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Strictly singular operators
and the invariant subspace problem

by

C.J. READ (Cambridge)

Abstract. Propertios of strictly singular operators have recently become of topical
interest because the work of Gowers and Maurey in [GM1] and [GM2] gives (among many
other brilliant and surprising results, such as those in [G1] and [G2]} Banach spaces on
which every continuous operator is of form AI + 5, where S is strictly singular. So if
strictly singular operators had invariant subspaces, such spaces would have the property
that all cperators on them had invariant subspaces. However, in this paper we exhibit
examples of strictly singular operators without nontrivial closed invariant subspaces. So,
ghough it may be true that operators on the spaces of Gowers and Maurey have invariant
subspaces, yot this cannot be because of & general result about strictly singular operators.
"The general assertion about strictly singular operators is false.

0. Introduction

0.1. The author would like to thank Prof. A. Petczyniski for suggesting
this line of investigation to him.

0.2. Operators without invariant subspaces were first found indepen-
dently by P. Enflo and this author ([E1], [R1]), on an unknown Banach
space. They were found on I3 and co by the present author ([R4], [R7]) and
various extensions of the method were found ([R2], [R3], [R5], [R6], [R&]), of
which the nearest to the present paper is the construction of a quasinilpotent
operator without invariant subspaces on I3 in [R8]. A general account of the
theory of invariant subspaces, written before all these counterex_amples_w?re
discovered, will be found in [Ral]. A short account of the basic prop.er.mes
of the James space J will be found in Singer [S1], pp. 273-279. The original
article is [J1].

0.3. A continuous linear map T : B — F, where E and F' are normed
spaces, is norm increasing if there is an ¢ > 0 such that
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204 C.J. Read

{0.3.0) Tzl 2 |||
for all z € E.

0.4. A continuous linear map 1" : B — F, where F and F are Banach
spaces, is said to be strictly singuler if there is no infinite~dimensional sub-
space W C E such that Ty is norm increasing.

0.5. The James p-space J, (1 < p < o0) is the set of all sequences
{@;)52; € co such that
' e )
lall ":'iup{(zmij vaij_lt") tiy < <y N GN} < oo.
It is a fact that Jp is nonreflexive, dim(J3*/J,) = 1, but that every
infinite-dimensional subspace of J, contains a subspace isomorphic to I,.

1. Strictly singular noncompact operators. It is well known that on
Ip (1 < p < o0) or ¢, any strictly singular operator is compact. On the other
hand, the inclusion map I, — J; (1 < p < g < o) is strictly singular but
not compact. For our purposes we want something like the inclusion map
lp < lg, but which happens between nonreflexive Banach spaces {and which
happens, let it be said, in a manner which has respect for the nonreflexivity,
in the sense that there is a sequence of unit vectors in the domain space
with no weak-* convergent subsequence, which is mapped to a sequence in
the image space which also has ne weak-* convergent subsequence).

For such a map we look to the James p-spaces Jp.

LemMA 1.1, The naturael inclusion ¢ : Jp, — J; (1 < p < g < o0) is
strictly singular.

Proof If not, there is an infinite-dimensional subspace £ C Jp on
which the norms || - ||;, and || - || 5, are equivalent. Taking a subspace of
E as necessary, this tells us that (E,| - ||s,) is isomorphic to I, (for every
infinite-dimensional subspace of Jj, contains a subspace isomorphic to lp; see

0.5). Taking a further subspace, we find I, embedded up to isomorphism in
lp, which is nonsense. w

DEFINITION 1.2. Let us choose, once and for ‘all, a strictly increasing

sequence (p;)2; of real numbers strictly greater than 2. The Banach space
X is defined as the lp-direct sum :

(1.2.0) X = (lzéurp,.)h.

i=1

It is on this Banach space X that we will construct a strictly singular oper-
ator without invariant subspaces. We will write (£;;)72, for the unit vector
basis of Jp,, and (fo;)32, for the unit vector basis of the space I.
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An element x € X can be regarded as a sequence (x;)2, with xq € ls,
x; € Jp, (¢ > 0). It can be shown that if (§;)$2, is a sequence of scalars
tending to zero, then the “weighted shift” operator

W (XQ,X]_,XQ,...) — (0, 50]{0,51){1,523(2, . )

is strictly singular (see §3.3). We will conmstruct an operator on X without
invariant subspaces, which has a good deal in common with a weighted
shift W.

The next few definitions follow [R4].

DerNiTIoN 1.3. Our construction will be built around a strictly in-
creasing sequence d = (d;)§2, of positive integers. This sequence will be
required to “increase sufficiently rapidly” in the sense of [R1], §1. We will
write @y = doj1 (’b = 1,2,,..) and b; = da;. Thus, a1 < by <ag <by < ...
We define ag = 1, vg = 0, v, = n(an +bp) (n > 0). We will use the symbol
pd to mean, “provided d increases sufficiently rapidly”, as we did in [R4].
We define w,, =1+ Zf;l(l +vp), wo = 1.

DEFINITION 1.4. F will denote the dense subspace of X spanned by the
unit vectors {fi; : 4 = 0, 5 = 0}. ¥ § C Z* % Z™, then Fg C F will denote
the linear span of the set {fi; : (i, j) € §}. Further, g will denote the
projection F' — Fg such that 7s(fi;) = fi; ({4, j) € §) or 0 ({4, 5) € S).
This g is continuous only for certain choices of §; we shall not be using any
S for which it is discontinuous, however. fj; will denote the norm-1 linear
fanctional on F such that f(fxi) = didj.

DEFINITION 1.5. Let |p| denote the sum of the absolute values of the
coefficients of the polynomial p. For a finite set §, let | S| denote the number
of elements of S,

2. The main definition. We will now define, in terms of the sequence
d as in 1.3, a sequence (g;)%, whose linear span is the dense subspace F
of X,

We shall begin by rearranging the fundamental set ( Fik)55%=g into a
fundamental sequence {f;)52q- Each fjx is equal to fr(jz), where T : Zt %
7+ — ZF is a suitable bijection (see Definition 2.4). We will write Fy, for
the lincar span lin{fo,..., fu}——a special case of the subspaces Fg as in
Definition 1.4. This particular choice of § will be called Sy, the unique
subset Z~1([0,n]) of Z* x Z* such that

(2.0.0) ]-in{.foa cee afn} = ﬁn{fz'.j : (313) € Sn}'

We then define linear relationships of general form f; = Zg'xohi,j ej, with
Mis # 0, for each ¢ € Z" (this is done in Definition 2.5). Because ?;he
m:atrix with entries A;; is lower triangular with nonzero diagonal entries,
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this linear map can be inverted providing us with an alternative vector
space hasis (;a,- oo of F, given uniquely as linear combinations of general
form e; = 330 _q0i.4f;

So there is a unique linear map T : F — F that acts as a right shift
operator sending each e; to e;11. It turns out that pd, T extends to a

continuous operator X — X that is strictly singular, and has no nontrivial
closed invariant subspaces.

DEFINITION 2.1. Let the sequence d be given. Let £2 ¢ Z* be the set

(2.1.0) U U [, PO+ Vpyen] = U G [{(n — 8)a,, (n— 8)ap + vg).

n=Lr=}{ =20 nes gl

Provided d increases sufficiently rapidly, the union {2.1.0) is disjoint, and
both {2 and Z*\(? are infinite sets. If d does indeed increase sufficiently fast
for this to happen, we make the following definitions:

DEFINITION 2.2. Let v be the unique increasing bijection 7+ \2 — %t

DEFINITION 2.3. (a) For each s > 0, let o, be the natural bijection from
the set 72, 4 [(n — 8)an, (n ~ 8)an +v,] C Z* to the set [0,v,) x Z* C Z*
XZ* that sends the integer (n—s)an+i (0 < i < vs) to the pair (¢,n—s5—1).

(b) Define maps x,, each with the same domain as oy, by Xa(7) = a5(5)+
(ws,0), 50 that the image of x, is equal to [w,, WeVg| X 2T = [wy, wy g ) X ZF
(for weqy = ws + v, + 1, by Definition 1.3).

(c) Let x : 2 — ZT x Z* be the unique map whose restriction to each
subset |72, .1 [(n — s)an, (n — 8)a, + v,] of 12 is equal to Xs-

Now x is a bijection from 2 onto [wg,00) x Z*, that is, outo N x Z+.
We may obtain a bijection Z* — Z x Z+ by making sure that Z+ \ {2 gets
mapped onto {0} x Z*, thus:

DEFINITION 2.4. Let us extend x to a map Z+ — Z+ x Z+ by defining

x(3) = (0,771 (@) for each i & 2. Since y is always a bijection, we may also
define the map 7 = y~1 : Z+ x Z+ — 2+,

. DEFINITION 2.5. Let the sequence d be given, and let it increase suffi-
ciently fast that the maps y and T are defined. For each i then, we define
fi = fij, where (4,k) = x(i). We shall show that, pd, there is a unique
sequence (e;)¢Z, in F' with the following properties. Firstly,

(2.5.0) Jo == eq.

Secondly, if inte_gers ron, isatisfy 0<r<mn, i€ [0, ¥n—y| + ran, then
(2,5_1) fi — (n_’l"-i-l)i_m“G‘n_-,-((l—l-n)mnei““n{r—l)

Gn—1
" ei-mﬂ-i-(r—-l)am_i)'
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Thirdly, if 0 < r < n, i € (ray + vpep, (r + 1)ay) (respectively, if 1 < n,
i € (Un—1, Gn)), then
(2.5.2) fi = (1 +n)iath=-/van,,

where b = (r 4 1/2)a, (vespectively, h = (1/2)ay,). If integers r, n, i satisfy
0<r<n,i€rlay + by),na, + rby,), then

(2.5.3) fi= (1 + n)iei — bn(l + ﬂ)i"bnei_bn.
If integers r,n, i satisfy 0 <r < n, i € (nay + rby,, (r + 1)(an + bs)), then
(2.5.4) Fi = (L4 n)iathD/VEng,

where b = (r +1/2)by.

LEMMA 2.6. Pd, the sequence (&), satisfying (2.5.0)—(2.5.4) does in-
deed cxist, is unigue, and is a vector space basis of F. There is a unique
linear map T : F — F such that Te; = eir1 for each i.

Proof. Bach definition is of form f; = ¥,_, Auer, with Ay # 0. The val-
ues taken by the index 4 in formulae (2.5.0)—(2.5.2) include zero, [0, vn—r] +
ran (0 <7 < n); (ran+vner, (r+1)as) (0 < 7 < n);and (v,1, an) (1 S ).
Pd, this means each value i = 0-0r i € (Un_1, nay] {n > 1) is mentioned
once and only once.

The remaining values of i are taken care of by (2.5.3), (2.5.4). These cases
cover intervals [r(an +bn), non +7bs) (0 < r < n) and (nan +rba, {r+1) %
(6 +bs)) (0 < v < n), whose union is (nan, N{@n +bn)] = (nan, va]- As the
index n varies, we catch the rest of Z7.

Pd, then, each f; (i > 0) is defined once and only once, and has the
general form Efuo pWITTR

Because Ay % 0 the linear relationship between the e; and the f; is
invertible (we have a lower triangular matrix with nonzero entries in the
diagonal) so the e; do exist, are unique, and span F., Note by the way that
if { = T(j, k) then
(2.6.0) FhQue) =1
since f7,(fi) = 1, and obviously Fixlem) = 0 for m <.

Tt is then also true that for each n,

liﬂ{e{j, e .,en} = lin{fj,k :I(j, k) =0,1,... ,‘TL} = Fg,

say, where S, = x{0,1,...,n}, |Sn| = n+ 1. As we remarked at the be-
ginning of §2, we will abbreviate Fg, to Fn. {€:)22, is an alternative vector
space basis for F, so of course there is a unique map T such that T'e; = e;41
for all i-—as yet we say nothing about continuity! m

From now on, we will always assume that the given sequence d increases
sufficiently rapidly for Lemma 2.6 to hold.
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Obviously we must now prove that (pd) T is continuous and strictly
singular, This is the object of the next section.

3. T'is continuous and strictly singular

3.1. Continuity of T. The method of achieving this result is to approxi-
mate T by an appropriate “weighted shift” operator W, and then estimate
the norm of the “error term” T — W by ad hoc methods. This also gives us
a natural direction to take when proving that 7' is strictly singular.

DEFINITION 3.2, Let Wy : I — Iz be a weighted shift operator with
Wolfoj = a;fo, j+1; we define the weights a; as follows, Writing 4 = y~1(3),
we know that either { is zero, or it lies in one of the intervaly (Un—1, Gy ),
(ron+vp—r, (r+1)an), (nan+rby, (7+1)(an+b,)) or [rla, +bn), g +7by)
that feature in parts (2.5.2), (2.5.3) and (2.5.4) of Definition 2.5. With an
eye on that definition, we set

((91//on
T it i € (ran + vp—p, (r+ a, — 1)
(0 <r<n)ori€(va-i, an—1) (n>0),
1 o
(320) a;={ T3m if i € {r(@n + bn), nan +rby) (0 < r < n),
2. ;=
91/ Vb
T if i € (nag + rba, (r+ 1){an + by) — 1)
{0<r<n),
0 otherwise.

It is easily checked from Definition 2.5 that in the cases when oy # 0,
Wofo; = Tfo;. For example, if j = (i) with ¢ € ((nay + rby), (r + 1) x
{@n + by) — 1), then both 4 and 4 + 1 lic in the interval ((nan + rb,)
{r + 1)(an + b)), hence for suitable h, we have

fo; = fi= (14 n)iah-/viig,

H

and

fog41= fiyr = (L+n)tiol—l/ Ve, |
Hence,
1
Th; = — ) lzl/mfo.j—H =Wofo,;-
Wo is a weighted shift operator on Iy, obviously of norm % LM/ (if we
assume the interval (a1, a; + b, — 1) is nonempty, a rather mild condition of

“rapid increase” on the sequence d). Note it is also compact, for the weights
tend to zero.

DEFINITION 3.3. Let W1 : (D) Jp )1, — (D321 Jp, )i, be the map such
that the sequence (x1,%3,X3,...) with x; € Jp; 18 sent to the sequence
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(0, B1x1, Baxsa, B3Xs, .. .) where the coefficients 3; are as follows:

(3.3.0) ,Bjr—{mil if § € [Wm, Wm + ) (m 2> 0),
0 if § = wm +vm (M =0).

Once again, in the cases when 3; 5 0, the actions of T on Jp, and of W
are identical. For if § € [ws, ws+v,) and k > 0, let us write n = k+1+s and
i = j—ws. Then Definition 2.3 gives us x((n—3)a,+1i) = (w,+1, n—‘s——l) =
(5,k); and likewise x((n— s)a, +i+1) = {(j+1, k). Therefore, Definition 2.1
gives us

fj,.’c = f(n—s)a,.+i
= (‘9 + 1)";‘18((” + 1)(n—8)ane(n—s)ﬂn+i - n(n—sul)anﬁle(n—-’—l)ﬂ'nvl’*":)’

and
.fj+1,k = .f(n.—s)ﬂ.n+i+~1
= (s+ 1) as((n+ )" ey, vita
- n(n_e_l)an_l6(n—s—1)an_1+z’+1)'
Hence

1
Tfie= s 1fj+1,k = B fi+1,k

for all k > 0; this of course agrees with W1 fj -

Since the embedding Jp, — Jp,,, is (strictly singular and.) of norm 1,
we conclude that ||Wi|| = 1/2. Writing W for the unique cooontmuous linear
map X — X which agrees with Wy on I and Wi on @;_, Jp,, we have
W] =% 91/vB1 | The “error term” T — W acts as follows. By (2.5.0) and
(2.5.1),

1 —a [
(331) (T - W)fo’o = €] = 5 . 2(1 1/2)/\/_]5'0,1

By (2.5.2},if i = (r + 1)an, — 1 and j = 4(3) (0 < r < n) then
(3.3.2) (T~ W)fo; = (14 n)rtlan—tol-an/Dane 1, .
By (2.5.1), if j = W + vy and k > 0 then writing 7 = k+1l,n=m+k+1
and i = ran + j — W = Ty + Up_r, We have
(333) (T =W)fye= (0 =7+ 1" an (0 + 1 e1sraton_.
—plr ey Van )
By (2.5.3), if j = y(¢), i = nan, +rby, 0 < S0, then
(3.34) (T = W)fornm = (1+n)esss —ba(l+ 1) "eir1s,
={l+ n)" e fnantrba
(1 )t gy i (13
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Lastly, by (2.5.4), if § = 7(), i = (r + 1)(@n + bp) — 1, 0 < r < n, then

(3.3.5) (T —W)fo; = (1+ n)(r-l—l)(an+bn)—1

x QU=bn /24 Dan) Vg

In all other cases, (T — W)f;; =0.

LemMA 3.4. For every n > 0 the following is true: pd, T—W is o nuclear
operator of nuclear norm at most .

Proof. It is necessary to estimate the sum of the norms of all the vectors
in (3.3.1)-(3.3.5), add up the estimates and check that (pd) the sum is less
than 7. These sort of details will be very familiar to readers of [R1]--[R8].

Obviously (3.3.1) contributes 27171 —4/2)/v& 0 our sum (which is less
than 77/, pd, let us say). Now (2.5.1) gives us (for 0 < r < n)

(3.4.0) (14 ’i'b)m”em" = a’?:i'f‘fwn-—r,r—l + n("‘—l)an—Le(r_l)
= a;—l-r(fwn—mr—l ot fwn_r,ruz)

A (= 1 Den-zg

Gpn—1

=1
—1
a’n~r2f’u’n-—mﬂ ~+ €g.
=0

Now the J, spaces have the special property—closely related to their non-
reflexivity—that for all 7, j we have |37 f;.s/| = 1. So,

(3.4.1) H(l + n)m”emn - 60” = 1/a11.-'r'
and
(34.2) I+ n) e, || = V1+ag2,
Hence, (3.3.2) contributes to our sum at most
(3.4.3) VIt anorys ga-an/2)/vim 1
0Lr<n n+1 5’

pd. In view of (2.5.2), if 0 < 7 < n then

(344) [l ensrampm_.]| = (1 & n)~ron=ivnrgrinerman 2}/
Hr=n>0,(2.54) gives

(B45)  llertrantun. | = lerinanll = (1 +n)7ren =104 nan—be/2)/Vor,
Ifr=0<mn, (2.5.2) gives

(34.6)  llevirantva, | = llerso, | = (2 + n)~r 22l vnanta/2)/vanys

Strictly singular operators 211

Hence the contribution made by (3.3.3) to our sum is at most

o8 N
(347) 33 (n—r+ D (o + D feriranton. |
n=1lr=l
+ plr=ten— Hel—k(rml)an—l““" )
oo n—1
=33 (1 )i gl an/ D/ Van (g 1),
n=lr=1

=1
e Z o(1-nan—bn/2)/Vbn
n=1

—n+1
o0 n
IS n et DVER (L 1)
n=Llp=2
co L n
(1tn~1—8n/2)//Cn ,Un— ~l—tin—1 i
“+ Z:l2 ! n**=*(n+ 1) < 5
=

pd (the first two terms on the right hand side of (3.4.7) are summing ap-
propriate multiples of the norms of the vectors €14 ra,+v,-. 01 the left hand
side; the last two terms do the same for the vectors el+(‘r‘—l)an_.1+vn_.~)'

Then again, (2.5.4) gives us
(348) Hel+nﬂ«n+rbn “ = (1 + n)—l—nanwrbn2(1+nan~—b.n/2)/\/5';

when 0 < r < n; if r = n we are looking at [l€14, /|, Which is given by
(3.4.6). Hence the contribution to our sum made by (3.3.4) is at most

0o -1
(3.4.9) EZ(]_ + n)—12(1+nan—bn/2)/,jﬁ
n=2r=1
00
(1 + n)vﬂ (1—|—1J —a /2)/\/&_
——2 n—Gn+1 bl
i nzm:l (2 + n)itun
Y jl‘_ g(1+nan=—bn/2)/VBa 7
* z-;tzln +1 5’
n=ir=

pd (here the first two terms sum the norms of the vectors €14nan+rb, AP~
pearing in (3.3.4), with appropriate weights; and the last term does the same

for the vectors €1 tman-+(r—1)bs)-
Lastly, (2.5.3) gives us (for each 0 <r < s <n)

(L4 7)o+ e paa | S Lok ball(1 )T ey gl
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hence for 0 < r < n,

(34.10) [[(1+4n) e te ity € 14 bo + B + 5+ b ||era, |
S14by+05+s+b) -2 (by (34.2)
< 3b;,.

Therefore the contribution to our suna from (3.3.5) is, pd, at most

(3.411) T B g2 e i 1)

1 ot
0gr<n +n 2

Adding up our estimates ((3.4.7), (3.4.3), (3.4.9), (3.4.11) and our remark
about T foo) we find that pd,
S T =W)fisl <nf5+a/8+n/5+n/5+n/5=n,
4]
which gives the result. m
Corornary 3.5. P4, |T)| < 1.
The proof is cbvious.

COROLLARY 3.6. Pd, T is strictly singular.

Proof. Strict singularity is not affected if an operator is perturbed by
an operator in the norm clogure of the finite rank operators. Since T — W is

nuclear pd, it is enough to show that W is strictly singular. Now with slight
abuse of notation, we have '

W =W+ W,

where W) is a compact operator on I;. So it is enough to show that W,
is strictly singular. Now Wj is the map (B2 Jp, )i, — (D2, Jp: )i, which
sends the sequence (xi1,X2,X%3,...) to (0,81x1,B2x%g,...). Furthermore,

Bj — 0 as j — oo (see (3.3.0)). All we need then for our corollary is the
easy lemma: :

LeMMa 3.7 If Wi i (B2, Jp )i, — (D52, Jp )i, 16 the map sending
(x1,%2,X3,...) = (0, B1xy, Baxa, .. .)

(x: € Jy,), then Wy is strictly singuler provided f; — 0 as i — oo,

~ Proof. If not, write Xy = (@72, Jp,) and let E C X7 be an infinite-
dimensional subspace, and ¢ > 0, such that for all x € B,

(3.7.0) W] 2 eljx]|:

Let Py denote the natural projection onto @:11 Jp; sending (x1,x3,...) to
(%X1,%X2,...,%Xn5,0,0,0,...). Let Py = 0. Now |W1iPy—Wy|| — 0as N — o0
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because 3; — 0. Therefore there is an N such that for all x € E,
W1 Prxl|| > elfx]l/2.

So, Wy is norm increasing on an infinite-dimensional subspace of PNX-l
(namely, PyE). Let § C Zt x Zt = {{M,N}: M < N, and T,here is
an infinite-dimensional subspace of (Py — Pp)X1 on which Wy is norm
increasing}. We have shown (O, N) € § for lasge N. Let (M,N)e § b_e such
that N—M is minimal, and let E be a subspace of (Py—FPy )Xy on which Tg;l
is norm increasing, spanned by vectors x® = (0,...,0, ng,[)_'_.l, xg\"}ﬂ, Xy
0,...,0) i=1,...,00) N~ M=1we find the inclusion map JPN.—>
Jpny 18 norm increasing on E, contradicting Temma 1.1. If not, then taking
a subspace of B and perturbing slightly as necessary, we can assume t}%al:
for each j the xg-"“) are a block basis in Jp, (here we allow a “block basis

to perhaps include some zero vectors). Now the subspace of Jp,.., spanned

' ; (2)
by the xS\? 41 must be infinite-dimensional, or we can remove the Xt
(and reduce N — M ) by passing to a subspace. So taking a subsequence as

necessary we may assume the ng,} L1 tobe independent, and likewise we may

agsume the ng,) are independent. Consider the two norms

v a]
=\ (i (@
Wl = [|Soae], amd I = [ ek
i=1 i=1
on the finitely nonzerc sequences A € cpp. If on any inﬁnite-d.imensiom.a,l
subspace of ego they are equivalent, we have a subspace. of J, a4 isomorphic
to one of Jpy; this leads to Iy, € Jpps @ gontra,dlcho_n as in Lemma- 11
If not, there is a normalized block basis y(?) of the x(9) suc??)that writing
i i . i
y# = (0,,.,,0,y£&}+1,...,yg\?,(},...,(}) we either have ||yj.!/l — O or
||y(i) | — 0. Perturbing a subsequence of this block basis very slig%tly, we can
obg.min an increasing sequence (n;), and vectors z(?) close t((:) y(n) | spanning
a norm increasing subspace of X, for which zg}) =0{orz;y,, = 9). Hencc'e,
¢ither (M,N~1) € Sor (M+1,N) € S; so N — M was not minimal. This
contradiction shows that Wi is strictly singular.

J
Toprq1 PN

4. Estimates concerning [[T°*?=||. This of course is essentially a
repeat of arguments given in [R1]-[R8].

LemMa 4.1 (cf. [R7], §3.4). Recall that Fy = lin(eo, . . -, €n). On Fn, one
may constder the two norms

likie# = ip\ﬂ and H ?:_;)\iei

=0 i==0)

-

= H ?;:) Ai€i
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For suitable functions Ny : N2 — N and Ny : N2 - N, we have

(4.1.0) E(nll’—%)pr] < llzll < Ny (n1, a)]<]

forallx € F,, , and

(41.1) Ty 71 < lall < Nafrns, )

for allx € By, provided d increases sufficiently rapidly that Definition 2.5
18 meaningful.

Proof. For F,, is Fs,, =lin{fi; : ({,7) € Sne, } where S, is the set
mentioned in (2.0.0). Furthermore, the matrix of the map on Fog, send-
ing e; to fiz (where ¢ = Z(j,k), as in 2.6) is determined by the values
a1,b1,...,a, as used in Definition 2.5. If we take the relevant fir as our
basis for Fo, then of course the norm is between the ¢y norm and the I
norm. If we make the change of basis to e; (i = 1,...,na,) then for a suit-
able function M (n, a1, bs,. .., an) the inequality (4.1.0) must hold. Because
d is an increasing sequence, we can write My (n,a1,b1,. .., an) < Ni{n,ay)
for a suitable function Nj. Similarly, a suitable function Ny exists such that
(4.1.1) holds. =

DEFINITION 4.2. Recall that we write f; for the vector f; 4, where § =
Z(j, k). Let Q2. : F — F,,,  be the projection such that
fiy 07 < man,
ng(f;) _ —(m —r 4 I)J“Tam (m + 1)(r—l)amam_rej._Tam+l+(T_1)am,

J €0, Vmirr] + Tamy1, 1< < m,
0 otherwise.

We shall establish the following lemma (cf. [R7], Lemma 4.3).
LEMMA 4.3. Pd, jor all n we have
1T o (I = QLI < 2(n 4 1)~ (ontbn),

Later on, we will establish that, for an arbitrary norm-1 vector x I,
and for any £ > 0, there is a polynomial g and an integer n such that

(T Qnz ~ eol| < £/2 and ||g(T)T**Pr o (I — Q%)a] < &/2.
This will show that ey € lim{T%x : 7 > 0} and hence that x is cyclic, since
€g obviously is. So T is strictly singular, and has no invariant subspaces.

Proof of Lemima 4.3. As with proving 7" continuous, we split the operator
involved (in this case, T+~ o(I~Q9)) into a part that looks like a weighted
shift operator, and a nuclear operator. In certain cases, we now find that
Tantbn o (I~ QY)f; is of form &; fiya, 45, . These cases are as follows:
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CasE 4.3.1. If ¢ € [0,na,) then Q0 f; = fi so of course
(4.3.0) Tontbn o (T — Q%) f; = 0.
CASE 4.3.2. If 7 € [r(an + by), (n ~ D)a, + by} with 0 < r < n, then by
two applications of (2.5.3) we find that
(43.1) Tt o (I @) fi =T ¥ fi = (14 n) %" firg, b,
CASE 4.3.3.If i € (nap + by, (r+1)(an + b)) with0 < r <n 1 then
two applications of (2.5.4) likewise give us
(43.2) IOt o(T—Q0)fs = Tontonfy = (L4m) onbngan/vVonyp o 0.
CASE 4.3.4. If i € [0, vy—yr — @p — bn] -+ ram with 0 <7 < m —n then
(2.5.1) gives
(43.3) T o (T~ QO)fi = T e fi = (m— 7 + 1) fira s,
CASE 4.35.If i € (ram + Vm—r, (* + 1)@m — an — bp) with 0 <7 < m,
m>n, or if i € (Um—1,8m — @n — ba), m > n, then by (2.5.1),

(434) T (I - QR)fi =T f;
(1 _|_m)—an—bn2(a.n+bn)/.\/&:;

fi‘{“an'i'bm'
CASE 4.3.6. If § € e[r(am + bm), M + Tbm, — @y — by] with 0 <7 < m,

m > n, then (2.5.3) gives

(4.3.5) TP o (T — QL) fi =T+ f; = 1+ m™* ") fis a1
CASE 4.3.7. Finally if ¢ € (mam, + b, (7 -+ 1)(@m + b ) — an — by)) with

0 <r < m,m>n, then (2.5.4) gives

(43.6) ToFno(T—Q0)fi=(1+ m)“an“bng(a‘n+bn)/m‘fi+an+bnI -

LEMMA 4.4. Pd, the following is true: The operator W = W(“) :'F — F
such that Wf; is as in (4.3.0)~(4.3.6) if the integer i is mentioned in these
cases, and W f; = 0 otherwise, has norm

(1 m)entegon VI < §(1 )

Proof. As earlier, we split up W into an operator Wy acting on Iz, and
Wi acting on €D, ; Jp,. The operator Wy covers all cases except Case 4.3.4,
and it acts as

Wo(fs) = €ifo,v(an+bn+r-1())
with g; < (14n)7% 5 29n/Vhn pd, and equality achieved for certain values
i such that 4~ 1(3) is covered by Case 4.3.3. The operator W, deals with
Case 4.3.4. Tt sends (for i € [0, ¥m_r — @n — bp] +7am, 0 < T <M — n) fi to
(m—r+1)"% " f 0 4s,.; that is, writing j = ¢ —ran € [0, Vg — Gy — B

—gn—b
fitwmepyr—t = (M= 7+ 177 fi tantba, r-1-
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Writing m. — r = k > n we find that Wi sends fj4.,,s to

(k + 1)%%“1)” fj+wk+an+bm ]

foralls > 0 and j € [0, v — an — by).
Otherwise, W1 f;, s = 0. So Wi acts on each J,, space as a multiple

Bi % €™ where B; x 55") is the inclusion Jp, — Jp,,, ., , and f; does not

exceed (n -+ 1)9 "t So, |[Wy|| = (n + 1)7% 5=, Hence,
(W] = max{[[Woll, [Wi[|} = (n+1)70n bnen/Vin 4

LEmMMA 4.5. For each n > 0, the following is true: pd, for everyn > 0
the operator To+be o (I — Q0) — W™ is nuclear, of nuclear norm at most
i+ 1)~en b,

Proof We must consider the error terms T%» = o (I —~ Q0) f; —W(n) f;,
sum all their norms, and obtain at most n{n + 1) =% ~*_ This is not in fact
difficult to do, there are roughly six cases, corresponding to values ¢ which
were “missed out” of Cases 4.3.2-4.3.7 above.

CasE 4.5.1. If i € ((n— 1)an + rbn, NGy + rb,] with 0 < r < n (these are
some of the “missing values” from Case 4.3.2 above), then (2.5.3) gives us

fi= (L+n)e;—ba(l+n)Pre;_p
and hence, writing § =1+ an + b, - na, — (4 1)b, — 1 > 0, we have
(4.5.0)  T™*=(I - Q0)fi
= TF 0 f; = TI{(L 4 )Y ersnan+(r+136n — bn(1+ 1) 2" e1pnantro, }
Now (3.4.8) and (3.4.6) together give us, for all 0 € r < n,
(45.1) et tnansrs, | < (L4 m) 7 nen 70020 men =00 /2o

(for, pd, (4.3.6) is less than (3.4.9) for the same value of n). Applying this
twice, we find that (4.5.0) is, pd, at most

(45.2) (1 +m)imenm (b tpldnan=bn/0/Vhi(1 | p ) < 97 VEa/3,

CasE 4.5.2. If i = vy, (the final value “missed out” of Case 4.3.2 above),

then (2.5.3) and (3.4.6), together with the ever-useful fact that ||T| < 1,
give us '

(45.3) |ITent= (1~ QU Al = T2 i)

< 1+ n)¥ [T tre,, |
+by, (14m)RanF (= 1)bn T+ e, s tnm1ys |
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< ((L+7m)" + ba(L 4+ n)rent = Dbn) ey ||
< (14 )™ + ba(1 4+ mynen e (2 4 )~
w 91+ vn—an11/2)/ JEmFT
< 27V
for all n, pd.

CASE 4.5.3.If 7 € (na, +(n—1)b,, n{an+5,)) (not covered by Case 4.3.3
above), then by (2.5.4), f; is a multiple Ase; with A; (crudely) at I]'.'lOSt
(1+ n)*=~L. Therefore, T2*bn f; is T*(N;€11v,) for some k > 0. Since
1Tl < 1, it follows that, pd,

(45.5)  [|IT*** fill < Pilllesto, |
<(14+n)™" M2+ L
(by (3.4.6))

(4.5.6) < g7 VE/s,

CaSE 4.54.If§ € (Vm—» —Gn — by, Vm_r] + 70 with0 <r <m—n (not
covered by Case 4.3.4 above), or if ¢ € [0, ¥m—r] + TG With 0 <7 <m > 7,
m —r < n, then we see by (2.5.1) that

(4.5.7) Fi= (1 +m) ey —mU™Homte o L r—t)am_s)
x (m—r+ 1) ",

and in either case, i4+an +bn > T0m+Vm—r. (In the second case, i+an by, >
Pl + Gy + By > Tl + Um—r pd, since m — r < n). Writing

{4.5.8) =i+ +bn—Vmer —TQm —1

we have

45.9) [T% gl = (m—1 + 1) " am [T (L4 M) ™" €1t om
- m(rﬁl)am_le(r«l)am_1+um_r+1) Il

<(m-r+ 1) " g ((1 + ) ™ || €1tramtvm—r||

+m e e _nya v etall)

Now (3.4.4), (3.4.5) tell us that pd, for all 0 < r < n we have

(4.5.10) lerrranton.ll < (1 + n) ~ran=1=vnorg(l=an/2)/V/an,

So, (4.5.9) is at most

@511 (m—1 4 1) e (L4 my Lot en /2 Ve

(4.5.12) 4+ m i vmergimamo1/2)/am =1y

2
(45.13) < oltmemma/DIVERT ay,
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{the worst case in this estimate is when r = 1). Now if we have m > n + 1,

then (I — Q) f; is just f; (Definition 4.2), and (4.5.13) above is the upper
bound we need; thus,

(4.5.14) HTﬂn-J-bn o (I — Qi)ﬂ” < g{l—tm—1/2}//Bm—3 Eam—l-
m

If, on the other hand, m = n+ 1, then (I — Q%) f; is in fact not f; but just
(1+m) ™ (m ~r+1)* "¢, (see Definition 4.2 and (2.5.3)). Our argument
then pives, pd, the better estimate
(45.15) [T o (I - QR)Aill < (1 +m)™m
X (m —r+ 1)1:—1‘&"1' Hel+’f’ﬂm+vm—r ”
(4.5.18) < 9liman1/2)/amgr 1
- 72

Casg 4.5.5. If i € [(r + L)am ~ an — bn, (7 + L)ay,) with 0 < » < m,
m > n (these are the “missing values” from Case 4.3.5 above), then (2.5.2)
gives us

O

TantPn o ([ = QO)f; = T Fn f; = (1 4 m)i2lr+1/2am—i)/vam
= (1 + m)iallr+i/2)en—i)/vamTi,

ei+ﬂ.n+bn
(r+1)am

for some § > 0. As we have remarked in (3.4.2), {1 + n)™" ep,. || =
V1+a;?,, sosince |T|| < 1 this is at most

(45'17) 2(1 -+ m)i_(r+1)a’m2((r+1/2)am_i)/\/m

2 _
< Tom 2(Zam/2Hentba) [ VaEm  (since i > (P + 1)tm — an — br)
< 2—\/51:/3

foral 0 < r < m > n, pd.

CASE 4.5.6.If i € (Mam+rby,~an—by, My +1by] with0 <7 < m >n,
then we have one of the “missing values” from Case 4.3.6 above. Formula
(2.5.3) gives us

fim= (L +m)e; — b (1+4)Pme;_y
and hence, writing § =i + a,, + by — Mam — b — 1 = 0, we have
(4.5.18) Tontbn £ = TI{(1 + m)'e1 ymap trb,,
= b {1+ i)i"bm61+mam+(r—1)bm}-
Now (3.4.8) and (3.4.6) together give us, for all 0 <r < n,
(4.5.19) le1na, ios, || < (L4 n)THonTrBn gl nan —bn/2)/VEn
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{for, pd, (3.4.6) is less than (3.4.9) for the same value of n). Applying this
twice, we find that, pd, (4.5.18) is at most

(45.20) (14 mymmem=rbn-lp(tman=bn/D/VEn (1 4 ) < VIR,
CASE 4.5.7. Finally, if i € [(r + 1)(@m +bm) — an = by, (1 + 1){am + bm))

(0 < v < m > n) then we are among the “missing values” from Case 3.4.7.
So, (2.5.4) gives us

f-i — (1 4 m)i2(('f‘+1/2)bm‘“i)/\/mei

and hence, for j =i+ an + by — (7 + 1)(m +bm) =0,
(45.21)  Tontbnf = Tontn o QUF;

- (1 4 m)iQUr /D= VBT 4y Ly
Asin (3.4.10),
(4.5.22) letr41) (@m-+bm) | < 30551 + )~ (@ FBem)
50
(45.23) TP fif <3(1+ m)i~(r+11(am+bm)2((r+1/2)bm~i)/mb;1+1

< 3 br+12(—bm/2_am+a“+b“)/m
=T1tmm™
S 2-%/3

in all cases, pd. We now add up all our estimates (4.5.2), (4.5.4), (4.5.6),
(4.5.14), (4.5.16), (4.5.17), (4.5.20), and (4.5.23), counting according to the
multiplicity of values i that are involved. We obtain this estimate of the
nuclear norm:

Z_ (Tt o (T — Q%) — W) £i]

< ('n . 1)an2—\/5;/3 + o—+/Onti/3

0o m—n g By !
-+ bn2_m/3 4+ (an + bn) Z Z ",',.J,:L”ﬂ'irn-—l2(1 m—1/2)/+/Em=1

rh=n-2 r==1

T (an + bp) —s a2 DV

74 2
+ 3 (an+ba)2 VIR 4 S (am+ by )2~ YEn/®
m>n m>n
O<r<m p<r<m
+ Z (an + bn)Z—M/s'

ma>n
0<r<m
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The reader will observe that as a function of n and d, this sum is, pd, at
most n(n -+ 1)7% . Thus 4.5 is proved, and 4.3 follows immediately. w

5. Further estimates concerning T

DepINITION 5.1. Let Qn (m > 1) be the projection F' — F,,,, such
that

(5.1.0) Qulf;) = {fj, 0 < j < mam,

0, otherwise.

Note that in terms of what happens to the e;, this amounts to much the
same as (6.1) of [R8], though it does not look the same.

LEMMA 5.2. [Qu] =1 for all m.

Proof. We claim that for each 4, the vectors fir (k= 0,1,...) appear
as a subsequence (f;, )52, of the f; in their proper order (jo < 51 < ja <
...)- This is true because - is an increasing function (Definition 2.1) and
fo; = fy), and because for 1 > 0, say i € [Wm, wWm + V), we have fi; =
Jtkt 1) amprrs +i-wn, (86 2.3). Hence, for each i there is a k& such that

Jsk

(5.2.0) otherwise.

Qm(f'lj) = { g:.j}

The norm of the projection that thus “truncates” a sequence is 1 on Iy (of
course), and also on any J,,. Hence, |Qn) = 1. =

DrriNITION 5.3, Let Ppm {(m > n > 1) be the operator T, © Qm :
Fmam — Ima,s where

(5.3.0) Tam(e;) = { e, 0<j<(m—n)anm,

0, otherwise.
LeMMa 5.4. |Q8 || < aw, for all m, pd.

Proof Weknow ||Qnl| = 1; and 4.2 tells us that (Q, — Q5 f; is zero
unless 7 € [0, Umip1—n]+ TGmi1, 1 < 7 < m -+ 1. In this case, it is
€j—rampst(r—am (M =7+ 2)7 7T (m 4 )0 e,

Hence, crudely,
(5.4.0) |@m — Qmll < > 1{Qm — Q) il
5

m+-1

S Z (1 + Um+1—7‘) (m + 1)(7‘_1)ama‘m+1—r
r=32

X ma‘x{llej—ram+1+(r—l)a.m|l': JjE [01Um+1~r] +'f'am+1}

icm
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m+1

< Z (1+ ¥mi1—r)(m -+ 1)(r“1)am letr—1)am |
r=2
m+1

<D (1 +vmirr)- 2 (by (3:42)

< 2m(l +vpm—1) < om
for all m, pd. m
LEMMA 5.5. || Prml|l € g1 for alln <m, pd.

Proof. ||[@ml = 1 50 ||[Pam| = |[7am|. Examining (5.3) and {2.5) we
find
fi, 0<i<(m—n)am, ‘
”“”ei——'r'am-i"(f"‘l)am_J.(m -r+ l)z_ranm(r—lja.m_lamw”
i €0, Vmer| +TCm, m—n LT LN,
0, otherwise.

(5.0} Tomfi =

Now the projection 7' such that

T fi= {fi’ 0 <i<(m—n)am,

(5.5.1) ), otherwise,

has norm 1, for the same reasons as in 5.2. Therefore

(5.5.2) [Tnrmll <1+ >

) 'ie[oavm—r]+7‘am
m—n<rsm

[

~ (m —r 4+ 1)i-raﬂm(r—1)am_1am_r
m

<1+ Z (1 + 'Um—r)”e(r—l)am—z.ﬂ

re=m-n
x (m — 1)i—ranm(r—1)am-1a’m_r
since |T]| < 1. Recall from (3.4.2) that (1 + )™ epa, || = Vi+agZ,.
Substituting into (5.5.2) we have

m
[Tamll €1+ D (A+vn-r)

r=m-—"mn
®x V14 a;Er(m —r+ 1) T am
n
=143 (1+u)Vit an2(u+ 1) ay.
u=1

< Opn4l

(5.5.3)

forallm, pd. m
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. . * m + 1 b
6. T has no invariant subspaces (6.3.1) “( : ) Tomp(T) % _p(Tm)xH
DerFNITION §.1. For each 1 < n < m, let K, ,, C Fia,, be the set of T’mm 1)bm
vectors such that (x| < ap and ||7m,mX|| 2 L/am. Let T, : Fra,, — Frna,, Z As {(m +1) €itby ei}
be the “truncated” version of T, i.e. Ton{e;) = eir1 (1 < mam) or zero
(2 = mam). f21Y: . (m + 1 T
LEMMA 6.2. There is a function N3 : N* — N with the following property: 2; fz+bm n Z; el = ip( m)X
pd, for all 1 < n < m and x € K, ,,, there is o polynomial p such that i
|p| < Nz(m,anm), p(t) is of form Z;’Ta’" \itt, and < —“““lPHxl < —Ng(m am) ||| N (™, am)
(6.2.0) lo(Tr)x — eg|| < 1/t + 1/Gn—1. 1
< —N3(m, am)amNi(m,am)  (since x &€ Knm s0 x| < am)
Proof. For any y € Kn,m we can write y = 3 o ;Me; where Ay # 0. m
Then < 1/,
(6.2.1)  Iin{Tny : am <7 < Mam} = Enf{eatan, Catamtis---»rEman - Furthermore,
Ban LI .- ]
Since Tumy 7 0 we know a < (m — n)am 50 certainly epm—nria, © (6.3.2) TP (p(T) — p(Twm))x € T lin{e; : mam < j g Ml }
Hn{TTe; : am < 7 < Masm,}. Since Kn,, is compact, there are a finite (6.3.3) = lin{e; : b + mMam < J < b + 2Mam}-
number of polynon'lials P1y-e- s Ph of form p,;(t) = E:;a’;‘";)\jiti such that for Since ||T|| < 1, pd, we deduce that
all x € K, there is a j such that ( l)b
m41)"m _
622) @ (e D e < 1am, v S S
e . . . ™ + 1 bm
Wntmg N = max; p;|, note.that N depends ounly on elements of the u.nder- 6.3.4) < |pllx{ller+bmtmonl (_,6_)_
lying sequence d up to and including a,; so N < N3(m,an) for a suitable "
function Ny : N2 — N. Since in vi A b
nction N3 — N. Since in view of (3.4.1) we have (6.3.5) (m—;}- 1) Na(m, am)N1(m, am)aml|l€14bmiman || (as above)
(6.2.3) [(m 4+ D)t 1ya,, — eoll = 1/an--1, (m +ml)bm
this concludes the proof. m (636) < bon N3 (11, G )N (17, 0r)
—1—mam—bm o (1+M8m —bm /2) /[ VEm
We now extend the previous lemma as follows. X am (L +m) ' afitme (by (3:4:9))
1
LEMMA 6.3. With the notation of (6.2), the polynomial _ (63.7) < am
g(t) = tt (m + 1) /by, - p(t) for all m, pd. Adding up (6.3.7) and (6.3.1) we have
) — (T < 2/ Q-
satisfies t%m 0 | g(t), deg ¢ < by +Mam, |g| < Na(m, am)(m+1)8m /by, and (63.8) la(T)x = p(Tm )] < 2/am

Using 6.2 we have our result. m
(6.3.0) la(T)5 — eoll < 2/an-1 +3/am. . . . 4
We now have the following very convenient lemma (it corresponds to

Proc[:f‘ Given x € K, 1, let p be the polynomial as in 6.2, and write Lemma 5.17 of [R1]):
g(t) = t°=(m + 1) /bm, - p(t). Let us consider the vector ¢(7")x. For all : _ B
: i i 4. iel0,vgr], 1 <7 <k—nands>r, wehove
e Iam =+ bm, TNy, —]—b ] we have fi — (m+ 1)1'67', . bm(m—l— 1)1ﬁbm €i_p, ;50 LEMMA 6 For a ¥i [ & r];O . *:
if we write p(Tm)x = %™ A;e; then, pd, (6.4.0) ;+w:c_r,e—1 0 T ksomr © Qhpgmr = — s T e a1

V= 0yy,
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. Proof. The vector fipw, ns—1 = fitsapss, (Definition 2.3) is in the
image of the projection 7, pys—r © @5, and is fixed by it. The vector
Fitwnors = Fit(s41)anperss 15 mapped (by 4.2, 5.3) to

(6.4.1) U= —ipsaps, (k48— DN (g 1)7

which by (2.6.0), (2.5.1) satisfies f}_,,__,_1(u) = —1. It is easily seen that

for all other ve:lsto‘rs Fms Trjigesr © @y (fm) is either fi, or zero, or
another vector similar to u above, being therefore of form fi/ ;v + h with the
pair (/,8’) not equal to (j + wi—r, s), and with h € Foypares- In all such
cases [, . o(Takts—r@iyorfm) =0, hence the result.

THEOREM 6.5. Pd, T has no invariant subspace.
Proof Let x € X, |[x|| = 1 and n > 0. Since eg is cyclic for T, it is

enough to show that for all such x and n there is a polynomial ¢ such that
lg{T)x — eg|| <2/an-1. We claim there is an m > n such that

(6.5.0) [ Tnm © Q%I = 1/,

Now ||Ppg|| € an41 for all k, and certainly for all z € F we have Pyuyx =x

for all but finitely many k. Therefore, Pprx — X as k — oo for any vector
xec X.

. Choose, then, a k so large that || Popx|| = [|7nx 0 Qrx|| > 1/2. If || Tnx ©
vX|| > 1/4 our assertion is proved; if not then '

(6.5.1) [Tk 0 (@ — Qx| > 1/4.
For all § > 0 we either have '
(65.2)  (Qu = QR)Si = jmrapyu—(r—1)anlk — 7+ 1 "% (k4 1) 7o
ifj € [0,vp—r) + roxs1, L < v < m, or else (Qr — Q)f; = 0. Hence
Tk © (Qr — Q) f; is either o ’
(6.5.3) €j—ragy1—(r—1)ay (k—r+ l)j_mk (& +‘1)(T_1)%
ifj eo, vk~,]0—|— ragel, L < 7 5 k—n, or else zero. Thus, Thr o (Qr — Q) =
Tak © (Qr — Q}) © wg where S is the finite set
(6.5.4) S= {J [0,vr]+ (r+ Dagss = Sni,

1&r<k—n '
say. Crudely, then, we may say that there is an i € 5, such that

. 1
SOl T By VT

Now if i = j «+ (r + 1)ag+1, § € [0,vk—r), 1 <7 < k —n, then we know by
(2.5.1) that fi = fitu,.,,r Because any x € J,,, +uwy_, 18 mecessarily in cp,

(6.5.5)
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we know that as s — co, |ff,,.
such that

(x)| — 0. Therefore there is an s > r

oY

21"-—.9—1

(6'5'6) if;‘i‘wk—-r,s(x) - ;+w1c—.-,3—1(x)| = “Tnk(Qk o Q}%)U iS'nk]

If (6.5.6) holds then we may deduce from (6.4) that, pd,

I et s = @R sl 2 [ FF a0 (%) = Fpns_s-1 (3
2r—s~1

ror o (@5 — QDI15a] = Sampa (L + ax)op 2
(because Tnk © (Qk ~ Q%) = Tur 0 Qx 0 (Q — QF) = Pz 0 (Qk — Q%), and
| Sk = wr—1)

(6.5.8) >

21‘%3—1

(6.5.7) >

1

Qlts—r

This proves our assertion that there is indeed an m > n such that (6.5.0)
holds. Pick such an m, and write y = Q%,x. We know that [ly| < ||@% <
am, pd. But ||[famy| = 1l/am so y € Kpm. Therefore by 6.3 there is
a polynomial ¢ such that ||g{T)y — eol| € 1/an—1 + 3/am, tomtbm | g(t),
degg < bpt+mam, and [ql < (m—+1)*m /by,. Using our estimate on |Tem+bmo
(I—@Q2,)| and the fact that | T} < 1, we find that

2Nz (m, am)(m 1 1)~

(65.9) la(T)(T - @8l < -

Therefore, pd,

(65.10)  [lg(T)x — eoll < la(T)y — eoll + lg(T)y — %)}

(6.5.11) = ||lg(T)y — eoll + la(THT — Q)i

(65.12) 1 3 n 2N3(m, am)(m + 1) < 2

T p-1 G bm T Gp-1

This inequality (which can be repeated with different values of n by choosing
suitable alternative ¢) shows that in fact x is cyclic; and so we conclude the
proof. w

7. Conclusion. The author would like to emphasize that in spite of this
negative result, there is some hope that the spaces of Gowers and Maurey
may indeed have no invariant subspace free operators. Though the general
result about strictly singular operators is false, yet operators on the spaces
of Gowers and Maurey have more properties than just being of form A+
{strictly singular). These spaces do not seem to support many operators like
weighted shift operators, whose presence is so important for the construction
of operators without invariant subspaces, by our methods at any rate. So



226 C.J. Read

there is some chance that operators on these very special spaces may indeed
have invariant subspaces.
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A general geometric construction for affine surface area
by

ELISABETH WERNER (Cleveland, Ohio, and Lille)

Abstract. Let K be a convex body in R* and B be the Euclidean unit ball in R™.
We show that
o KL= K] _ ()
t~0 (B[ = |Bt] ~ as(B)’
where as{K) respectively as(B) is the affine surface area of K respectively B and {K:i}izo,
{B:i}1>0 are general families of convex hodies constructed from K, B satisfying certain
conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].

The affine surface area as(K) was introduced by Blaschke [B] for convex
bodies in B3 with sufficiently smooth boundary and by Leichtweiss [L1] for
convex bodies in R® with sufficiently smooth boundary as follows:

as(K) = | w(@)" ) dp(z),
8K
where x(z) is the Gaussian curvature at T € AK and p is the surface measure
on 8K. As it occurs naturally in many important questions, for example in
the approximation of convex bodies by polytopes (see the survey article of
Gruber [Gr] and the paper by Schiitt [S]) or in a priori estimates for PDEs
[Lu-O], one wanted to have extensions of the affine surface area to arbitrary
convex bodies in R™ without any smoothness assumptions on the boundaxy.

Such extensions were given in recent years by Leichtweiss [L2], Lut-
wak [Lu], Meyer and Werner [M-W], Schmuckenschiiger [Schm], Schiitt and
Werner [S-W] and Werner [W].

The extensions of affine surface area to an arbitrary convex body K in
R in {L2), [M-W], [Schm], [S-W] and [W] have a common feature. First
a specific family {Kj}ipo of convex bodies is constructed. This family is
different in each of the cited extensions but of course related to the given
convex body K. Typically the families {K;}¢>0 are obtained from K through
a “geometric” construction. In [L.2] respectively [S-W] this construction gives
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