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there is some chance that operators on these very special spaces may indeed
have invariant subspaces.
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A general geometric construction for affine surface area
by

ELISABETH WERNER (Cleveland, Ohio, and Lille)

Abstract. Let K be a convex body in R* and B be the Euclidean unit ball in R™.
We show that
o KL= K] _ ()
t~0 (B[ = |Bt] ~ as(B)’
where as{K) respectively as(B) is the affine surface area of K respectively B and {K:i}izo,
{B:i}1>0 are general families of convex hodies constructed from K, B satisfying certain
conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].

The affine surface area as(K) was introduced by Blaschke [B] for convex
bodies in B3 with sufficiently smooth boundary and by Leichtweiss [L1] for
convex bodies in R® with sufficiently smooth boundary as follows:

as(K) = | w(@)" ) dp(z),
8K
where x(z) is the Gaussian curvature at T € AK and p is the surface measure
on 8K. As it occurs naturally in many important questions, for example in
the approximation of convex bodies by polytopes (see the survey article of
Gruber [Gr] and the paper by Schiitt [S]) or in a priori estimates for PDEs
[Lu-O], one wanted to have extensions of the affine surface area to arbitrary
convex bodies in R™ without any smoothness assumptions on the boundaxy.

Such extensions were given in recent years by Leichtweiss [L2], Lut-
wak [Lu], Meyer and Werner [M-W], Schmuckenschiiger [Schm], Schiitt and
Werner [S-W] and Werner [W].

The extensions of affine surface area to an arbitrary convex body K in
R in {L2), [M-W], [Schm], [S-W] and [W] have a common feature. First
a specific family {Kj}ipo of convex bodies is constructed. This family is
different in each of the cited extensions but of course related to the given
convex body K. Typically the families {K;}¢>0 are obtained from K through
a “geometric” construction. In [L.2] respectively [S-W] this construction gives
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228 E. Werner

as {K;}i>0 the family of floating bodies respectively convex floating bodies.
In [M-W] the construction gives the family of Santalé regions, in [Schm] the
convolution bodies and in [W] the illumination bodies.

The afine surface area is then obtained by using expressions involving
volume differences |K| — | K| respectively [K;| — |K}.

Therefore it seemed natural to ask whether there are completely general
conditions on a family { K4 }i>o of convex bodies in R™ that (by means of vol-
ume difference expressions) will give us affine surface area. We give a positive
answer to this question which was asked—among others—by A. Pelczynski.

Throughout the paper we use the following notations.

Bfa,r) = B"(a,r) is the n-dimensional Euclidean ball with radius r
centered at a. We put B = B(0,1). We denote by ||-|| the standard Euclidean
norm on R™; and by (-, ) the standard inner product on R". For z and y in
R™, [z,y]) = {az+ (1~ a)y : 0 £ a < 1} denotes the line segment from z to
y. For a convex set C' in R™ and a point z € R* \ ¢, colz, O] is the convex
huil of £ and C.

KX denotes the set of convex bodies in R™. For K € K, int(K'} is the
interior of K and 8K is the boundary of K. For x € 3K, N(x) is the outer
unit normal vector to 8K at x. We denote the n-dimensional volume of K
by vola(K) = |K|. .

Let K € K and z € 8K with unique outer unit normal vector N(zx).
We say that 8K is approzimated af = by a boll from the inside (respectively
from the outside) if there exists a hyperplane H orthogonal to N (z) such that
HNint(K) # 0 and a Ruclidean ball B(r) = B(z — rN(z),r) (respectively
B(R) = B{z — RN{(z), R)) such that

Br)nHTCKNnH"
respectively

KnHYCBR)NH*.
Here H™ is one of the two half-spaces determined by H.

DEFINITION 1. For t > 0,1let 7, : K — K, K v F(K) = K, be a map
with the following properties:

(i) Ko == K and either K, C K for all £ > 0 and F; is decreasing in ¢
(that is, K, € Ky, if ¢y > ta), or K C K, for all £ > 0 and F; is increasing
in ¢. .

(ii) For all affine transformations A with det A # 0, and all ¢,

(ACK))(det aje = A(Ky).

(iii) For all £ > 0, B, is a Euclidean ball with center 0 and radius fi(%)
and
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1Bl - |B|
tZ/(n+1)
where ¢ is a constant (depending on = only).

(iv) Let K be approximated at z from the inside by a ball B (r). If
H* 1 8(K) NO(B(r))s # 0 for some s and t, then s < Ct where Cisa
constant (depending only on n).

(v) Let £ > 0 be given and z € 0K be such that 8K is approximated at
¢ from the inside by a ball B(g— &) and from the outside by a ball B(g+e).
There exists a hyperplane H orthogonal to N () and tp such that whenever

HYNO(K) NB(Blo—e))s#0 fort <ty s=s(t),
respectively

HYno(K,)NaBle+e))s #0

lim =c,

t-—+0

for t < ty, s =s(t),

then
s<(1+e)t
respectively
s> (L—elt.
REMARKS 2. (i) Note that the maps F; are essentially determined by
the invariance property of Definition 1(ii) and by their values at Fuclidean

balls.
(ii) Let f(t) be the radius of B(0,7);. Then it follows immediately from

Definition 1(ii), (iii) that
. T f.,-(ﬁ) n—1}/(n+1
%E%T——fl(ﬁ — pln=1)/(n+1)
(iti) For some examples the following Definition 1’ is easier to check than
Definition 1.
DeFINITION 17, (i)-(iil} as in Definition 1.
(iv) If s < ¢, then K; C int(Ks).
(v) If K ¢ L where L is a convex body in ®*, then K; C L, for all
t2 0.
However, not all the examples mentioned below satisfy (iv)’ and (v)'.
For instance the illumination bodies (defined below) do not satisty (v).

FEXAMPLES FOR DEFINITIONS 1 AND 1/

1. The {convez) floating bodies [S-W]. Let K be a convex body in R™ and
t > 0. F, is a (convez) floating body if it is the intersection of all half~sl?aces
whose defining hyperplanes cut off a subset of volume t of K. More precisely,
for u € 871 let af be defined by

t=|{zeK: (ur) =a}
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Then

F, = ﬂ {z e K:{u,z) <a}'}
uES"‘l
is a (convex) floating body. The family {F;}:¢ satisfies Definitions 1 and 1'.

2. The convolution bodies (K], [Schm]. Let K be a symmetric convex
body in R™ and ¢ > 0. Let

Clt) ={zeR": {EN(K+2z) >2t} and C;=2iC().
Then {C}}s>0 satisfies Definitions 1 and 1'.

3. The Santald regions [M-W). For t € R and a convex body X in R®
the Santald region S(K,t) of K is defined as

S(K,t)={mem%gt},

where K = (K —z)° = {z € R : (2,y —x) < 1 for all y € K'} is the polar
of K with respect to z. (We consider only those ¢ for which S(K, t) # @)

Put
K| 1
S: i—-— f==3 : e —
t S<K’tIB|2) {meK.lK]gt}.

Then the family {S;}:>¢ satisfies Definitions 1 and 1’.

4. The Illumination bodies [W)]. Let K be a convex body in B™ and ¢ > 0.
The illumination body I is the convex body defined as

L= {z € R" : [cola, K]\K]| < 1.
Then the family {I,}45q satisfies Definition 1.

THEOREM 3. Let K be a conver body in R™. For all t > 0 let K, respec-

tively B; be convex bodies obtained from K respectively B by Definition 1 or
1. Then

lim ]K| - |Kﬁ| — a'S(K) ]
=0 |[B|— |B;|  as(B)

REMARK. Note that
as(B) = vol,_1(6B) = n|B|.

COROLLARY 4. (i) [S-W] Let K be o convex body in R* and for t > 0 let
Iy be o floating body. Then

lime, |£] — |Fy]

|Bn-1 2/(n+1)
fmen sy = as(K) where c, = 2(~——-)

n—+1
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(ii) [Schm] Let K be a symmetric conves body in R™ and for ¢ > 0 let
C; be a convolution body. Then
N T
e . 2
where ¢, 15 as in (i).
{iii) [M-W] Let K be a convez body in R™ and fort > 0 let Sy be a
Seontald region. Then

K| — 154 2

lim e, =as(K) where en = BE/+D

t—0 t?/(ﬂ+l)

(iv) [W] Let K be a convex body in R® and for t > 0 let I; be an
illumination body. Then

[l — 1K _

lim d, =as(K) where dp, = 2(

|Br-1| \ ¥+
tm0 ™ 2/ (1) ) ’

nin+1)

For the proof of Theorem 3 we need several lemmas. The basic idea of
the proof is as in [S-W].

LEMMA 5. Let K and L be two convez bodies in R™ such that 0 € int(L)
and L C K. Then

1 i]mll)“)
DI|K|~|L== \{zNz 1-(~»—— du{z},
0 11~ 2= 5 1 (1~ (1)) aute)
where 27, = [0, 2] N AL and p is the usual surface mensure on JK.

6 - 1= 2 Leven ((B1) - 1) e

8L
where 2y 5 the intersection of the half-line from 0 through x with 0K and
i is the usual surface measure on OL.

The proof of Lemma 5 is standard.
For z € @K denote by r(z) the radius of the largest Euclidean ball
contained in K that touches 8K at z. More precisely,

r(z) = max{r : z € B(y,r) C K for some y € K}.
REMARK. It was shown in [S-W] that:
(i) If B C K, then p{z € 8K : r(z) 2 f} = (1 — )" vola—1(8K).
(i) §pp 7(2) > du(z) < oo for all o with 0 < & < 1.
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LEMMA 6. Suppose 0 € int(K). Then for oll z with r(z) > 0 and for all
t > 0 we have

0 < {8 N @) = (] /=D™)
- n{|B} — |B|)
where {5, g(x) du(z) < co. Here xy = [0,2]| NOK if K; C K, and x; is the
intersection of the half-line from O through x with 8K, if K C K.

LEMMA 7. Let a4 be as in Lemma 6. Then
i A% N (@)) (0= (] /[l=])™)
im
t=0 n{|B| —|Btl)
and is equal to
(i) o(z)= =1/ (41 /(n|B|) if the Dupin indicatriz at z € HK is an
(n — 1)-dimensional sphere with radius \/p(x),
(i) 0 if the Dupin indicoiriz at = is an elliptic cylinder.

< g{z),

exists a.¢.

REMARK. (i) v(z) > 0 a.e. [SW] and the Dupin indicatrix exists a.e.
[L2] and is an ellipgoid or an elliptic cylinder.

(ii) If the indicatrix is an ellipsoid, we can reduce this case to the case
of a sphere by an affine transformation with determinant 1 (see [S-W]).

Proof of Theorem 8 We may assume that 0 is in the interior of K. By
Lemma 5 and with the notations of Lemma 6 we have

K- K1 (o N @)= (fo]/lel))
5 BB ().

B— Bl n,)
By Lemma 6 and the Remark preceding it, the integrands are bounded uni-
forraly in t by an L'-function and by Lemma 7 they are pointwise convergent

a.e. We apply Lebesgue’s convergence theorem.

Proof of Lemma 6. Let z € 8K be such that 7(z) > 0. We consider
the proof in the case of Definition 1’ and of Definition 1 in the case where
K, C K for all £ > 0. The case of Definition 1 where K C K, for all > 0
is treated in. a similar way.

As j|lz|] = |lz:]|, we have, for all ¢,

) %mwu»@~(%$¥)s<ﬁwN@)m;mw

Put r(x) =r, z—r{z)N(z) = z and {7ap> V{z)} = cos 6. We can assume
that there is an o > 0 such that
(2} B{0,a) C K C B{(0,1/c),
and hence
cosf ||z — z¢]| < 2/a.
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Let £ > 0 be given, By Remark 2(ii) there exists ¢; such that for all £ < #q,
1= fi() 1- At

Let #5 be such that Oty < #;. By Definition 1(i}, f1(¢) is decreasing in ¢,
hence for all t > ¢ we have

fi(t) £ fa(to)
and thus for all ¢ 2 ¢o, by (1) and (2),
(e, N (@))(L — (Jasl/[l21D™) 2 _
n(|Bf — |B:)) = a|B|(1 - filto)™)

Therefore the expression in question is bounded by a constant in this case
and hence is integrable. It remains to consider the case when ¢ < 1g.

{a) Suppose first that
lx — || < rcos@.

For B(z,r) we construct the corresponding inner body (B(z,7))s such that
z is a boundary point of (B(z,r))s. By Definition 1(iii), (B(z,r))s is the
Euclidean ball with center z and radius f.(s). As z; is a boundary point of
(.B(Z, T))S }

(4) £2(5) m(l_ ZHZ—?IIGOSG N

gr(l— lz — 2] cosﬁ)
2r

The last inequality holds by assumption (a).

So far the arguments are the same for Definitions 1 and 1’. From now on
they differ slightly.

By Definition 1(iv), s < Ct, hence by monotonicity fr(s) > f-(Ct) and
thus, as Ct < t1, from (3) we have

m—mwyﬁ

P2

1~ Ct
£(CH > 'r(l e -mﬁ%),

which, using Definition 1(iii), can be shown to be

1~ )
(5) >r (1 — (1+e)(C¥ 0+ 4 E)_T.zn/(n+1) :
From (4) and (5) we get
|z = x| cos® pn—1)/(n+1) .
2(L +¢€)(C/ (1) +¢)

(6) 1-fA) z
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Observe also that
|B| = [By| = |B|(1 - f1(£)") 2 |B|(1 — fu(t)).
This inequality together with (1) and {6) shows that
_ n 2/ (n+1
e, N (@) (L — (lzell/llzl)”)  2(1+e)(C " 4 €) (a1 nt)
n(|B| —|B) |B] ’
and the latter is integrable by the Remark preceding Lemma 6.
In the case of Definition 1’ it follows from (iv)’ and (v)’ that s < ¢. For
if 8 > ¢, then (B(z,7))s C int(B(z,7)); by (iv) and int(B(z,7)): C int(K;)

by (v)', which contradicts the fact that z; & 8K, N 3(B(z,r))s. Therefore
fr(8) = fr(t) and thus, as t < ¢, (3) yields

£(8) ZT(I— (1+a)1“—f1“)).

p2n/(n+1)

‘We then conclude as above.
{b) Now we consider the case when
|z — z¢|| > rcos .

We choose « so small that z; & B(0, ). Let H be the hyperplane through 0
orthogonal to z. Then the spherical cone C = [z, H N B(0,a)] is contained
in K and x; € C. Let d = dist(z, C). Then

7 = |l — || s
(7) d= ||z “’t”(az_,_“xnz)l/z'
Let w € [0, ] be such that ||z —w|| = d/2. Let B(w, R) C K be the largest
Euclidean ball with center w such that B{w, R) C K. Then 8B{w, R) N 6K
# 0. Moreover R > d, which implies that z; € B(w, R). Let (B(w, R)), be
the corresponding inner ball such that @, € (B{w, R)),.

Now we have to distinguish between Definitions 1 and 1°.

By Definition 1(iv), s < Ct. By monotonicity fr(s) > fr(Ct), which, as
above, is

> B(1= L+ )@ 4 2 B, /{i_(fl))).

As R > d, the latter is
_ 2(nry) | 2= fild)
On the other hand, by construction fz(s) = d/2. Therefore
dan/(n+1)
L+ g}(C* 1) )

1—-fi(t) > o
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Note also that (2) implies that cosd > o?. Hence by (1), (2), (7) and as-
gumption (b) we get
(&, N(2)) (1~ (llzl| /= 1)™)
n(|B| — |B:l)
2{1 -+ C¥4)n/(n+1) (1 -+ E)(Cz/(n-‘-l) -+ E) —(n—1)/(n+1)
= |Bla®n-2)/ (1) T ’

The case of Definition 1’ is treated similarly and the above inequalities
hold true with ¢ =1 and C¥(+D L g = 1.

Proof of Lemma 7. We again consider the case when K; C K forallt > 0
in Definition 1. The case K C Ky for all £ > 0 in Definition 1 and the case
of Definition 1 are done in a similar way (compare the proof of Lemma, 6).

As in the proof of Lemma 6 we can choose o > 0 such that

B(0,e) C K C B(0,1/a).
Therefore
(®) 12 (3/|3ll, N(@)} > 2.
‘We put again cosf = {z/l|z|, N(z)). (1) holds, that is,

%(%N(m))(l = (el /121)™) < @/ ll2ll, N(@)lz — 2]

Since z and z; are collinear, ||z|| = |jz¢{ + ||z — =:|| and hence

B R )
> (5@ Y- (1- i)

for some constant ky, if we choose ¢ sufficiently large.

(i) Case where the indicatriz is an ellipsoid. We have seen that then
we can assume that the indicatrix is a Euclidean sphere. Let 1/o(z) be its
radius. We put p(z) = ¢ and we introduce a coordinate system such that
z = 0 and N(z) = (0,...,0,—1). Hy is the tangent hyperplane to OK at
z=0and {H, : a > 0} is the family of hyperplanes parallel to Ho that have
non-empty intersection with K and are at distance o from Hp. For o > 0,
H is the half-space generated by H, that contains ¢ = 0. For o € R, let
2z = (0,...,0,a) and B, = B(z,,a) be the Euclidean ball with center z,
and radius a. As in [W], for £ > 0 we can choose o so small that for ail
o < g,

BoeNHY CEKNHY C BpyeNHY.
We choose ¢ so small that z¢ € int(B,_. N HY) (C int(Byy. N HT)). For
B,y we construct the corresponding inner body {By4e)s such that x; is a
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boundary point of (Byie)s (Bgte)s is the Euclidean ball with center z,,..
and radius fo1.(s). We have

fore(s) = (o +&)* +llo— zel* — 2(e + )|z — ]| cos 6)*/2,

> (Q—l—s)(l—— |z — 2] cosﬁ)
g+e

Definition 1(v) implies that s > (1 - e)t, hence by monotonicity fo..(s) <
Fe+e{(1 ~ €)t), which for ¢ small enough is (cf. the proof of Lemma. 6)

1-fi1(t)
<(o+e)(1~(1—hpg) I
(Q 5)( ( k26) (Q+ 5)2%/(n+1) y
where ky is a constant. Thus
|z — 23] cos 8 (g + &) (n~1)/ (n+1}
1~ kg&' )

1-A@) <
Note that

|B| — |Be| = |B|(1 ~ f1(t)™) < n|B|(1 — f1(t)).
Therefore by (9),

{2, N(2)) (1= (el fl=[)™)
n(|B] = |B:|)

> (1 — hge) (1 gz wtll) (e +&)~tn—D/tnt1)
k| n|B|

This is the lower bound for the expression in question.

To get an upper bound we proceed similarly, For B,_. we construct
the corresponding inner body (B,_.), such that ; is a boundary point of
(Bg—e)s- (Bg—e)s is the Buclidean ball with center Zo— and radius f, . (s)
‘We have ' e

fo-e(s) = ({0~ )2 + |z — al]? — 2(2 — )|z — ]| cos )1/
—afli- |z — 24| cos 8 |z~ |
<o (- )

g—e o—¢g)cosh

<(en= o giih)

for some constant ks, if ¢ is small enough. Again by Definition 1{v), s

{1+ &)t and therefore foo(s) > foe((1 +€)t), which by arguments similar
to those before is

> (e —e)(l 1+ k4a)¢:é“)_.)

(9 - E)Zn/(n+1)

with a suitable constant k4. Thus
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3 | — x| cos lz — ]|
(1) 1-Al=z 14 kye (1 " 2o —g) COSB)
ksl — 24l cos® (0 flz — @4 A1)/ (n+1
X(1+ g€ (1 Z(Q—E)éosf?)>(9_5)( /),
Observe now that
() 1BI-iB = B0~ 0" 2 Bl - £O)(1- 50 £O))

We choose t so small that 1 — f;(t) < 2¢/(n — 1). This together with (1),
(10) and (11) implies that

{z, N (@)} (1 = (lzel|/li=l)™)
n(|B| = |Bsl)

Y )(1+1;|1Z46—zt|icose(l_ R
2(p —g) cost s p—¢ 2(p —=)cosf )

(g — E)»(ﬂul)/(n-}-l)
n|B|
Note that cos# > o by (8). This finishes the proof of Lemnma 7 in the case
where the indicatrix is an ellipsoid.

<

(ii) Case where the indicatriz is an elliptic cylinder. Recall that then we
have to show that
(e N@) = =/l _
=0 n(|B| - |Bt))
We can again assume (see [S-W]) that the indicatrix is a spherical cylinder,
i.e. the product of a k-dimensional plane and an (n — k — 1)-dimensional
Euclidean sphere of radius g. We can moreover assume that ¢ is arbitrarily
large (see also [S-W]}).
By Lemma 9 of [S-W] we then have for sufficiently small o and some
e>0,

B, e NHf CKNHY.
Using similar methods, this implies that

o (8 N @) = Gl /L))
(-
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Transitivity for linear operators on a Banach space
by
BERTRAM YOOD (University Park, Penn.)

Abstract. Let & be the multiplicative group of invertible elements of 5(X), the
algebra of all bounded linear cperators on a Banach space X. In 1945 Mackey showed
that if z1,...,2n and y1,...,yn are any two sets of linearly independent elements of X
with the same number of items, then there exists T € G so that T(z) = yr, k=1,...,n.
We prove that some proper multiplicative subgroups of G have this property.

1. Introduction. Throughout, X is an infinite-dimensional Banach
space and E{X) is the algebra of all bounded linear operators on X. A
subset S of E(X) is called L i. {rensitive if, given two sets z1,...,2, and
Y1,...,yn of linearly independent elements of X, there exists T € § such
that T(zk) = yg, k = 1,...,n. In [5, Theorem II-3] Mackey showed that
the set G of invertible elements of E(X) is 1. i. transitive. Our results show
that smaller subgroups of the multiplicative group G suffice. We show the
following in §2.

THEOREM 1. Let A be any closed subalgebra of E(X) containing the
identity I and oll T € E(X) with finite-dimensional ronge. Let & be the set
of invertible elements of A. Then any open multiplicative subgroup $ of &
is L. 1. transitive.

As is well known, & is open.

Next let 1 be the set of all elements of & of the form I + 1" where T" has
finite-dimensional range. If we write its inverse as I +V, V & E(X), we see
that 7'+ ¥V + TV = 0 so that V also has finite-dirnensional range. It follows
that 1) is a multiplicative subgroup of &, and

THEOREM 2. 1) is L 1. transitive.

2. On transitivity. Qur aim is to prove Theorems 1 and 2 given above.
We shall use an easy lemma.
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