {|z| < 1} and let, for each n 2 1, 4, =
{ani}ieg © D and By = {bni}y C T be two disjoint sets such that
Ups1 An has a limit point on {{z| = 1}. Then, for every zp € D\, 51 An.
there exists an analytic function f in D such that, for the corresponding
rational interpolants ry, we have
(5) limsup | f(z0) ~ rn (20} = oo.

-+ 00

Coming back to Theorem 1 and Remark 1, we show in Example 2 (see
Section 4) that the condition o' = 8 alone is not enough for the convergenee
to hold, This is different from the case when the interpolation points {a.;}
are separated from 4D (see [2]).

Now we turn to the case of functions analytic on a closed set K ¢ C,
K s C. Without loss of generality we may assume that K is a compact
subset of C (otherwise we would apply a suitable Mgbius transformation).
We also assume that K is connected; this is for convenience rather than for
necessity and it corresponds to the fact that in Theorem 1 above we consider
functions analytic in domains, 1ot in open sets. We assume that the interior
of K, K , I8 empty or a regular set for Dirichlet’s problem. This is in contrast
to the analogous theorems in [8] and [3], where connectedness and regularity
of T\ K is assumed. In those papers Kis automatically regular, and in our
case connectedness of K implies the regularity of C\K (which means the reg-
ularity of each connected component). In the general setting for functions an-
alytic on a set A, closed or open, we should demand that all connected com-
ponents of the complement of the boundary of A are regular, or, equivalently,
that the boundary of A is thin at none of its points (see, for example, [4]).

THEOREM 3. Let K ¢ C, K # T, be a connected closed set whose
interior is either empty or regular. For each n > 1, let Ay = {an;i Yo C K
ond By, = {by;}i=; € C\ K. Denote by o, and 5, the normalized counting
measures of these sets, and by o, and ), their sweeping out measures on

K. Assume that, for any measure B which is a weak-stor limit point of the
set {On}, we have

B(B)>0 ‘
for each connected component B of C\ K. Furthermore, assume thot
lim [ inf (U (2}~ Ugt (2))] = 0.

n—~+o0 z2EH K
Then, for any analytic function f on K, the corresponding rational inter-
polants rr, with poles at {bn;}7y interpolating f at {an;i}i, converge to f
unzformly on K with geometric degree of convergence.

4. Proofs. In this section we prove Theorems 1 and 2. The proof of
Theorem 3 is analogous to that of Theorem 1. :

icm
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Proof of Theorem 1. We prove the theorem for an unbounded domain D
(then we have co € D) which is technically the most complicated case. In
this case [, Bn is bounded. We first assume that the set | ), An is also
hounded; lafer we give necessary comments on the general case. Without
loss of generality we may assume that the corresponding counting measures
oy and By, have weak-star limits, o and 3, respectively.

LeMMA 1. Under the conditions of Theorem 1, assume that @, — o and
By — B in the weak-star sense. Then the sweeping out measures of and
A on 8D are equal.

Proof. Let x4 be any measure (finite, positive) on 8D with continuous

logarithmic potential. From (2) it follows that
limsup | (U (2) — Ugy (2)) du(z) < 0.

o
By Fubini's theorem

lim sup § Uy(2) d(ay, — B;)(2) < 0.

L=t O

The condition o, — « and B — 3 vields that of, — ¢’ and 8], — B', where
o and ' denote the sweeping out measures on 8D of o and 3, respectively
(see Section 2).

From the last inequality, the definition of weak-star convergence (see
Section 2} and continuity of Uy(z) we get

(Uulz) d(o’ - 8)(=) < 0.

Now we want to extend the last inequality from potentials U, to all
positive continuous functions on 6. This will give o — ,6’_ <0 (s:ae [4},
Theorem 0.2'), and together with o/ (0D} = B(8D) = 1 we will get = 3.

We prove that such an extension is possible using a lemma about uniform
approximation of positive continuous functions on 8D by absolute value§ of
polynomials (see [7], Lemma 3.2.4). From that lemma we deduce thaf;f g
is a positive continuous function on AD then we can approyflmate e”9 on
8D by |P|, where P is a polynomial, that is, g can be approxn'nated on oD
by ~1In|P|. We can agsume that P # 0 on 8D, i.e. —In|P| is continuous
on 8D, The function — In |P| is the potential of the zero-counting measure
o = g(P) of P. Denote by o’ the sweeping out measure of o on 8D. By the
regularity of the domain D, and the regularity of €\ D as complement of a
connected set, the potential Uy differs from U, by a consiiapt on 8.? (see
Section 2). In particular, Uy is continuous. Hence, any positive contl_nuous
function on &0 can be uniformly approximated on 8D by potentials fJf
measures supported by 8D, plus constants. But tht:: constants cancel out in
the inequality § Upd{a’ — ') < 0 since o/ (BD) = B'(8D).

Lemma. 1 is proved.
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From Lemma 1 it follows that (see Section 2)
(6) Ug(z) ~ Us(z) =e, z€0D,
where ¢ is a constant which is positive since a(D) > 0 by (1) (see [7],

Appendix VII). Together with (6) we will use later the fact that, by the
maximum principle,

() Us(2) = Ua(z) <c, 2z€D,
and
(8) Us(z) - Unlz) 2 ¢, z€C\D.

(7) and (8) follow from sub- and superharmonicity of Ug{z) - Ualz) in D
and T \ D, respectively. Furthermore, for all z € 8D, Ug, (2) — Ua, (2) =
Up (2) — Uay, (2) -+ o, Where ¢p — c 28 1 — 00 (see [7], Appendix VII).
From this and (2) we conclude that

9 i ( inf - =

(9) iz ( inf (Us,(2) = Vs, (2))) = ¢

_ Now we fix a compact (in C) set F < D. Let D, be any open set with
D, € D containing the set F and the points A,, with rectifiable boundary
I, = 8D,. We may easily generalize to this case (by using the deformation
invariance theorem for contours) the standard error formula (see [8], p. 186),

1 H,(z)-Qn(t) f(t)dt
10)  R.(2):= —rp(z) = — i
( ) (z) -f(z) r (Z) 27,”, IS‘ Hn(t) . Q'n.(z) t — r
where Hy, (2} = [Tieo(% ~ @ni), @u(2) = [izy (2 = bni), and Iy = 8D, has
positive orientation with respect to the domain D.

Since there exists a constant M such that |f(z)] < M for z € D, from
(10) we get, for all 2 € F,

Hn(Z) 1/n 1/n M 1/n i
Qnl2) .teiE:L Hy(t) (m) (AT

where £(I,) denotes the length of I',, and dist(F, I'y) the distance between
F and I',. By taking the logarithm of both sides we get, for z & F,

(11) mi2rRa(2)"'™ < (Upa(2) ~ Ua, () + fSé}g)(Uan(t) — Up, ()

z € F,

[2m R ()" < 9nlt)

1 1 ) 1
+ - In M — p In(dist(K, ) + Eln(E(I‘n)).
Now we need:

LemMA 2. For any compact (in C) set F C D, there exists an € = £(F)
> 0 such that

(12) U, (2) — Uy (2) <c~e, =z€PF,
for all sufficiently large n, where ¢ is the constant in (6).

icm
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Proof. Consider a domain V with V ¢ D and F C V. By the upper
semicontinuity of subbarmonic functions, (7) holds uniformly on closed sub-
sets of 1. In particular, for some & > 0 we have Ug(z) — Ua(2) < ¢ — 2¢ for
# € V. By the principle of descent (see [7], Appendix III) we get

1iir_'\_?01ép(Uﬁn (Zn) - Uan (ZTL)) S c— 2

B2

for all z & V. But this locally uiform convergence in V is equivalent (see

[7], Section 1.1) to the uniform convergence on compact subsets of V. ‘This
proves Lemina 2.

Let £ be defined by Lemma 2 and fix §, 0 < § < . Now we choose Dy,
to he Dy, = {z : Up,(2) — Uq,(2) < ¢ — 0} From (9) and the minimum
principle for the superharmonic function Ug, (2) ~ U, (2) in C\ D it follows
that D,, ¢ D for all sufficiently large n. Furthermore, since the measures fn
and «, have fnite supports, the function Up, (2) — Ua, (#) is continuous on
the Riemann sphere. Consequently, Dy, is an open set and

(13) Up, ()~ Uap(2) = ¢ = 5

on the boundary Iy, of Dy,. From (12) we see that F C Dy, and F'N I,=90
for all sufficiently large n.

Since F is arbitrary, we may suppose that everything in the discus-
sion above is also true for another compact (in C) set F1 C D containing
F and the point at infinity in its interior. In particular, we assume that
oo € By ¢ D, for large n. This implies that the diameter of I, is bounded
as 1 — 00, which in turn implies
(14) Jim sup[diam(Z}:)]" < 1.

N0

Tn addition we have

(15) lim sup[dist(F, Tn)]H™ = L.
T s O3

We may asswne that A, N By = # (otherwise we cancel common terms).
Consecuently, Ua, (tni) = U, (@ni) == =00, i=10,1,...,n This means that
A © Dy, Hence, Dy, and its boundary I, satisfy all conditions in the error
formula (10).

Tron (13) we can see that I'p 18 a Jevel curve of the rational function
Hy(2)/ Qulz): Tno= {2 1Hn(z)/Qn(z)| = gnemi}.

Now we need the following lemma.

LevMa 3. Let R(z) = A(2)/B(z) ‘be o rational function of order m,
max{deg A, deg B} = n. Let ¢ = 0 and 7, = {z : \R(2)] = ¢} be @ level
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curve. Denote by d(vy,) and £(v,) the diameter and total length of -, re-
spectively. Then

£(7p) < 4nd(o).

Proof. The points of v, satisfy the equation |A(z)]* - ¢?|B(2)|* = 0, or
A(2)A(z)—0*B(2)B(z) = 0. If we put z = z-+iy this reduces to P(x,y) = 0,
where P{z,y) is a polynomial in @ and y with real coefficients of degree at
most 2n.

Suppose d(7,) < oo (otherwise Lemma 3 is trivially satisfied). Then
7, is contained in a square with sides of length d(v,) and parallel to the
coordinate axes.

Fix y = yo and consider the equation P(z,yy) = 0 which has at most
2n solutions. This means that any horizontal (and, similarly, vertical) line
intersects 7y, at 2n points at most.

Let us introduce a natural arc length parametrization s on vy,. Then

£(ve) = | ds < § |da(s)| + § ldy(s)l.

But z(s), and similarly y(s), takes each value at most 2n times and has
range in an interval of length d(v,). Consequently,

{lda(s)] < 2n-d(v,) and | |dy(s) < 2n - d(,),
Yo Yo
which proves Lemma 3.

Lemma 3 and (14) give
(16) lim sup[4(I)]Y™ < 1.

N0

Now, finally, from (11) together with (12}, (13), (15) and (16) it follows
that

limsupln |Bn(2)|Y™ ¢ —g4+8—c=68—£ <0,
N—00

uniformly for z € F. This proves Theorem 1 under the assumption that
Uz An is bounded.

Now we consider the general case. The main idea is to move the “remote”
points {an;} to a fixed circle.

We suppose again that o, — o. As above, we fix a compact (in T) set
F C D. We may assume that the point at infinity is an interior point of I,
In particular, this means that 6F is a bounded set in C.

Set Dr = {lz| > R}, where R is sufficiently large to guarantee that
Dy C D. In addition, suppoese that a(8Dg) = 0. Denote by ap the part of
the measure o concentrated in Dg, and let o, be its sweeping out onto 8D x.
Note that if we now sweep out o'y onto 8D, we get the measure which is the

icm
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sweeping out of ap onto 8D (this follows from the definition of sweeping
out in Section 2).

Let {am}?;(g ) = A, N Dg. Then the measures %ET;((? )§,,, converge
weakly to ap as n'— oo. We may choose {a’;}\™ C 8Dy so that the

measures & Zi—(t?) 8, . converge weakly to o/, the sweeping out of ag onto

Dg. Consider a new set A, = {a!,}7 of interpolation points, where al; =
ang For ¢ > m(n). We may check {by changing the order of sweeping out and
limit procedures; see Section 2) that the interpolation points Aj, and poles
B, still satisfy all the conditions of Theorem 1. But for this case we have
proved ahove that the corresponding rational interpolants, which we denote
by rh, converge to f on F with geometric rate.

In particular, we have this convergence on dF. Since OF is bounded in C
and I, are (uniformly in n) bounded in C, it follows from the error formula
for f — 7/, analogous to (10), that if we replace ay; by an; in that formula,
the change of the nth root of the integrand for z &€ OF will be arbitrarily
small if B ig sufficiently large. Congequently, f — v, also converges to zero
on 8F and, by the maximum principle, on the whole of I as well.

Theoremn 1 i proved.

Proof of Theorem 2. Without loss of generality we may suppose that
zp = 0. We shall construct the function f in the form f(z) = 2g(z), where
g{z) is analytic in D. Let [, be a positively oriented circle with center B:t
the origin and with A, inside. We rewrite the error formula (10) for this
cage:

H,(0)Qn{t) t-glt

I

L Hnl0) ¢ @nll) i g,

T 27 Qa(0) ) Halt)
For the sake of simplicity we assume that, for fixed n, the inter_polat_ion
points Ay = {ani}fuo are pairwise different; otherwise we would split p01F1ts
which coineide observing that R, (z) depends continuously on the location
of the points {ni fieg-
By Camchy's residue theorem, from (17) we get
n
Hn(0) . [ Gng ) - Hy(0) Qn(ani)g(a ).
Rn (0) B WQM(O) %Reﬁ H-n 304?1.1 Qn(o) ; HA(G-,-L;') T

Hence,

(18) Ra(0) = 3 cuig(ons)s

=0
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where cn; # 0 depend only on the interpolation scheme {A,, B,} and not
on the function g.

By using (18) we shall try to find a function g for which R,,(0) — o
as n — 00, We cannot immediately apply Weierstrass’ theorem about the
existence of an analytic function in & domain taking given values at given
points provided that the points have no limit point in the domain. Instead
we use an analogous construction to find the function g as a convergent sum
of polynomials g,,, g = 3 voy -

We assume that |an.| = max{]an| : 0 <@ < n} and set dy = |ann|. By
the assumptions of Theorem 2, d, — 1 as n — oo. We also assume that dy <
dz < ... (otherwise we could consider a subsequence with this property),
Let {e,}52; be a sequence of positive numbers such that SooaEn S L
Choose g, = 0. Having chosen g;,...,gn—1 we choose a polynomial g, (not
necessarily of degree n) with the following properties:

(1) lgnlann)| = 21:11 |9:(ann)| = 1/en.
(i) gn(2) = 0 for all z € U7, Ai, 7 # apn.
(iii) [gn(2)] < en on the disk {|2| < dp_1}.

Such a choice is possible. In fact, we may choose a polynomial satisfying
conditions (i) and (i), and then, by multiplying it by (2/dn)™ with some
sufficiently large m = m(n), we get (iii).

Condition (iii) guarantees that the sum g = S om—q gn converges uni-
formly on any disk {|z| < d,,} and, consequently, it converges in the whole
unit disk since dn = |agn| — 1 (this is where we use this condition). The
function g is analytic in 1.

From {i) and (iii) we obtain

(19)  I9(ann)l = |3 gi(ann)

fem]

n—1
> |gn(@nn)l = ¥ lgi(ann)| = 3 [gi(ann)|
f==1

i>n

Property (ii) gives, for i < n,

9l tni) = gl(am'_) + 92(@ni) + -+ gn1(Gni),
and '

Glomn) = g1(@nn) + g2(@nn) + .. . -+ gnlann).
From the last two equalities we conclude that in the sum (18) all terms
depend only on the polynomials gy, ... 1 gn—1, except the term cnpgn (ann ).
Now, having determined the functions 91;--.,9n-1 and the numbers &4, ..

--18n—1, We take &, so small that g(a,,) (see (19)) is arbitrarily large.
Consequently, R,(0) will also be arbitrarily large.
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Theorem 2 is proved.

ExamMrLE 2. We show that if @, — a, 8, — 8, and o, 3’ dencte the
corresponding sweeping out measures of o and 8 on 8D, then the condition
o' = ' 4 not enough for the convergence result of Theorem 1 o hold.

Let D = {|z| < 1}, and let, foreach n > 1, allby; = coforalli = 1,...,n,
and ap = 0 for i =0,...,n~ 2, and appn_1 = Gpn = ay. We assume that
|| > 3/4 and || — 1 as n — oco. Denote by I, a positively oriented circle
with center at the origin and with a, inside. Let v denote the positively
oriented circle of radius 1/2 with center at the origin, and C,, a positively
orlented cirele with center at a,, contained in D. Note that v and O, are
disjoint.

Let f(z) = Yoo, 2™/n. This function is bounded and analytic in D,
but its derivative f is unbounded. Fix a point zg # 0 with |zp| < 1/2. By
using the error formula (10) and the deformation invariance theorem for
contours, we get, for large n,

1 f(t)dt
Rn(z(]) = ﬁHﬂ(ZO) IS tn-—l(t — g,n)2(t —_ ZO)
1 ) dt
.
f(t) di

1
OB o o)

n

The firgt torm on the right-hand side is, for a fixed n, bounded when a
varies in the domain 3/4 < |z| < 1. For large n the second term equals, by
the residue theorem.,

B d f(8)
H”(ZO)Res(tn——l(t w‘};(n;(t — ZO),an> = Hn(ZO)ﬁ (mﬁ*)(aﬂ)

' (3n)a™ 0 — 20) — flan)nai™ = zo(n = Daz =]

= Hn(ZO) a%n_g(an — Zo)z
We can sec that the last expression will be arbitrarily lg.rge i we can cho.ose
an 50 that f'(ay) is sufficiently large. But such a choice of ay is possible

since f' is unbounded in D.
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On the joint spectral radius of a nilpotent Lie algebra of matrices
by
ENRICO BOASSO (Buenos Aires)

Abstract. For o complex nilpotent finite-dimensional Lie algebra of matrices, and a
Jordan-Hélder basis of it, we prove a spectral radius formula which extends a well-known
result for commuting matrices.

1. Introduction. Let T = (Ty,...,T,) be an n-tuple of d X d complex
matrices. A point X € C" is in the joint point spectrum of T, ope(T), if there
exists a nonzero z € C% with Ti{z) = Mz, 1 < @ < n. Given p such that
1 < p € o0, R. Bhatia and T. Bhattacharyya [1] introduced the algebraic
spectral radius of an n-tuple T', op(T'), whose definition depends of the usual
p-norm of €%, and proved that if T' is an n-tuple of commuting matrices, then
the algebraic spectral radius coincides with the geometric spectral radius,
ie., 0p(T) = rp(T) = max{|Alp: A € ops(T)} (see [1] or Section 2 for more
details). This is a generalization of the well-known spectral radius formula
for a single matrix; for p = 2, it was proved by M. Cha and T. Huruya [6].

M. Cho and M. Takaguchi [7] proved that if T is a commuting n-tuple of
matrices, then oy (T) = Sp(T, C*), where Sp(T, €4) denotes the Taylor joint
spectrum of T' (see [12]). A. Mclntosh, A. Pryde and W. Ricker [9], as a con-
sequence of a more general result which also concerns infinite-dimensional
spaces, extended the above identity to many other joint spectra including
the cominutant, the bicommutant and the Harte joint spectra.

On the other band, in [4] we defined a joint spectrum, Sp(L, F), for
complex solvable finite-dimensional Lie algebras L of operators acting on
a Banach space E. We proved that Sp(L, E) is a compact nonempty sub-
set of L* satisfying the projection property for ideals. Moreover, when L
is a commmutative algebra, Sp(L, E) reduces to the Taylor joint spectrum
in the following sense. If dimL = n and {Ti}i<icn i85 & basis of L, then
{(f@Y,... . f(Tu)) : f € Sp(L,E)} = Sp(T,E) for T = (Ty,...,Tn), ie,

1901 Mathematics Subject Classificaiion: Primary 4TALS. ‘ ‘
Key words and phrases: Taylor spectrum, joint spectral radius, nilpotent Lie algebras.

Research supported by UBACYT.

(18]



