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On of-)-monotone multifunctions and differentiability
of y-paraconvex functions

by
8. ROLEWICZ (Warszawa)

Abstract. Let (X,d) be a metric space. Let & be a family of real-valued functions
defined on X. Sufficient conditions are given for an o(-)-monotone multifunction I" : X —
22 10 be single-valued and continucus on a weakly angle-small set. As an application it is
shown that a y-paraconvex function defined on an open convex subset of a Banach space
having separable dual is Fréchet differentiable on a residual set.

Let (X, | - ||) be a separable real Banach space. Let f be a real-valued
convex continuous function defined on an open convex subset 2 C X. Mazur
3] proved that there is a subset Ag C 2 of the first category such that f is
Gateaux differentiable on 2\ Ag. Asplund [1] showed that if additionally
X has a separable dual, then there is a subset Ap C 2 of the first category
such that f is Fréchet differentiable on {2\ Ap.

Let 1 < v < 2. Let f be a real-valued function on X. We say that f is
~-paraconver if there is C > 0 such that forall z,y € X and 0 < ¢ < 1,

Fltz 4+ (1 —tyy) < tf(z) + (1 — ) F () + Cllz —yl”
(see [6], [7]).

In this paper we give an extension of Asplund’s [1] theorem to y-para-
convex functions. The subject is treated in the more general framework of
metric spaces and we prove a theorem which immediately implies the result
mentioned above. _

Let (X,d) be a metric space. Let & be a family of real-valued functions
defined on X. Let a : [0, 00) — {0, co] be such that «(0) = 0 and

(1) lim o()/t = 0.
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A function ¢ € & is called an o-)-P-subgrodient of f at a point zq if

(2) f(@) — flzo) = d(x) — d{wn) — ed(, 20))

for all z € X If (2} is satisfied only locally we say that ¢ € & is a local
a(-)-P-subgradient of f at zp. For a(t) = 0 we obtain the definition of
P-subgradient and local $-subgradient (see for example [4]).

The set of all af-)-$-subgradients (local of-)-@-subgradients) of f at
xqg is called the a(-)-®-subdifferential (resp. local o-)~-$-subdifferential) of
f at 2o and denoted by 8% f|q,. For a(t) = 0 we obtain the definition of
&-subdifferential and local $-subdifferential (see for example [4], [14]).

In the case when X is a normed space, § = X* and a(f) = 7 we
obtain the definition of (local} y-subgradient and (local) y-subdifferential
introduced by Jourani [2]. He showed that each local y-subgradient is in
fact a y-subgradient of the corresponding function at the given point. The
converse implication is obvious.

If a real-valued function f has a nonempty a(-)-$-subdifferential 83 f|,
for all z € X we say that f is c(-)-@-subdifferentiable.

Let & : [0,00) — [0,00] be as above. We say that a multifunction I" :
X — 2% is a(-)-monotone if for all ¢, € I'(z), ¢, € I'(y) we have

(3) ba(z) + &y(y) — duly) — ¢y (x) + ald{z,4)) = 0.

For a(t) = 0 we obtain the definition of monotone multifunctions (see for
example [4]).

In the case when X is a normed space, & = X* and a(t) = t7 we obtain
the definition y-monotone multifunctions introduced by Jourani [2].

ProprosiTiON 1. Let (X, d) be a metric space. Let & be a family of real-
valued functions on X. If a function f on X is o(.)-@-subdifferentiable, then

its a(-)-@-subdifferential 83 f|, considered as a multifunction of = is 2a-)-
monotone.

Proof. Take z,y € X. Let ¢, € 83 f|, and ¢y € 03 f|y- By definition

(4) Fly) = 1(z) 2 ¢aly) ~ ¢a(2) - a(d(y, 2))

and

(5) Flz)~ f(y) 2 ¢y(e) — dy(y) ~ ald(y, ).
Adding (4) and (5) we obtain

(6) 02 @aly) - da(2) + dy(z) — ¢y (v) — 2a(d(z, 1))
Thus

(7) o () + 8y(y) = ¢a () — dy(2) + 20(d(z,y)) 2 0.

Even in the case when X = R and @ is the set of linear functions the class
of a(-)-d-subdifferentiable functions does not coincide with the so called
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DC-functions (functions which can be represented as a difference of convex
functions).

EXAMPLE 2. Let X =R and & be the set of linear functions, Let a(t) =

372 Let
201
ty = Z -
k=1

Let g(t) = max[—+/]t — t,]] and f(t) = Sglg(s) ds. Then f is of-)-P-sub-
differentiable, i.e. at each point ¢ there is a local %—subgradjent. It #t,
this iIs obvious since f is locally convex in the neighbourhood of t. At £t = ¢,
0is a local £-subgradient, since f(tn+h)— f{tn) > — Sl)hl Jsds = ——%|h|3/2.
Recall that by Jourani [2] this shows that f is £3/2-subdifferentiable.

On the other hand, since g is not of bounded variation, f is not a DC-
function.

In [4] we have given conditions for a monotone multifunction to be single-
valued and continuous on a residual set, In this note we show that the same
holds for a(-)-monotone multifunctions.

Let (X, d) be a metric space. Let £ be the space of all Lipschitz functions
defined on X. We define on £ a quasinorm

|¢(z1) — blza)|
(8) ”¢||L B :cfil:éX d(wla ‘TQ) .
' z Fae
Observe that if ||¢; — ¢da||l. = 0 then the difference of ¢; and @2 is a
constant function, i.e., ¢1(z) = ¢2(x) + c. Thus we consider the quotient
space £ = £/R. The quasinorm ||¢||r, induces a norm in L. Since this will
not lead to any misunderstanding, this norm will also be denoted by ||¢]|v.
Let & be a family of Lipschitz functions on X. If there is a constant
k, 0 < k < 1,suchthat forallz € X, p € andt >0, thereisay € X
such that 0 < d(z,y) <t and

we say that ® has the monotonicity property with constant k ([9], see also
[4]). It is obvious that the linear continuous functionals on a Banach space
have the monotonicity property with any constant smaller than 1.

For any ¢ € 8,0 < B < 1, z € X, write (4], Sec. 2.4, cf. Preiss and
Zajicek [5) for the linear case)

{10) K¢, 8,2) = {y € X : 8(y) — 6(z) 2 Bl 4ludly, z)}-

The set K (¢, 8, z) will be called the 3-cone with vertex & and direction qb
Of course, it may happen that K(¢,8,z) = {z}. However, if 3 < k, it is
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obvious that the set K (¢, 3,z) has a nonempty interior and, even more,

(i1 z € Int K (¢, 5, ).
Now we extend this definition a little. Namely the set

will be called the (8, 0)-cone with vertex « and direction ¢.

Observe that just from the definition it follows that if By < fe, then
K(¢1ﬂ1:$u Q) 2 K(¢1 ﬁ?-)ma Q)

We recall that M C X is said to be B-cone meagre if for all z € M and
€ > 0 there are z € X with d(x,2) < ¢ and ¢ € & such that

(13) MNIntK(¢,B8,2)=0

([9], see also [4]).
A set M C X is said to be {83, p)-cone meagre if forall z € M and e > 0
there are z € X with d(z, z) < ¢ and ¢ € ® such that

(14) M NIntK (¢, 8,7 0) = 0.

The arbitrariness of € and (14) implies that a (f3, g)-cone meagre set M
is nowhere dense.

There is a simple example showing that the two notions do not coincide.

EXAMPLE 3. Let X = R? and let M = {(z,0) :x e R} U {(z, 1) : z €
R} U{(z,~1) : 2 € R}. It is easy to see that M is (8, g)-cone meagre for all
8> 0and 0 < p < 1. By a simple observation, it is not 8-cone meagre for
any f3.

‘We recall that a set M C X is called angle-small if it can be represented
as a union of a countable number of S-cone meagre sets M,

[+
(15) M= M,
ne==1
for some B > 0. We say that M C X is weekly angle-small if it can be
represented as a union (15) of a countable number of (8, g, )-cone meagre
sets M, for some £, on > 0.
Of course, every weakly angle-small set M is of the first category.
Adapting the method of Preiss and Zajfek [5] and the proof of [9] (see
also proof of Theorem 2.4.11 of [4]) we obtain

THEOREM 4. Let (X, d) be a metric space. Let $ be a family of Lipschits
functions on X which is a group with respect to addition and has the mono-
tonicity property with a constant k, 0 < k < 1, Assume that & is separable
in the metric dy. Let I' : X — 2% be an af-)-monotonie multifunction such
that domI" = X (i.e., I'x) # @ for oll z € X). Then there exists a weakly
angle-small set A such that I' is single-valued and continuous on X \ A.
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Proof. It is sufficient to show that the set
(16} A={reX: %in}] diam I'(B(x, 8)) > 0},

where diam is the diameter in the Lipschitz metric dr, is weakly angle-small.
Of course, we can represent A as the union of the sets

(17) An={zeX: (]sjﬂdia.mf'(B(m,é)) >1/n}.

Let {¢m} be a dense sequence in & in the metric dr,. Suppose that 0 <
A < k. Let

(18) An,m = {LE €Ay : dist(qu, F(.’B)) < ﬁ/(4n)}!

where as usual dist(@m, ['(z)) = inf{||¢n — @l : ¢ € T'(z)} (we write || - ||
for || - ||L). By the density of {¢,.} in &,

o0
| Anm = An.
m=1
‘We now show that the sets A, m are (8, o)-meagre for sufficiently small o.
Indeed, let z € Anm and & > 0. Since z € A,, by (17), there are
0<§ <eand 2,2 € X, ¢1 € I'(z1), ¢2 € I'(22) such that d(z1,2) < 6,
d(#,7) < & and

(19) lé1 = 82 > 1/n.

Thus by the triangle inequality, for every ¢ € I'(x) either {|¢1 — ¢l > 1/(2n)
or ||y — @l > 1/(2n). By the definition of An ,, we can find ¢, & I'(z) such
that ||¢s — dml| < 8/(4n). Therefore choosing for z either z; or z2, we can
say that there are z € X and ¢, € I'(2) such that d{z,z) < § and

1 B8 1
(20) ”¢z - ¢mH 2 “qﬁz - Gbcc” - ”‘ibm - ¢m” > % e E > Zﬁ'
By (1) there is g, such that
1 8 1 alt) 1
e m— — = — > .
(21) 2n 4 ﬁ 0<t<pn t 4n

We show that
Anim N K(¢z = ¢y B, 2) N{y : d(z,9) < 0n} =1
Indeed, suppose that v € K{¢; — ¢m,B,2). This means that
¢2(y) + Pm(2) = dm(y) — $2(2) 2 B¢z — dmlld(y, 2).
Suppose that ¢, € I'(y). Since I is a(-)-monotone we have
by (y) — dy(2) — b=(y) -+ ¢2(2) = —ald(y, 2}).
Adding these two inequalities we get
by (1) — Im () — Sy (2) + dm(2) = Blldz — dmlld(y, 2) — ald(y, 2)),
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and if additionally d(y, z) < g, we have, by (21),
$y(y) — Em{y) — dy(2) + dmi2)

2 82 - £ ) 2) ~ ofety, )

1 8  1oa(d(y,z2) B
o1 5 )3 i)

This implies that

8
— >
I8~ dmll > 1
and by the definition of Ay, m, ¥ € An,m. Thus

A VK (b~ ¢, 8,2) N {y 2 dz,y) < on} =0
and the set A4, ., is (3, o, )-meagre. Therefore A is weakly angle-small. m

Since the subdifferential g f|, of an «(-)-@-differentiable function is a
20(-)- monotone multifunction of z, we immediately obtain

COROLLARY 5. Let (X, d) be a metric space. Let @ be o family of Lipschitz
functions on X which is o group with respect to addition and has the mono-
tonicity property with a constant k, 0 < k < 1. Suppose that D is separable in
the metric dy,. Let f be an a(-)-$-subdifferentiable function on X, Then there
5 a weakly angle-small set A such that outside A the of-)-B-subdifferential
0% fla is single-valued and continuous in the metric dy,.

We recall that a set B of second category is called residual if its comple-
ment is of the first category. Since weakly angle-small sets are always of the
first category we immediately obtain

THEOREM 6. Let (X, d} be a metric space of the second category in itself
(in particular, let X be a complete metric space). Let & be o family of Lip-
schitz functions on X which is a group with respect to addition and has the
monotonicily property with a constant k, 0 < k < 1. Assume that & is sepa-
rable in the metric dy,. Let I' 1 X — 2% be an af-)-monotone multifunciion
such that I'(x) # @ for all z € X. Then there is a residuol set B such that
I' is single-valued and continuous on B.

COROLLARY 7. Let (X, d) be a metric space which is of the second cate-
gory in itself (in particular, let X be o complete metric space). Let & be o
class of Lipschitz functions on X which is a group with respect to addition
and has the monotonicity property with o constant k, 0 < k < 1. Suppose
that @ is separable in the metric dy,. Let f be a ﬁmctmn on X having an

o(-)-@-subgradient at each point. Then there is a residual set B such that

the ou(-)-P-subdifferential 82 |, s single-valued and continuous on B in the
metric d,.
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We say that a function f : X — R is Préchet ¢-differentiable at a point
o if there is a function & : [0, 00) — [0, 0c] such that

tli_r% o) /t=10
and a function ¢ € @ such that
|Lf (@) = f(=0)] — [$(z) ~ ¢(=a)]] < o(d(z, 20))

for all z in a neighbourhood of zp. The function ¢ will be called a Fréchet
$-gradient of f at zo. The function o will be called a modulus of smoothness.

Recall that in normed spaces Gateaux differentiability of a convex con-
tinuous function f at a point z is equivalent to the subdifferential 3f|,
consisting of one point only. Moreover, the continuity of Gateaux differ-
entials in the norm operator topology implies that these differentials are
Fréchet differentials. Similarly we have an extension of this fact to metric
spaces ([12], [13]). Here we extend this result to «(-)-monotone operators.

We recall that the af-)-$-subdifferential 03 f|, is lower semicontinuous
at xg in the Lipschitz norm if for any ¢y, € 0% fls, there is a function u
such that p(0) =0, p{t) > 0 for £ > 0 and

(22) Tim () = 0
and such that for all x € X there is ¢, € 83 f|» such that
(23) ¢z — apll < p(d{z, z0))-

PROPOSITION 8. Let (X,d) be a metric space. Let € be o class of Lips-
chitz functions on X which is a group with respect to addition. Let f be an
a(.)-&-subdifferentiable function on X. Let ¢q, be an of-)-P-subgradient of
f at a point zg. Suppose that the a(-)}-P-subdifferential 8% f . is lower semi-
continuous ot zo in the Lipschitz norm. Then ¢, is o Fréchet $-gradient

of f at xp.
Proof Let
(24) F(z) = ﬂ:) F(z0)] = [zo (%) — bay (z0)]-
It is easy to see that F (zo) = 0. Since ¢z, is an af-)-P-subgradient of f
at xg,

(25) F(z) 2 ~a(d(z, z0))-

Let ¢ be such that (23) holds. Since ¢, is an a(-)- @-Subgradlent of f at z,
Vg = Gy ~ Du, i8 an of-)-P-subgradient of F at z. Thus

F(y) - F(z) 2 ¢a(y) — ¥a(z) — a(d{z, v)).
In particular, if ¥ = zq, then

(26) © F(mo) — F(z) 2 va(z0) — e (2) — ad(z, 20))-
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Taking into account (25), we find that for = € V%,
(27) —ofd(z,30)) < F(z) < 1pu(z) ~ Ya(zo) + a(d(z, 20))
< 2u(d(z, zo))d(z, To) + al(d(z, o).
Putting o (t) = max[e(t), 2u(t)t + a(t)] we obtain
[F(z)| < o{d(=, z0))-

Thus 0 is a Fréchet $-gradient of F at zy. This immediately implies that 1]
Pz, is a Fréchet #-gradient of f at xp. w

2
Ag a consequence we obtain 2
THEOREM 9. Let (X, d) be a metric space which is of the second category ]
in dtself (in particular, let X be a complete metric space). Let $ be a family 4]
of Lipschiiz functions on X which is a group with respect to addition and has
the monotonicity property with o constant k. Suppose that & is separable in (5]
the metric dr,. Let f be a continuous af-)-®-subdifferentioble function. Then
there is a weakly angle-smoll set A such that f is Fréchet $-differentioble ot 6]
every point ko € X \ A. Moreover, the Fréchet ®-subgrodient is unique and
it 18 continuous in the meiric dy,.
Proof. Since f is o )-$-subdifferentiable, there is a weakly angle-small %g}
set A such that on Y = X\ A the a(-)-$-subdifferential 83 f |, is single-valued
and continuous in the metric dy,. Thus by Proposition 8 the restriction f |y is (9]
Fréchet ¢-differentiable at every zp € Y. The continuity of f and the density
of ¥ in X imply that f is Fréchet $-differentiable at every 2o € Y. w [10)
In Thecrem 9 we can weaken the monotonicity assumption to its local [11]
version in a similar way to [4}, Section 2.4.
Applying Theorem 9 to Banach spaces and y-paraconvex functions and [12]
using Jourani’s [2] results we get the following extension of the Asplund [1)
theorem. [13]
THEOREM 10. Let (X, || - ||) be a real Banach space which has separable [14]

dual X*. Let f be a y-paraconves function, 1 < v < 2, defined on an open
conver subset £2 C X. Then there is a subset Ay C (2 of the first category
such that f is Fréchet differentiable on 2\ Ay,

Proof Put & = X*, Of course X* has the monotonicity property with
any constant k& < 1. By Proposition 2.2 of [2] the function f is locally Lip-
schitz, i.e. for each zg € X there are a convex neighbourhood Vao and a
constant L, such that f satisfies the Lipschitz condition with constant Ly,
on Vyo. This implies that for every y € V,, the Clarke subdifferential 87,
at y is not empty. By Theorem 3.1 of [2] this subdifferential is equal to the
v-subdifferential, hence f is a continuous ¢7-X*-subdifferentiable function
on Vi, Since we can cover the whole set £2 by such neighbourhoods Vaos
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f is continuous and ¢¥-X*-subdifferentiable on the whole £2. Then by The-
orem 9 there is a subset Ay C 2 of the first category such that f is Fréchet
differentiable on 2\ As. u
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