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On the exponential stability and dichotomy of Cy-semigroups
by
vl QUOC PHONG (Athens, Ohio)

Abstract. A characterization of exponentially dichotomic and exponentially stable
Ch-semigroups in terms of solutions of an operator equation of Lyapunov type is pre-
sented. As a corollary a new and shorter proof of van Neerven’s recent characterization of
exponential stahility in terms of boundedness of convolutions of & semigroup with almost
periodic functions is given.

1. Let T'(t), t > 0, be a strongly continuous semigroup (Cp-semigroup)
of bounded linear operators on a Banach space E, with generator A. A pro-
jection operator P on E is called a dichotornic projection for the semigroup
T(t) if the following conditions hold:

(i) PT(t) =T()P forall t = 0,
(i) There are positive constants M, w such that ||T()z]] < Me™*|iz||
for all z € P(E), t > 0;
(iii) The restriction T'(t)|ker(P) extends to a Cp-group (we use the same
notation without ambiguity) and | T{—t)z|| < Me™“*[z| for all z € ker(P),
t> 0.

If the semigroup T'(t) has a dichotomic projection, then it is called ez-
ponentially dichotomic. If |T(¢)z| < Me™**||z|| for all z € E and some
positive constants M,w, then T(t) is called exponentially stable. Thus, ex-
ponential stability is a particular case of exponential dichotomy when the
corresponding dichotomic projection is the identity operator, or, equiva-
lently, when the semigroup is (uniformly) bounded.

There are various conditions characterizing exponentially stable or di-
chotomic semigroups on Banach or Hilbert spaces. Among known results let
us mention a theorem of Datko—Pazy [3, 12] which states that a semigroup
T(t) is exponentially stable if and only if, for some 1 < p < og,

= 5]
S |IT(E)z||P dt < oo forallzcE.
0
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If T'(t) is a semigroup on a Hilbert space, then T(¢) is exponentially stable
if and only if there exists a bounded solution to the Lyapunov equation
AX + XA* = —T (see [3]).

The main result of this paper is a characterization of exponential stability
and dichotomy for arbitrary Cp-semigroups on Banach spaces in terms of so-
lutions of an operator equation of Lyapunov type (Theorem 3). This theorem
implies a spectral mapping theorem for the evolutionary semigroups associ-
ated with 7(t). Combined with some standard arguments of operator theory,
this also leads to a remarkable fact that exponential dichotomy is equivalent
to the admissibility of the space BUC(R, E) (of bounded uniformly contin-
uous F-valued functions on R) or AP(IR, E) (of almost periodic functions),
i.e T(t) is exponentially dichotomic if and only if for every f € BUC(R, )
(resp. f € AP(R, E)) there exists a (mild) solution u € BUC(R, E) (resp.
u € AP(R, E)) of the differential equation u'(t) = Au(t) + f(¢). The unique-
ness of the solution follows, of course, as a corollary.

Another consequence of our results is a new and more transparent proof
of the following result recently obtained by J. van Neerven [11]: a (-
semigroup T'(t) is ezponentielly stable if and only if for every almost periodic
function f : Ry — E, the function t — S(t) Tt~ 5)f(s) ds 4s bounded.

2. Assume that F' is another Banach space, S(t) is a Cy-semigroup on
F' with generator —B, and C : F — FE is a bounded (linear) operator. A
bounded linear operator X : F' — FE is called a solution of the operator
equation

(1) AX-XB=C

if X(D(B)) ¢ D(A) (where D(A) and D(B) are the domains of A and B,
respectively) and

AXf-XBf=Cf forall f e D(B).

The operator equation (1) on Banach spaces was first considered by Krein
(see [2]) and Rosenblum [15] for bounded operators A and B with disjoint
spectra (see also [9, 14])). Equation (1) for unbounded A and B was also
studied by many authors (see e.g. [1, 5, 6, 8, 14]).

We will need the following lemma (see e.g. [5) or [16, Corollary 8)).

LeMMA. 1. If T(t) is exponentiolly stable and S(t) is an isometric semi-
group, then for every bounded operator C : F — F equation (1) admits o
unique bounded solution. Moreover, the solution has the form ‘

o]
(2) X=- S T(t)CS(2) dt.
0
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From Lemma 1 we obtain the following slightly more general fact which
will be used in the sequel.

LemMa 2. If T(t) is emponentiolly dichotomic and S(t) is an isometric
group, then for every bounded C : F — E equation (1) admits o unique
bounded solution. Moreover, the solution has the form

(3) X=- Dgo GA(t)CS(L) dt,
where
T(t)P, >0,
Galt) = {—é”)(t)(f ~P), t<0

(P is the corresponding dichotomic projection).

Proof Put C, = PC,Cy = (I — P)C, 41 = A|P(E), Ay = Alker(P).
By Lemuma 1, and by (2), there exists an operator X; : F — P(K) such that

(4) AXi—X1B=C;
and
(5) X1 =— | T@)PCS(t) dt.
0
Since —Ay = —Alker(P) generates an exponentially stable semigroup and

—~B also generates an isometric group, again by Lemma 1 there exists a
bounded linear operator Xy : F' — ker(P) such that

(6) —Ao Xy + XaB=—Cs, or A3Xs— X3B=0(Cy,

and
oo 0

(M Xp={T(~)I-P)CS(-t)dt = | T(s)(I~ P)CS(s)ds.
0 —0

Let X : F — E be defined by Xf = X1 Pf + Xa(I — P)f. Then from (4)
and (6) it follows that X is a bounded solution of (1} and that X has the
form (3).

To see the uniqueness observe that if X is a solution of (1), then X, =
PX, Xy = (I — P)X are solutions of (4) and (6), respectively, so they are
migue. Hence X is unique. »

Consider the differential equation
(8) u'(t) = Ault) + f(t), tER,

where f : R — E is a continuous function. A continuous function w : R—F
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is called a mild solution of (8} if

¢
u(t) =T — s)u(s) + ST(t ~7)f(r)dr forallt > s.

Let BUC(IR, E) be the Banach space of bounded uniformly continuous fune-
tions on R with values in E, with the sup-norm, and AP{R, E) its subspacc
of almost periodic functions. Let S(¢) be the translation group on F, where
F is either BUC(R, E) or AP(R, E), with generator D, ie. (S{t}f)(s) =
fi(s) = f(s+1¢),Df = f', and let §; : F' — E be defined by dof = f(0),
f e F.If Ais abounded operator, then it is well known that A generates
an exponentially dichotomic semigroup if and only if iRNo(A4) = @ (sce e.g.
[2]). This fact is not true in general for unbounded generators (sec e.g. [10]),
For general Cy-semigroups we show that the following theorem is valid.

THEOREM 3. Let T(t) be a Co-semigroup on a Banach spoace E, with
generator A. The following are equivalent:

(i) T'(t) is exponentially dichotomic.

(ii) For every B which is the generator of an isometric Cy-group S(t) on
a Banach space F', and for every bounded operator C : F - E, the operator
equation AX — X B = C has o unique bounded solution.

(iil} The operotor equation AX ~ XD = —& has a unique bounded solu-
tion.

{iv) For every f € BUC(R,E) there is a unique mild solution u €
BUC(R, E) of equation (8).

(v) For every f € AP(R, E) there is a unique mild solutionu € AP(R, E)
of equation (8).

(Vi) e(TApN{AeC: A =1} =10.

Proof. (i)=(ii) follows from Lemma 2.

(i) =(iii) is trivial.

(iii) e (iv). Assume that there exists precisely one bounded solution to the
operator equation AX — XD = —§y. We first show that for every bounded
operator C' : BUC(R, E) — E, the operator equation AY — YD =
has a unique solution. In fact, the operator ¥ : BUCR,E) — F de
fined by Y f == X f, where f(t) = —C(S{t)f), ¢ ¢ R, is a bounded solu-
tion, and the uniqueness follows from the fact that the homogeneous equa-
tion AX — XD =0 has only the zero solution X = 0, This implies that
iRNo(A) = 0 (see [1, Theorem 2.1]).

Now let f € D(D), and the function u(t) be defined by u(t) = XS8(¢)f,
t € R It follows that

u/(t) = XDS() f = (AX + 80)S(E)f = Ault) + f(t),
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i.e. u(t) is a classical solution of (8). From this it follows that for every f €
BUC(R, E) the function u(t) = XS8(t)f is a mild solution of (8). It remains
to show that the mild solution is unique. Assume there exist two distinct
solutions w; (t) and us{2) of {8). Then v(t) = uy () — ua(t) is a bounded non-
trivial mild solution of the homogeneous equation v'(t) = Au(t), t € R, i.e.
() is a non-trivial complete trajectory of the semigroup T'(¢). It is the well-
known Tauberian Theorem that the spectrum, Sp(v), of the function v is a
non-empty subset of R, and iSp(v) C o(A4} (see [L7]). Hence o{A) NiR # 0,
which. is a contradiction.

Conversely, if (iv) holds then one can define a bounded linear operator G
on BUC(R, E) by Gf = u, where u is the unique mild solution in BUC(RR, E)
of equation (8). Define X f = (Gf)(0). Since (G commutes with S(¢) and D,
for continuously differentiable f we have

%(Gf)(t) = A(GF) () + F(2),

so that (Gf)(0) = A(GF){0) + Ff(0), or AXf — XDf = —bof, for all
f € D(D). That is, X is a bounded solution of AX — XD = —dp. On the
other hand, as shown above, if X is a solution to AX — XD = —&, then
for every f € BUC(R, E), the function u(t) = XS8(t)f is a mild solution
in BUC(IR, E) of (8). The uniqueness of u implies that the solution X to
AX — XD = -4 is unique.

(iv)=(v) follows from the formula u() = XS(#)f for the solution u(t)
of (8).

((V)=>(vi). Observe again that from the formula u(t) = XS(t)f it follows
that if (v) holds then for every continuous w-periodic function f(t) equation
(8) has precisely one w-periodic mild solution, We show that I — T(w) is
invertible for every w, which implies (vi). Since the w-periodic solution of
(8) is unique (for w-periodic f), it is easily seen that I — T'(w) is injective.
To show that I — T'(w) is surjective, take an arbitrary = € E, and let g(®)
be a real continuous function on [0,w] such that g(0) = g(w) and

W
S g(t)dt=1.
i
Let £(t) = T(t)[g(t)z], 0 < t < w. Since f(0) = f(w) = 0, the function f
can be continued to be an w-periodic function on R. By the above remark,
there exists an w-periodic solution u(£) of (8). Then
u(w) = u(0) = T(w)u(0) + | T(w — s)}[T(s)g(s)z] ds = T{w)u(0) + T(w)z,
0
hence (I — T(w))(u(0) + #) = z, so that T — T'(w} Is surjective-
(vi)=>(i) is well known. » :
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From Theorem 3 we obtain the following corollary.

CoOROLLARY 4. Let T(t) be a bounded Cy-semigroup on E. Then T'(t) is
exponentiolly stable if and only if one of the conditions (ii)-(vi) holds.

Let us give an interpretation of Theorem 3 in terms of a spectral mapping
theorem. Consider the evolutionary semigroup ¢** on BUC(R, E) defined by
(et f)(s) = T(£)f(s —¢t), £ > 0, s € R. The generator of this semigroup is
the closure L of the operator

(Low)(s) =~ o2 4 Auls), s€R,

with D(Lg) = {u € BUC(R, E) : u(t) is continuously differentiable, u' €
BUC(R, £) and u(t) € D(A) for all t € R}. The equivalence (i)&(iv)e(v)
in Theorem 3 means, in other words, that T'(t) is exponentially dichotomic
if and only if L is invertible (in one of the spaces BUC(R, E) or AP(R, E)).
It is easy to see that if T'() is exponentially dichotomic, then so is €' (with
the dichotomic projection P defined by (Pu)(s) = Pu(s)). Therefore, if
0 € o(L) then 1 € o{etl), t > 0. It is also easy to see that if L is invertible
(in BUC(R, E) or AP(R, F)), then so is L—iA for every A € R, which implies
that the spectrum of I is invariant w.r.t. translations parallel to {R. From
this and the implication 0 € g(L) = 1 € p(e**) it immediately follows that

o(e) \ {0} = exp{to(L)},

i.e. the Spectral Mapping Theorem holds for the semigroup e** (cf. [7]) (1).

The equivalence of (i) and (iv) in Theorem 3 is well known (see [13]),
while the other statements are new. However, we show below that a stronger
result holds. First, we recall that the space BUC R, F) is called admissible
if for every f € BUC(R E) equation (8) has a solutlon u(t) in BUC(R, E).
(Note that the uniqueness of the solution is not required in this definition.)
The admissibility of the space AP(R, E) is defined analogously.

‘THEOREM 5. The semigroup T'(t) is exponentially dichotomic if and only
if one of the spaces BUC(R, E) and AP(R, E) is admissible,

Proof. Since the “only if” part is obvious, we need only prove the “if”
part. Assume for definiteness that BUC(IR, E) is admissible. This means that
the range of L is the whole BUC(R, &). In view of the remark preceding
Theorem 4, it is enough to show that I ig invertible. Assuming that, on
the contrary, L is not invertible, we can conclude that, firstly, iR ¢ (L)
(by the previous remark) and, secondly, N =ker L = {u : Lu = 0} # {0},
by the Open Mapping Theorem Since L is closed, N is a closed subspace

(') The same argument applies to the non-autonomous equation ' (1) = A(t)u(t) +

F(t) under the condition that the equation is well posed, 50 that there exists a strongly
continuous evelution family.
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of BUC(R, E). Let t 7 = BUC(R, E) and L be the operator induced by L
in F (ie It = Lu where @ is the class containing the function u). It
is easy to see that L is also closed, surjective and therefore, again by the
Open Mapping Theorem, I is nvertible. Moreover, it is well known that

o(L) ¢ o(LINYUa(L) = {0} Uo (L) (see [4]), hence iR C {0}yU o (L), which
is a contradiction since 0 is in the resolvent set of . m

The argument in Theorem 5 applies without changes to the non-auto-
nomous equation w'(t) = A(t)u(t)+ f(t} under the well-posedness condition,
s0 that we can assoclate with it an evolution family (and hence an evolu-
tionary semigroup as, say, in [7]).

As another corollary of Theorem 3 we give a new and shorter proof of the
following result obtained earlier by J. van Neerven [11]. Below let AP(R, , F)
be the space of almost periodic functions on By (== [0, 00)) with values in K
(i.e. functions on R, which are restrictions of almost periodic functions).

COROLLARY 6. Assume that

(9)  for oll § € AP(Ry,E) the function o(t) = § T(s)f(s)ds is bounded
on Ry.

Then T(t) is exponentially stable.

Proof. Let L(F,E) be the space of all bounded linear operators from
F to E, and U(s) : L(F, E) — L(F, E) be defined by U(s)X = T'(s)X S(s),
§ > 0. It is shown in {1, Proposition 3.7] that if

£ sup ” cls“ < oq,
20
then the equation AX —XB =C has a unique bounded solution for every
bounded C. Below we apply this fact to the equation AX — XD = —dp.
If condition (9) holds, then, by a standard argument involving the Closed
Graph Theorem and the Uniform Boundedness Principle, it follows that
there exists a constant M such that

¢
sup | [T(s)f(s) ds| < Msupl#®)]  for all F € AP(Ry, B).
20 il 5 >0

Therefore, the equation AX — XD = —dp has a unigque bounded solution.
By Theorem 3(v), the semigroup is exponentially dichotomic. From
t
T(t)z = |T(s)Azds +z,
0
it follows that 7°(t)w is bounded for every z € D{A). Hence the dichotomic
projection P is I, i.e. the semigroup T(t) is exponentially stable. m

z € D(4),
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Tt is easy to see that condition (9) is equivalent to the following:
]
(10) £ {T(t —5)f(s) ds € BUC(Ry, E)
0
Consider (8) on the half-line [0,00). It is well known that every mild
solution of the abstract Cauchy problem

(11) {“'(t) = Au(t) + f(t), t20,

u(0) ==,
is given by the formula

for all f € AP(R., E).

¢
u(t) =T(t)m+ST(t-— s)f(s)yds, t2=0.
0

Thus, condition (10) means the solution of (11) with initial condition
u(0) = 0 is bounded. If T'(¢) is a bounded semigroup, then condition (10)
holds if and only if every sclution of (11) (f € AP(R,,E)) is bounded.
Therefore, Corollary 6 implies the following result.

COROLLARY 7. Assume that T(t) is a bounded Cy-semigroup with gen-
erator A. If for every f € AP(R,., E) there exists a bounded solution u of
(11), then T'(t) is exponentially stable.
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