

there is some chance that operators on these very special spaces may indeed have invariant subspaces.

References

- [E1] P. Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), 212-313.
- [G1] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530.
- [G2] —, A solution to the Schroeder-Bernstein problem for Banach spaces, ibid. 28 (1996), 297-304.
- [GM1] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 16 (1993), 851-874.
- [GM2] —, —, Banach spaces with small spaces of operators, Math. Ann. 307 (1997), 543-568.
 - [J1] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
 - [R1] C. J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), 337-401.
 - [R2] —, A short proof concerning the invariant subspace problem, J. London Math. Soc. (2) 33 (1986), 335-348.
 - [R3] —, The invariant subspace problem, a description with further applications of a combinatorial proof, in: Advances in Invariant Subspaces and Other Results of Operator Theory, Birkhäuser, 1986, 275-300.
- [R4] —, A solution to the invariant subspace problem on the space l₁, Bull. London Math. Soc. 17 (1985), 305-317.
- [R5] —, The invariant subspace problem on a class of nonreflexive Banach spaces, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 1986-7, Lecture Notes in Math. 1317, Springer, 1988, 1-20.
- [R6] —, The invariant subspace problem for a class of Banach spaces, 2: Hypercyclic operators, Israel J. Math. 63 (1988), 1-40.
- [R7] —, The invariant subspace problem on some Banach spaces with separable dual, Proc. London Math. Soc. (3) 58 (1989), 583-607.
- [R8] —, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2) 56 (1997), 595-606.
- [Ral] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, 1973.
- [S1] I. Singer, Bases in Banach Spaces I, Springer, 1970.

Trinity College Cambridge CB2 1TQ, England E-mail: cr25@cam.ac.uk

> Received March 7, 1996 (3627) Revised version June 25, 1998

A general geometric construction for affine surface area

by

ELISABETH WERNER (Cleveland, Ohio, and Lille)

Abstract. Let K be a convex body in \mathbb{R}^n and B be the Euclidean unit ball in \mathbb{R}^n . We show that

$$\lim_{t\to 0}\frac{|K|-|K_t|}{|B|-|B_t|}=\frac{\operatorname{as}(K)}{\operatorname{as}(B)},$$

where $\operatorname{as}(K)$ respectively $\operatorname{as}(B)$ is the affine surface area of K respectively B and $\{K_t\}_{t\geq 0}$, $\{B_t\}_{t\geq 0}$ are general families of convex bodies constructed from K, B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].

The affine surface area as(K) was introduced by Blaschke [B] for convex bodies in \mathbb{R}^3 with sufficiently smooth boundary and by Leichtweiss [L1] for convex bodies in \mathbb{R}^n with sufficiently smooth boundary as follows:

$$\operatorname{as}(K) = \int_{\partial K} \kappa(x)^{1/(n+1)} d\mu(x),$$

where $\kappa(x)$ is the Gaussian curvature at $x \in \partial K$ and μ is the surface measure on ∂K . As it occurs naturally in many important questions, for example in the approximation of convex bodies by polytopes (see the survey article of Gruber [Gr] and the paper by Schütt [S]) or in a priori estimates for PDEs [Lu-O], one wanted to have extensions of the affine surface area to arbitrary convex bodies in \mathbb{R}^n without any smoothness assumptions on the boundary.

Such extensions were given in recent years by Leichtweiss [L2], Lutwak [Lu], Meyer and Werner [M-W], Schmuckenschläger [Schm], Schütt and Werner [S-W] and Werner [W].

The extensions of affine surface area to an arbitrary convex body K in \mathbb{R}^n in [L2], [M-W], [Schm], [S-W] and [W] have a common feature. First a specific family $\{K_t\}_{t\geq 0}$ of convex bodies is constructed. This family is different in each of the cited extensions but of course related to the given convex body K. Typically the families $\{K_t\}_{t\geq 0}$ are obtained from K through a "geometric" construction. In [L2] respectively [S-W] this construction gives

¹⁹⁹¹ Mathematics Subject Classification: Primary 52A20.
Partially supported by a grant from the National Science Foundation.

as $\{K_t\}_{t\geq 0}$ the family of floating bodies respectively convex floating bodies. In [M-W] the construction gives the family of Santaló regions, in [Schm] the convolution bodies and in [W] the illumination bodies.

The affine surface area is then obtained by using expressions involving volume differences $|K| - |K_t|$ respectively $|K_t| - |K|$.

Therefore it seemed natural to ask whether there are completely general conditions on a family $\{K_t\}_{t\geq 0}$ of convex bodies in \mathbb{R}^n that (by means of volume difference expressions) will give us affine surface area. We give a positive answer to this question which was asked—among others—by A. Pełczyński.

Throughout the paper we use the following notations.

 $B(a,r)=B^n(a,r)$ is the *n*-dimensional Euclidean ball with radius r centered at a. We put B=B(0,1). We denote by $\|\cdot\|$ the standard Euclidean norm on \mathbb{R}^n , and by $\langle\cdot,\cdot\rangle$ the standard inner product on \mathbb{R}^n . For x and y in \mathbb{R}^n , $[x,y]=\{\alpha x+(1-\alpha)y:0\leq\alpha\leq1\}$ denotes the line segment from x to y. For a convex set C in \mathbb{R}^n and a point $x\in\mathbb{R}^n\setminus C$, $\operatorname{co}[x,C]$ is the convex hull of x and C.

 \mathcal{K} denotes the set of convex bodies in \mathbb{R}^n . For $K \in \mathcal{K}$, $\operatorname{int}(K)$ is the interior of K and ∂K is the boundary of K. For $x \in \partial K$, N(x) is the outer unit normal vector to ∂K at x. We denote the n-dimensional volume of K by $\operatorname{vol}_n(K) = |K|$.

Let $K \in \mathcal{K}$ and $x \in \partial K$ with unique outer unit normal vector N(x). We say that ∂K is approximated at x by a ball from the inside (respectively from the outside) if there exists a hyperplane H orthogonal to N(x) such that $H \cap \operatorname{int}(K) \neq \emptyset$ and a Euclidean ball B(r) = B(x - rN(x), r) (respectively B(R) = B(x - RN(x), R)) such that

$$B(r) \cap H^+ \subseteq K \cap H^+$$

respectively

$$K \cap H^+ \subseteq B(R) \cap H^+$$
.

Here H^+ is one of the two half-spaces determined by H.

DEFINITION 1. For $t \geq 0$, let $\mathcal{F}_t : \mathcal{K} \to \mathcal{K}$, $K \mapsto \mathcal{F}_t(K) = K_t$, be a map with the following properties:

- (i) $K_0 = K$ and either $K_t \subseteq K$ for all $t \ge 0$ and \mathcal{F}_t is decreasing in t (that is, $K_{t_1} \subseteq K_{t_2}$ if $t_1 \ge t_2$), or $K \subseteq K_t$ for all $t \ge 0$ and \mathcal{F}_t is increasing in t.
 - (ii) For all affine transformations A with det $A \neq 0$, and all t,

$$(A(K))_{|\det A|_t} = A(K_t).$$

(iii) For all $t \geq 0$, B_t is a Euclidean ball with center 0 and radius $f_1(t)$ and

where c is a constant (depending on n only).

- (iv) Let ∂K be approximated at x from the inside by a ball B(r). If $H^+ \cap \partial(K_t) \cap \partial(B(r))_s \neq \emptyset$ for some s and t, then $s \leq Ct$ where C is a constant (depending only on n).
- (v) Let $\varepsilon > 0$ be given and $x \in \partial K$ be such that ∂K is approximated at x from the inside by a ball $B(\varrho \varepsilon)$ and from the outside by a ball $B(\varrho + \varepsilon)$. There exists a hyperplane H orthogonal to N(x) and t_0 such that whenever

$$H^+ \cap \partial(K_t) \cap \partial(B(\varrho - \varepsilon))_s \neq \emptyset$$
 for $t \leq t_0$, $s = s(t)$,

respectively

$$H^+ \cap \partial(K_t) \cap \partial(B(\rho + \varepsilon))_s \neq \emptyset$$
 for $t \leq t_0$, $s = s(t)$,

then

$$s \leq (1+\varepsilon)t$$

respectively

$$s \ge (1 - \varepsilon)t$$
.

REMARKS 2. (i) Note that the maps \mathcal{F}_t are essentially determined by the invariance property of Definition 1(ii) and by their values at Euclidean balls.

(ii) Let $f_r(t)$ be the radius of $B(0,r)_t$. Then it follows immediately from Definition 1(ii), (iii) that

$$\lim_{t \to 0} \frac{r - f_r(t)}{1 - f_1(t)} = r^{(n-1)/(n+1)}.$$

(iii) For some examples the following Definition 1' is easier to check than Definition 1.

DEFINITION 1'. (i)-(iii) as in Definition 1.

(iv)' If s < t, then $K_t \subseteq \text{int}(K_s)$.

(v)' If $K \subset L$ where L is a convex body in \mathbb{R}^n , then $K_t \subseteq L_t$ for all $t \geq 0$.

However, not all the examples mentioned below satisfy (iv)' and (v)'. For instance the illumination bodies (defined below) do not satisfy (v)'.

EXAMPLES FOR DEFINITIONS 1 AND 1'

1. The (convex) floating bodies [S-W]. Let K be a convex body in \mathbb{R}^n and $t \geq 0$. F_t is a (convex) floating body if it is the intersection of all half-spaces whose defining hyperplanes cut off a subset of volume t of K. More precisely, for $u \in S^{n-1}$ let a_t^u be defined by

$$t = |\{x \in K : \langle u, x \rangle \ge a_t^u\}|.$$

Then

$$F_t = \bigcap_{u \in S^{n-1}} \{ x \in K : \langle u, x \rangle \le a_t^u \}$$

is a (convex) floating body. The family $\{F_t\}_{t\geq 0}$ satisfies Definitions 1 and 1'.

2. The convolution bodies [K], [Schm]. Let K be a symmetric convex body in \mathbb{R}^n and $t \geq 0$. Let

$$C(t) = \{x \in \mathbb{R}^n : |K \cap (K+x)| \ge 2t\}$$
 and $C_t = \frac{1}{2}C(t)$.

Then $\{C_t\}_{t>0}$ satisfies Definitions 1 and 1'.

3. The Santaló regions [M-W]. For $t \in \mathbb{R}$ and a convex body K in \mathbb{R}^n the Santaló region S(K,t) of K is defined as

$$S(K,t) = \left\{ x \in K : \frac{|K| \cdot |K^x|}{|B|^2} \le t \right\},\,$$

where $K^x = (K - x)^{\circ} = \{z \in \mathbb{R}^n : \langle z, y - x \rangle \leq 1 \text{ for all } y \in K\}$ is the polar of K with respect to x. (We consider only those t for which $S(K, t) \neq \emptyset$.) Put

$$S_t = S\left(K, \frac{|K|}{t|B|^2}\right) = \left\{x \in K : |K^x| \le \frac{1}{t}\right\}.$$

Then the family $\{S_t\}_{t\geq 0}$ satisfies Definitions 1 and 1'.

4. The Illumination bodies [W]. Let K be a convex body in \mathbb{R}^n and $t \geq 0$. The illumination body I_t is the convex body defined as

$$I_t = \{x \in \mathbb{R}^n : |\operatorname{co}[x, K] \setminus K| \le t\}.$$

Then the family $\{I_t\}_{t\geq 0}$ satisfies Definition 1.

THEOREM 3. Let K be a convex body in \mathbb{R}^n . For all $t \geq 0$ let K_t respectively B_t be convex bodies obtained from K respectively B by Definition 1 or 1'. Then

$$\lim_{t \to 0} \frac{|K| - |K_t|}{|B| - |B_t|} = \frac{\operatorname{as}(K)}{\operatorname{as}(B)}.$$

REMARK. Note that

$$as(B) = vol_{n-1}(\partial B) = n|B|$$

COROLLARY 4. (i) [S-W] Let K be a convex body in \mathbb{R}^n and for $t \geq 0$ let F_t be a floating body. Then

$$\lim_{t \to 0} c_n \frac{|K| - |F_t|}{t^{2/(n+1)}} = \operatorname{as}(K) \quad where \quad c_n = 2\left(\frac{|B^{n-1}|}{n+1}\right)^{2/(n+1)}.$$

(ii) [Schm] Let K be a symmetric convex body in \mathbb{R}^n and for $t \geq 0$ let C_t be a convolution body. Then

$$\lim_{t \to 0} c_n \frac{|K| - |C_t|}{t^{2/(n+1)}} = as(K)$$

where c_n is as in (i).

(iii) [M-W] Let K be a convex body in \mathbb{R}^n and for $t \geq 0$ let S_t be a Santaló region. Then

$$\lim_{t \to 0} e_n \frac{|K| - |S_t|}{t^{2/(n+1)}} = \operatorname{as}(K) \quad \text{where} \quad e_n = \frac{2}{|B|^{2/(n+1)}}.$$

(iv) [W] Let K be a convex body in \mathbb{R}^n and for $t \geq 0$ let I_t be an illumination body. Then

$$\lim_{t \to 0} d_n \frac{|I_t| - |K|}{t^{2/(n+1)}} = \operatorname{as}(K) \quad \text{where} \quad d_n = 2\left(\frac{|B^{n-1}|}{n(n+1)}\right)^{2/(n+1)}.$$

For the proof of Theorem 3 we need several lemmas. The basic idea of the proof is as in [S-W].

LEMMA 5. Let K and L be two convex bodies in \mathbb{R}^n such that $0 \in \text{int}(L)$ and $L \subseteq K$. Then

(i)
$$|K| - |L| = \frac{1}{n} \int_{\partial K} \langle x, N(x) \rangle \left(1 - \left(\frac{\|x_L\|}{\|x\|} \right)^n \right) d\mu(x),$$

where $x_L = [0, x] \cap \partial L$ and μ is the usual surface measure on ∂K .

$$(\mathrm{ii}) \, \left| K \right| - \left| L \right| = \frac{1}{n} \int\limits_{\partial L} \langle x, N(x) \rangle \left(\left(\frac{\left\| x_K \right\|}{\left\| x \right\|} \right)^n - 1 \right) d\mu(x),$$

where x_K is the intersection of the half-line from 0 through x with ∂K and μ is the usual surface measure on ∂L .

The proof of Lemma 5 is standard.

For $x \in \partial K$ denote by r(x) the radius of the largest Euclidean ball contained in K that touches ∂K at x. More precisely,

$$r(x) = \max\{r : x \in B(y,r) \subseteq K \text{ for some } y \in K\}.$$

REMARK, It was shown in [S-W] that:

- (i) If $B \subseteq K$, then $\mu\{x \in \partial K : r(x) \ge \beta\} \ge (1-\beta)^{n-1} \operatorname{vol}_{n-1}(\partial K)$.
- (ii) $\int_{\partial K} r(x)^{-\alpha} d\mu(x) < \infty$ for all α with $0 \le \alpha < 1$.

LEMMA 6. Suppose $0 \in \text{int}(K)$. Then for all x with r(x) > 0 and for all $t \ge 0$ we have

$$0 \le rac{\langle x, N(x)
angle (1 - (\|x_t\|/\|x\|)^n)}{n(|B| - |B_t|)} \le g(x),$$

where $\int_{\partial K} g(x) d\mu(x) < \infty$. Here $x_t = [0, x] \cap \partial K$ if $K_t \subseteq K$, and x_t is the intersection of the half-line from 0 through x with ∂K_t if $K \subseteq K_t$.

LEMMA 7. Let x_t be as in Lemma 6. Then

$$\lim_{t\to 0}\frac{\langle x,N(x)\rangle(1-(\|x_t\|/\|x\|)^n)}{n(|B|-|B_t|)}\quad exists\ a.e.$$

and is equal to

- (i) $\varrho(x)^{-(n-1)/(n+1)}/(n|B|)$ if the Dupin indicatrix at $x \in \partial K$ is an (n-1)-dimensional sphere with radius $\sqrt{\varrho(x)}$,
 - (ii) 0 if the Dupin indicatrix at x is an elliptic cylinder.

REMARK. (i) r(x) > 0 a.e. [S-W] and the Dupin indicatrix exists a.e. [L2] and is an ellipsoid or an elliptic cylinder.

(ii) If the indicatrix is an ellipsoid, we can reduce this case to the case of a sphere by an affine transformation with determinant 1 (see [S-W]).

Proof of Theorem 3. We may assume that 0 is in the interior of K. By Lemma 5 and with the notations of Lemma 6 we have

$$\frac{|K| - |K_t|}{|B| - |B_t|} = \frac{1}{n} \int_{\partial K} \frac{\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n)}{|B| - |B_t|} d\mu(x).$$

By Lemma 6 and the Remark preceding it, the integrands are bounded uniformly in t by an L^1 -function and by Lemma 7 they are pointwise convergent a.e. We apply Lebesgue's convergence theorem.

Proof of Lemma 6. Let $x \in \partial K$ be such that r(x) > 0. We consider the proof in the case of Definition 1' and of Definition 1 in the case where $K_t \subseteq K$ for all $t \geq 0$. The case of Definition 1 where $K \subseteq K_t$ for all $t \geq 0$ is treated in a similar way.

As $||x|| \ge ||x_t||$, we have, for all t,

$$(1) \qquad \frac{1}{n}\langle x,N(x)\rangle \left(1-\left(\frac{\|x_t\|}{\|x\|}\right)^n\right) \leq \left\langle \frac{x}{\|x\|},N(x)\right\rangle \|x-x_t\|.$$

Put r(x)=r, x-r(x)N(x)=z and $\langle \frac{x}{\|x\|}, N(x)\rangle=\cos\theta$. We can assume that there is an $\alpha>0$ such that

(2)
$$B(0,\alpha) \subseteq K \subseteq B(0,1/\alpha),$$

and hence

$$\cos\theta \|x - x_t\| \le 2/\alpha.$$

Let $\varepsilon > 0$ be given. By Remark 2(ii) there exists t_1 such that for all $t \leq t_1$,

$$(3) \qquad r \bigg(1 - \frac{1 - f_1(t)}{r^{2n/(n+1)}} (1 + \varepsilon) \bigg) \leq f_r(t) \leq r \bigg(1 - \frac{1 - f_1(t)}{r^{2n/n+1}} (1 - \varepsilon) \bigg).$$

Let t_0 be such that $Ct_0 < t_1$. By Definition 1(i), $f_1(t)$ is decreasing in t, hence for all $t > t_0$ we have

$$f_1(t) \le f_1(t_0)$$

and thus for all $t \geq t_0$, by (1) and (2),

$$\frac{\langle x, N(x)\rangle(1-(\|x_t\|/\|x\|)^n)}{n(|B|-|B_t|)} \le \frac{2}{\alpha|B|(1-f_1(t_0)^n)}.$$

Therefore the expression in question is bounded by a constant in this case and hence is integrable. It remains to consider the case when $t < t_0$.

(a) Suppose first that

$$||x - x_t|| < r \cos \theta$$

For B(z,r) we construct the corresponding inner body $(B(z,r))_s$ such that x_t is a boundary point of $(B(z,r))_s$. By Definition 1(iii), $(B(z,r))_s$ is the Euclidean ball with center z and radius $f_r(s)$. As x_t is a boundary point of $(B(z,r))_s$,

(4)
$$f_r(s) = r \left(1 - \frac{2\|x - x_t\| \cos \theta}{r} + \frac{\|x - x_t\|^2}{r^2} \right)^{1/2} \\ \leq r \left(1 - \frac{\|x - x_t\| \cos \theta}{2r} \right).$$

The last inequality holds by assumption (a).

So far the arguments are the same for Definitions 1 and 1'. From now on they differ slightly.

By Definition 1(iv), $s \leq Ct$, hence by monotonicity $f_r(s) \geq f_r(Ct)$ and thus, as $Ct < t_1$, from (3) we have

$$f_r(Ct) \ge r \left(1 - (1+\varepsilon) \frac{1 - f_1(Ct)}{r^{2n/(n+1)}}\right),$$

which, using Definition 1(iii), can be shown to be

(5)
$$\geq r \left(1 - (1+\varepsilon)(C^{2/(n+1)} + \varepsilon) \frac{1 - f_1(t)}{r^{2n/(n+1)}} \right).$$

From (4) and (5) we get

(6)
$$1 - f_1(t) \ge \frac{\|x - x_t\| \cos \theta \, r^{(n-1)/(n+1)}}{2(1+\varepsilon)(C^{2/(n+1)} + \varepsilon)}.$$

Observe also that

$$|B| - |B_t| = |B|(1 - f_1(t)^n) \ge |B|(1 - f_1(t)).$$

This inequality together with (1) and (6) shows that

$$\frac{\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n)}{n(|B| - |B_t|)} \le \frac{2(1 + \varepsilon)(C^{2/(n+1)} + \varepsilon)}{|B|} r^{-(n-1)/(n+1)},$$

and the latter is integrable by the Remark preceding Lemma 6.

In the case of Definition 1' it follows from (iv)' and (v)' that $s \leq t$. For if s > t, then $(B(z,r))_s \subset \operatorname{int}(B(z,r))_t$ by (iv)' and $\operatorname{int}(B(z,r))_t \subset \operatorname{int}(K_t)$ by (v)', which contradicts the fact that $x_t \in \partial K_t \cap \partial(B(z,r))_s$. Therefore $f_r(s) \geq f_r(t)$ and thus, as $t < t_1$, (3) yields

$$f_r(t) \ge r \left(1 - (1 + \varepsilon) \frac{1 - f_1(t)}{r^{2n/(n+1)}} \right).$$

We then conclude as above.

(b) Now we consider the case when

$$||x - x_t|| \ge r \cos \theta.$$

We choose α so small that $x_t \notin B(0, \alpha)$. Let H be the hyperplane through 0 orthogonal to x. Then the spherical cone $C = [x, H \cap B(0, \alpha)]$ is contained in K and $x_t \in C$. Let $d = \operatorname{dist}(x_t, C)$. Then

(7)
$$d = \|x - x_t\| \frac{\alpha}{(\alpha^2 + \|x\|^2)^{1/2}}.$$

Let $w \in [0, x_t]$ be such that $||x_t - w|| = d/2$. Let $B(w, R) \subseteq K$ be the largest Euclidean ball with center w such that $B(w, R) \subseteq K$. Then $\partial B(w, R) \cap \partial K \neq \emptyset$. Moreover $R \geq d$, which implies that $x_t \in B(w, R)$. Let $(B(w, R))_s$ be the corresponding inner ball such that $x_t \in \partial(B(w, R))_s$.

Now we have to distinguish between Definitions 1 and 1'.

By Definition 1(iv), $s \leq Ct$. By monotonicity $f_R(s) \geq f_R(Ct)$, which, as above, is

$$\geq R\bigg(1-(1+\varepsilon)(C^{2/(n+1)}+\varepsilon)\frac{1-f_1(t)}{R^{2n/(n+1)}}\bigg).$$

As $R \geq d$, the latter is

$$\geq d\bigg(1-(1+\varepsilon)(C^{2/(n+1)}+\varepsilon)\frac{1-f_1(t)}{d^{2n/(n+1)}}\bigg).$$

On the other hand, by construction $f_R(s) = d/2$. Therefore

$$1 - f_1(t) \ge \frac{d^{2n/(n+1)}}{2(1+arepsilon)(C^{2/(n+1)}+arepsilon)}.$$

Note also that (2) implies that $\cos \theta \ge \alpha^2$. Hence by (1), (2), (7) and assumption (b) we get

$$\frac{\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n)}{n(|B| - |B_t|)} \le \frac{2(1 + \alpha^4)^{n/(n+1)} (1 + \varepsilon) (C^{2/(n+1)} + \varepsilon)}{|B|\alpha^{(6n-2)/(n+1)}} r^{-(n-1)/(n+1)}.$$

The case of Definition 1' is treated similarly and the above inequalities hold true with C=1 and $C^{2/(n+1)}+\varepsilon=1$.

Proof of Lemma 7. We again consider the case when $K_t \subseteq K$ for all $t \geq 0$ in Definition 1. The case $K \subseteq K_t$ for all $t \geq 0$ in Definition 1 and the case of Definition 1' are done in a similar way (compare the proof of Lemma 6).

As in the proof of Lemma 6 we can choose $\alpha > 0$ such that

$$B(0, \alpha) \subseteq K \subseteq B(0, 1/\alpha).$$

Therefore

(8)
$$1 \ge \langle x/||x||, N(x)\rangle \ge \alpha^2.$$

We put again $\cos \theta = \langle x/||x||, N(x)\rangle$. (1) holds, that is,

$$\frac{1}{n}\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n) \le \langle x/\|x\|, N(x) \rangle \|x - x_t\|.$$

Since x and x_t are collinear, $||x|| = ||x_t|| + ||x - x_t||$ and hence

$$(9) \frac{1}{n} \langle x, N(x) \rangle \left(1 - \left(\frac{\|x_t\|}{\|x\|} \right)^n \right) = \frac{1}{n} \langle x, N(x) \rangle \left(1 - \left(1 - \frac{\|x - x_t\|}{\|x\|} \right)^n \right)$$

$$\geq \left\langle \frac{x}{\|x\|}, N(x) \right\rangle \|x - x_t\| \left(1 - k_1 \frac{\|x - x_t\|}{\|x\|} \right)$$

for some constant k_1 , if we choose t sufficiently large.

(i) Case where the indicatrix is an ellipsoid. We have seen that then we can assume that the indicatrix is a Euclidean sphere. Let $\sqrt{\varrho(x)}$ be its radius. We put $\varrho(x) = \varrho$ and we introduce a coordinate system such that x = 0 and $N(x) = (0, \ldots, 0, -1)$. H_0 is the tangent hyperplane to ∂K at x = 0 and $\{H_\alpha : \alpha \geq 0\}$ is the family of hyperplanes parallel to H_0 that have non-empty intersection with K and are at distance α from H_0 . For $\alpha > 0$, H_α^+ is the half-space generated by H_α that contains x = 0. For $a \in \mathbb{R}$, let $z_a = (0, \ldots, 0, a)$ and $B_\alpha = B(z_\alpha, a)$ be the Euclidean ball with center z_α and radius a. As in [W], for $\varepsilon > 0$ we can choose α_0 so small that for all $\alpha \leq \alpha_0$,

$$B_{\rho-\varepsilon} \cap H_{\alpha}^+ \subseteq K \cap H_{\alpha}^+ \subseteq B_{\varrho+\varepsilon} \cap H_{\alpha}^+$$

We choose t so small that $x_t \in \operatorname{int}(B_{\varrho-\varepsilon} \cap H_{\alpha}^+)$ ($\subseteq \operatorname{int}(B_{\varrho+\varepsilon} \cap H_{\alpha}^+)$). For $B_{\varrho+\varepsilon}$ we construct the corresponding inner body $(B_{\varrho+\varepsilon})_s$ such that x_t is a

boundary point of $(B_{\varrho+\varepsilon})_s$. $(B_{\varrho+\varepsilon})_s$ is the Euclidean ball with center $z_{\varrho+\varepsilon}$ and radius $f_{\varrho+\varepsilon}(s)$. We have

$$f_{\varrho+\varepsilon}(s) = ((\varrho+\varepsilon)^2 + \|x - x_t\|^2 - 2(\varrho+\varepsilon)\|x - x_t\|\cos\theta)^{1/2},$$

$$\geq (\varrho+\varepsilon)\left(1 - \frac{\|x - x_t\|\cos\theta}{\varrho+\varepsilon}\right).$$

Definition 1(v) implies that $s \ge (1 - \varepsilon)t$, hence by monotonicity $f_{\varrho+\varepsilon}(s) \le f_{\varrho+\varepsilon}((1-\varepsilon)t)$, which for t small enough is (cf. the proof of Lemma 6)

$$\leq (\varrho + \varepsilon) \bigg(1 - (1 - k_2 \varepsilon) \frac{1 - f_1(t)}{(\varrho + \varepsilon)^{2n/(n+1)}} \bigg),$$

where k_2 is a constant. Thus

$$1 - f_1(t) \le \frac{\|x - x_t\| \cos \theta \, (\varrho + \varepsilon)^{(n-1)/(n+1)}}{1 - k_2 \varepsilon}.$$

Note that

$$|B| - |B_t| = |B|(1 - f_1(t)^n) \le n|B|(1 - f_1(t)).$$

Therefore by (9),

$$\frac{\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n)}{n(|B| - |B_t|)}$$

$$\geq (1-k_2\varepsilon)\bigg(1-k_1\frac{\|x-x_t\|}{\|x\|}\bigg)\frac{(\varrho+\varepsilon)^{-(n-1)/(n+1)}}{n|B|}.$$

This is the lower bound for the expression in question.

To get an upper bound we proceed similarly. For $B_{\varrho-\varepsilon}$ we construct the corresponding inner body $(B_{\varrho-\varepsilon})_s$ such that x_t is a boundary point of $(B_{\varrho-\varepsilon})_s$. $(B_{\varrho-\varepsilon})_s$ is the Euclidean ball with center $z_{\varrho-\varepsilon}$ and radius $f_{\varrho-\varepsilon}(s)$. We have

$$f_{\varrho-\varepsilon}(s) = ((\varrho-\varepsilon)^2 + \|x - x_t\|^2 - 2(\varrho-\varepsilon)\|x - x_t\|\cos\theta)^{1/2}$$

$$\leq (\varrho-\varepsilon)\left(1 - \frac{\|x - x_t\|\cos\theta}{\varrho-\varepsilon}\left(1 - \frac{\|x - x_t\|}{2(\varrho-\varepsilon)\cos\theta}\right) + \left(1 + k_3\frac{\|x - x_t\|\cos\theta}{\varrho-\varepsilon}\left(1 - \frac{\|x - x_t\|}{2(\varrho-\varepsilon)\cos\theta}\right)\right)\right)$$

for some constant k_3 , if t is small enough. Again by Definition 1(v), $s \le (1+\varepsilon)t$ and therefore $f_{\varrho-\varepsilon}(s) \ge f_{\varrho-\varepsilon}((1+\varepsilon)t)$, which by arguments similar to those before is

$$\geq (\varrho - \varepsilon) \left(1 - (1 + k_4 \varepsilon) \frac{1 - f_1(t)}{(\varrho - \varepsilon)^{2n/(n+1)}} \right)$$

with a suitable constant k_4 . Thus

 $(10) 1 - f_1(t) \ge \frac{\|x - x_t\| \cos \theta}{1 + k_4 \varepsilon} \left(1 - \frac{\|x - x_t\|}{2(\varrho - \varepsilon) \cos \theta} \right)$ $\times \left(1 + \frac{k_3 \|x - x_t\| \cos \theta}{\varrho - \varepsilon} \left(1 - \frac{\|x - x_t\|}{2(\varrho - \varepsilon) \cos \theta} \right) \right) (\varrho - \varepsilon)^{(n-1)/(n+1)}.$

Observe now that

(11)
$$|B| - |B_t| = |B|(1 - f_1(t)^n) \ge n|B|(1 - f_1(t))\left(1 - \frac{n-1}{2}(1 - f_1(t))\right).$$

We choose t so small that $1 - f_1(t) < 2\varepsilon/(n-1)$. This together with (1), (10) and (11) implies that

$$\frac{\langle x, N(x) \rangle (1 - (\|x_t\|/\|x\|)^n)}{n(|B| - |B_t|)}$$

$$\leq \frac{1 + k_4 \varepsilon}{(1 - \varepsilon) \left(1 - \frac{\|x - x_t\|}{2(\varrho - \varepsilon)\cos\theta}\right) \left(1 + k_3 \frac{\|x - x_t\|\cos\theta}{\varrho - \varepsilon} \left(1 - \frac{\|x - x_t\|}{2(\varrho - \varepsilon)\cos\theta}\right)\right)}{\times \frac{(\varrho - \varepsilon)^{-(n-1)/(n+1)}}{n|B|}}.$$

Note that $\cos \theta \ge \alpha^2$ by (8). This finishes the proof of Lemma 7 in the case where the indicatrix is an ellipsoid.

(ii) Case where the indicatrix is an elliptic cylinder. Recall that then we have to show that

$$\lim_{t\to 0} \frac{\langle x, N(x)\rangle(1-(\|x_t\|/\|x\|)^n)}{n(|B|-|B_t|)} = 0.$$

We can again assume (see [S-W]) that the indicatrix is a spherical cylinder, i.e. the product of a k-dimensional plane and an (n-k-1)-dimensional Euclidean sphere of radius ϱ . We can moreover assume that ϱ is arbitrarily large (see also [S-W]).

By Lemma 9 of [S-W] we then have for sufficiently small α and some $\varepsilon > 0$,

$$B_{\rho-\varepsilon}\cap H_{\alpha}^+\subseteq K\cap H_{\alpha}^+.$$

Using similar methods, this implies that

$$\lim_{t\to 0} \frac{\langle x, N(x)\rangle(1-(\|x_t\|/\|x\|)^n)}{n(|B|-|B_t|)} = 0.$$

References

[B] W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie, Springer, 1923.

- [Gr] P. Gruber, Aspects of approximation of convex bodies, in: Handbook of Convex Geometry, Vol. A, North-Holland, 1993, 321-345.
- K. Kiener, Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math. (Basel) 46 (1986), 162-168.
- [L1] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464.
- [L2] -, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474.
- [Lu] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39-68.
- [Lu-O] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry 41 (1995), 227-246.
- [M-W] M. Meyer and E. Werner, The Santaló regions of a convex body, Trans. Amer. Math. Soc., to appear.
- [Schm] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in \mathbb{R}^n , Israel J. Math. 78 (1992), 309–334.
 - [S] C. Schütt, Floating body, illumination body, and polytopal approximation, pre-
- [S-W] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990),
- [W] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257 - 269.

Department of Mathematics Case Western Reserve University Cleveland, Ohio 44106 U.S.A. E-mail: emw2@po.cwru.edu

238

Université de Lille 1 UFR de Mathématique 59655 Villeneuve d'Ascq, France

Received June 30, 1997 (3910)Revised version May 20, 1998

STUDIA MATHEMATICA 132 (3) (1999)

Transitivity for linear operators on a Banach space

by

BERTRAM YOOD (University Park, Penn.)

Abstract. Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if x_1, \ldots, x_n and y_1, \ldots, y_n are any two sets of linearly independent elements of X with the same number of items, then there exists $T \in G$ so that $T(x_k) = y_k, k = 1, \ldots, n$. We prove that some proper multiplicative subgroups of G have this property.

1. Introduction. Throughout, X is an infinite-dimensional Banach space and E(X) is the algebra of all bounded linear operators on X. A subset S of E(X) is called l. i. transitive if, given two sets x_1, \ldots, x_n and y_1, \ldots, y_n of linearly independent elements of X, there exists $T \in S$ such that $T(x_k) = y_k, k = 1, ..., n$. In [5, Theorem II-3] Mackey showed that the set G of invertible elements of E(X) is l. i. transitive. Our results show that smaller subgroups of the multiplicative group G suffice. We show the following in $\S 2$.

THEOREM 1. Let A be any closed subalgebra of E(X) containing the identity I and all $T \in E(X)$ with finite-dimensional range. Let \mathfrak{G} be the set of invertible elements of A. Then any open multiplicative subgroup 5 of G is l. i. transitive.

As is well known, & is open.

Next let ψ be the set of all elements of $\mathfrak G$ of the form I+T where T has finite-dimensional range. If we write its inverse as I+V, $V \in E(X)$, we see that T+V+TV=0 so that V also has finite-dimensional range. It follows that ψ is a multiplicative subgroup of \mathfrak{G} , and

Theorem 2. ψ is l. i. transitive.

2. On transitivity. Our aim is to prove Theorems 1 and 2 given above. We shall use an easy lemma.

[239]

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A05; Secondary 46K05.