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An almost nowhere Fréchet smooth norm
on superreflexive spaces

by
EVA MATOUSKOVA (Praha and Linz)

Abstract. Every separable infinite-dimensional superreflexive Banach space admits
an equivalent norm which is Fréchet differentiable only on an Arcnszajn null set.

Introduction. Every convex continuous function on a separable Banach
space X is Gateaux differentiable on a dense Gs-set by a theorem of Mazur. If
the dual of X is separable it is even Fréchet differentiable on a dense G4-set.
If we confine ourselves to the weaker notion of Gateaux differentiability, then
locally Lipschitz functions, and in particular convex continuous functions,
are also differentiable on a set which is large in the sense of measure.

The strongest present result in this direction is due to Mankiewicz [Man]
and Aronszajn [A]. They defined in every separable Banach space a family
A of sets which mimics the family of Lebesgue null sets in finite dimensions.
The definitions of the family A (now usually called the Aronszajn null sets,
see Section 2) used by Mankiewicz and by Aronszajn are formally different;
it was recently shown by Cséroyei that they both coincide with the so called
Gaussian null sets [C]. Mankiewicz and Aronszajn proved that every locally
Lipschitz function is Gateaux differentiable almost everywhere, that is, ex-
cept on a set belonging to A. For Fréchet differentiability this fails except for
finite dimensions, where the classical theorem of Rademacher is available. If
X is a separable and infinite-dimensional Banach space then by a result of
Preiss and Tiger [PT] there is a Lipschitz function f on X such that the set
of points where f is Fréchet differentiable is Aronszajn null.

In [MM] it was shown that it is of no help to consider only convex
continuous functions. There exists an equivalent norm p on the separable
Hilbert space £3 such that the set of points where p is Fréchet differentiable
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is Aronszajn null. Here we prove the result of [MM] in any separable infinite-
dimensional superreflexive Banach space. To construct a “bad” norm on a
superreflexive Banach space we combine the simplified proof of [MM] given
by Preiss with the existence of very “nice” renormings of superreflexive
spaces.

In [PZ] Preiss and Zajitek ask if the set of points where a convex con-
tinuous function on a Banach space with a separable dual is not Fréchet
differentiable can be covered by countably many closed convex sets with
empty interior and countably many d-convex surfaces. This was disproved
by Konyagin [K]. Notice that our example also provides a counterexample
to this question. By [M1] and [M2] in superreflexive Banach spaces every
closed convex set with empty interior is Haar null (this is another replace-
ment of Lebesgue null sets in infinite dimensions) and §-convex surfaces are
eagily seen to be Haar null. A countable union of Haar null sets is Haar null,
and the union of a Haar null set and of an Aronszajn null set cannot be the
entire space.

If X is a Banach space, z € X and r > 0, we denote by B(z, ) the
closed hall with center & and radius r; Bx is the closed unit ball of X . The
modulus of convexity of a Banach space X is denoted by dx. The Banach
space IR™ is considered with the £3-norm if not stated otherwise; we denote
by An the n-dimensional Lebesgue measure. If A is a subset of a Banach
space X we define cone A = {J,, 414

2. Sets small in measure. The following notion of a null set was
introduced by Aronszajn [A]; for equivalent definitions see [C].

DEFINITION 2.1. Let X be a separable Banach space and let A be a
Borel subset of X. The set A is called Aronszajn null if for every sequence
(x:)f2; in X whose closed linear span is X there exist Borel sets 4; C X
such that A = Ufil A; and the intersection of A; with any line in direction
x; has one-dimensional Lebesgue measure zero, for each ¢ € N.

Suppose n € N and A is a Borel subset of a Banach space X such that A
intersected with any n-dimensional affine subspace of X is of n-dimensional
Lebesgue measure zero. [t is an easy consequence of Fubini’s theorem that A
is Aronszajn null. Tf A is a cone-like set, that is, cA € A for any ¢ > 0, then
in the above situation it is enough to consider all n-dimensional subspaces
rather than all n-dimensional affine subspaces.

LEMMA 2.2. Let X be a separable Banach space and A a Borel subset of
X so that cA C A for any ¢ > 0. Suppose n € N is such that A intersected
with the unit ball of any n-dimensional subspace of X is of n-dimensional
Lebesgue measure zero. Then A is Aronszagn null.
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Proof If n = 1 then A ¢ {0}. Suppose that n > 1 and that there is
an (n — 1)-dimensional affine subspace Y ¢ X with 0 ¢ ¥ and with ANY
having positive (n — 1)-dimensional Lebesgue measure. Since cone(ANY) C
ANspanY, the n-dimensional Lebesgue measure of A M Bepan v 1s positive,
which is a contradiction. By Fubini’s theorem the n-dimensional Lebesgue
measure of AN Z is zero for any n-dimensional affine Z € X, and A is
Aronszajn null.

We will need the following simple lemma to construct a “bad” norm on
a general separable superreflexive Banach space from a bad norm on its
quotient with a basis.

LeMMmA 2.3. Let X, Y be separable infinite-dimensionel Banach spaces,
and T : X — Y a continuvous linear surjective mapping. Let A C Y be
Aronszajn null. Then T7Y(A) is Aronszajn null.

Proof. Suppose E C X isa countable set with Span F = X. Let (yn)ne
be an enumeration of T({E) \ {0}. Then spat{y,}>2, =Y. Let A, C Y be
Borel so that A, ﬂ (y + spany,} has one-dimensional measure zero for each
y €Y and |J, ¢ == A. Since T is continuous, each set T71(A,) is Borel.
Clearly, UnEN T‘l (An) = T-YA). If n € N is arbitrary, z € T (yn) and
x & X then T restricted to z + span z is an affine homeomorphism. Since
T(T~(An) N (¢ + spanz)) = An N (T(z) + spanyy), the set T (A4,) N
(z + span z) has one-dimensional measure zero.

Let X be a Banach space and n € N. For each n-dimensional subspace
Z of X fix an isomorphism Tz : Z — R® with |Tz|| = 1 and ||T;'| < n. In
the sequel, “Az(AN Z) < ¢ for any n-dimensional subspace Z C X7 means
that the n~dimensional measures Az come from these isomorphisms.

LEMMA 2.4. Let X be a Banach space with o uniformly convex norm so
that 8x(g) > ce? for some p > 2 and ¢ > 0. Suppose Z is an n-dimensional
subspace of X and v € X* is such that sup,cp, (v,2) < 1+ o for some
0> 0. Then \z{C) < Bo" VP for C = Bz N{z € X : v(z) > ||z||}, where
B is an absolute constant,

Proof. Denote by |lv|z the norm of v when restricted to Z and by u
the point of Bz where it is attained. Observe that C' = Bz N cone{xr € Bz :
v(z) > 1}. Since 1/[lv]|z = 1/(1 + g) =2 1 — o, we have

{x € Bz :v(z) =1} C{x € Bz :v(z)/|vllz 21— o}

Since Z is uniformly rotund with §z(e) > ce?, the diameter of the latter
set is at most cp/?, where & > 0 is a constant (see e.g. [D], p. 58). Hence
C C conv(B(u, ae"/?) U B(0,ap*/P)) and :
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Az(C) = An(Tz(C)) € An(conv(Brr (T (u), g"/?) U Ben (0, agr’P)).
The latter is at most 8o("~1/? for some constant § since | Tz(u)| < 1.

PROPOSITION 2.5. Let X be o uniformly conver Banach space with a
uniformly conver dual so that 6x(g) > ce® for some p = 2 and ¢ > 0.
Suppose X has a basis. Then there exists N € N such that for each € > 0
there is § > 0 and a countable symmetric set (Un)nen in X™ with 1 +6 <
llonll <2 so that for § =U,eniz € X : va(z) > [|2f|},

(A) 5= X, and

(B) Az(S N Bz) <& for each N-dimensional subspace Z C X

Proof. Let (e,) be the basis of X and (f,) the dual basis; we can
suppose that m < |len]] < M and m < ||fo] € M for all n and some

M, m > 0. By the theorem of Gurarii and Gurarii (see e.g. [BL]) there are
g > 1 and v > 0 so that

fofl 2 2( 3 [ le)
jax]

for all z € X. For z € X we define the support of z as sptz = {i € N:
(fiz) 7 O}. Let (zx)32; be a dense sequence in the unit sphere of X with
each z;, fnitely supported. For each k choose z} € X* with ||z}|| =1 =
{z},x). Choose n1 < ny < ... such that maxspt(zx) < ng. Fix some r > 0
small (to be specified later) and define vg =z} + 7 fn,. Since

(g, Ti) = (&hy k) + 7 {fr k) =1 +0 =1,

we get lux]| = 1 and, similarly, ||z} + 37 fn,|| > 1. The uniform rotundity
of X* implies that

1< Jlok + drfuall = 5lizk +vell < okl = 8x=(rll foi )

Since m < || fn, ]l < M, this means that 1 + dx«(rm) < |lvg]| < 2 for all
k € N; the norms of v;,’s are bounded away from 1.

To verify the condition (A), for k € N choose wy € X so that ||wy| =
1 < {vg,wg). Then for any ¢t > 0, '

{Vg, T + twg) = L4+ tlug, we) > 1+t 2 |z + tws,

hence x, + twy, € S. Consequently, {z, : n € N} C § and since (&n)nen is
dense in the sphere of X and coneS =5 weget § = X.

To verify the condition (B}, fix ¥ € N (again to be specified later). Let
Z be an N-dimensional subspace of X. We will show that for ¢ > 0 not
too many v;’s can attain the value 1+ g on Bz. From Lemma 2.4 we know
that those vx’s that are at most 1+ 2¢ on Bz do not contribute too much

measure to Ag(S N Bg); N will be chosen so that the products of these
numbers add up.
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There exist uy,...,uy € Bz so that Bz C {Zf’;l a;u; ¢ ja;] € N}. For
i=1,2,... define

Ij. oo {k' eN: 111—2_-7‘ S ma:X(Uk;,l') S l+2_j+1},
rEBz

and 85 = Uyez, {2 € X tvn(2) > |z} M valy) > |yl for some y € By and
n € N, then v,(y/||¥l) > 1 and maxgem, (vg, z) > 1. Therefore Bz NS =
Uj=1(Bz N 5;). By Lemma 2.4,

o 0]
(1) Az(SNBz) < ZﬁQ{l_j)(N_l)/plij.
i=1
To estimate |I;|, suppose that k € I; and = € Bz are such that (vg,z) 2
1+ 277 Since = Ef__l a;u; for some suitable |a;] < N we can estimate

N
14277 < (=} T, T < 1+7‘Zai(fnk,”i>

i=1

<1 +"I"N2 m?:XI(fnh:ui)l'

This means that if k¥ € I; there is somei=1,..., N for which

1
[{frruid| 2 55775

This cannot happen for too many &’s, since
> 1/q
12 sl 2 7 (30 Wmudl?) s
n=1

each u; can have at most (2/7N2/v)? coordinates that are not smaller than
1/{27rN*). Therefore |I;| < 07 279pa N2¢+1 for a suitable constant ay > 0.
Finally, by substituting into (1), we arrive at

(e
Az(SNBz) < upriN2at+1 Z i (g—(N-1)/p)
j=1
Tf NV is such that g— (N —1)/p < 0, then this is at most ¢ for 7 small encugh.
To obtain, for a given & > 0, a symmetric set C = (vg) it is enough o put
C = O U (~C"), where C" is a set which works for £/2.

3. Convex functions. Suppose that g, are convex continuous functions,
and the subdifferential of each of them has a large jump somewhere close to
a given point z for which g1(z) = g2 (z) = ... Then the pointwise supremum
of (gn) (if it exists) is not Fréchet differentiable at .

LEMMA 3.1. Let X be a Banach space, z € X, x* € X*. Let g,91,92,. .-
be convex continuous functions on X with g(z) = gi(z) = gf2) = .-,
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gn < g, and ©* € Og,(z) for all n € N, Suppose there are a > 0, yn € X
and v, € 8gn{yn) with limy, = ¢ and ||lz* — yil > a. Then the conves
continuous function § = sup gn is not Fréchet differentiable at z.

Proof. We can suppose that £ = 0, z* = 0, and g{z) = 0. Since the
functions g, are uniformly bounded on some neighborhood of z, they are
all Lipschitz with the same constant ¢ > 0 on some neighborhood of .
Suppose that all y, are contained in this neighborhood. Then for v € X we
can estimate

gn (V) = gn(Un) + (Wh v — yn) 2 (Ynv) — 2¢ljpnl-
Choose 1, € X with |uaj = 1 and (¥, un) > {3l — 1/n and put A, =
V|4 |[tn. Then lim k, = 0 and

() — 5
lim sup g—(—)m‘g«m—) > limsup 1

’ ({ym: Vllynllun) — 2¢fiynll)
L—r00 H nn n—oG ”ynH
=limsup(yy, un) — 2¢v/[[vn || 2 @,

n— oo

and g is not Fréchet differentiable at .

If f is a function on a Banach space X we denote by Dy the set of points
in X where f is Fréchet differentiable.

THEOREM 3.2. Let X be an infinite-dimensional separable superreflerive
Banach space. Then there exists an equivalent norm p on X such that the
set of points where p is Fréchet differentiable is Aronszajn null.

Proof. We can suppose that X has a basis. Indeed, since X is separable,
it admits a quotient space Y with a basis; denote the quotient mapping by
T'. The Banach. space Y is also superreflexive; if we assume the statement of
the theorem being true for spaces with basis, there is an equivalent norm 7
on 'Y so that Dz is Aronszajn null. For « € X define p(z) = |jz|| +B(T'(z)).
Then p is an equivalent norm on X and D, C 77'(Dg). The set T~*(Dy)
is Aronszajn pull by Lemma 2.3.

Now suppose X has a basis. Since X is superreflexive, it admits a norm
which is both power type rotund and uniformly smooth (see e.g. [BL]). Then
the dual norm is uniformly convex. Let N € N be ag in Proposition 2.5. Fix
some € > 0 and choose v, n € N, and S; = § as in Proposition 2.5. Define
gn(z) = max{v,(z),||z]|} < 2||z|. Then gn =v, on Cp, ={z € X 1 va(x) >
llz]|}, hence v,, € Ogn(z) for z € C,. For € X \ C,, we have gn(z) = ||z
and for any z* € Bl|z| C Ogn(z), z¥|| £ 1 < 1+8 < ||lvn|). Put fe = sup gn.
Then f is an equivalent norm. Since S; = J, oy Cr is dense in X, by
Lemma 3.1 the function f; can be Fréchet differentiable only at the points
of S¢. Put p = 3377, 27" f1,. Then p is an equivalent norm on X which
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can be Fréchet differentiable only at the points of D = Moeq S1/n. The set
D is Aronszajn null by Lemma 2.2 and (B) of Proposition 2.5.
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